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Summary. Reducing computational cost is of essence to make computational fluid dynamics as
a viable tool for industrial design purposes. This work focuses on increasing solution accuracy
by applying the symmetry-preserving method, which allows for the same accuracy with lower
computational cost. The symmetry-preserving method is derived and an implementation of an
algorithm is shown. To establish a cost-versus-accuracy relation, this solver is then tested and
compared with two non-symmetry-preserving codes, using opensource software OpenFOAM.
A turbulent channel flow case was run with varying number of control volumes in the wall-
normal direction to increase computational cost. Accuracy was measured using several lower-
and higher-order statistics. Although differencesin accuracy were visible between the meth-
ods, alongside its unconditional stability, the computational set-up did not allow establishment
of a clear cost-versus-accuracy relation. It is suggested to also increase spatial resolution in
streamwise and spanwise directions to obtain better results, as well as using different metrics for
accuracy or another test cases set-up. In conclusion, the symmetry-preserving method shows
improved accuracy and robustness, but additional work has to be carried out to explore a clear
cost-versus-accuracy relation.

1 INTRODUCTION

In recent years, Computational Fluid Dynamics (CFD) is used increasingly as a design tool
for industrial applications, such as the medical, automotive and renewable energy industries.
The main constraint of the use of CFD in industrial applications nowadays lies in the computa-
tional cost and the wall-clock simulation time. This constraint inevitably leads to a cost-versus-
accuracy trade-off when simulations are performed. This work is part of a larger project [1] in
which the viability of conducting overnight LES simulations on GPU-accelerated supercomput-
ers is evaluated, aiming to combine a highly-portable algebraic framework with a symmetry-
preserving discretisation for unstructured collocated grids. The former part aims to cut down
on the cost side, which is not the focus of this work. Instead, this work focuses on the potential
gain in accuracy obtained by properly applying a symmetry-preserving discretisation.

The symmetry-preserving discretisation aims to conserve energy, momentum and mass of the
simulation by mimicking properties of the continuous operators of the Navier-Stokes equations
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in their discrete counterparts. This property is deemed essential in accurately depicting the
motion of fluids at any scale, which has to be carried out properly in turbulent flow simulations
[2]. This method was later extended to collocated grids by [3]. The effect on the accuracy of
applying this scheme will be compared to the use of non-symmetry-preserving schemes using the
collocated, finite volume, open-source code OpenFOAM, for which the method was previously
implemented by [4]. A fully developed turbulent channel flow case at Reτ is used as a test case,
while monitoring lower- and higher- order turbulent statistics, to perform a cost-versus-accuracy
analysis for the proposed methods.

2 NUMERICAL METHODS

In this section, the essence of the symmetry-preserving method for collocated grids is ex-
plained, as well as the algorithm that follows from it to solve the test cases. Subsequently, the
main differences with the readily-available solver algorithms of OpenFOAM are discussed, and
two non-symmetry-preserving algorithms are introduced, which are also tested in section 3.

2.1 Symmetry-preserving method

Let the semi-discrete version of the incompressible Navier-Stokes equations be written as:

Ω∂tuc + C (us)uc = −Duc − ΩGcpc, (1)

Mus = 0c. (2)

The collocated velocity field is given by uc =
(
uT
c,x,u

T
c,y,u

T
c,z

)T ∈ R3n, the staggered velocity
field is given by us ∈ Rm, and finally, the kinematic pressure field is given by pc ∈ Rn. n
and m give the number of control volumes and faces, respectively. The discrete operators of
equations (1) and (2) can be derived from the geometry of the mesh, after discretising the
domain, as seen in figure 1. The two-dimensional figure serves as an illustration that can
easily be extended to three dimensions, for which the matrices are constructed. The face-
owner and face-neighbour connectivity matrices, Tfo, Tfn ∈ Rn×m, contain entry (i, f) = 1
if cell i connects to face f as an owner or neighbour respectively. The face-normal matrix,
Ns = (Nsx, Nsy, Nsz) ∈ Rm×3m, contains the (x, y, z)-components of the face-normals, nf . The
face area matrix, As ∈ Rm×m, contains the areas of the faces, Af , on its diagonal. The face-
normal distance matrix, δns ∈ Rm×m, contains δnf , the distance between cell-centers i and j
projected onto nf , on its diagonal. Finally, the cell-volume matrix, Ωc ∈ Rn×n, contains the
volumes of each cell, Ωi, on its diagonal. The operators for collocated volumes, Ω ∈ R3n×3n,
staggered volumes, Ωs ∈ Rm×m, divergence, M ∈ Rn×m, gradient, G ∈ Rm×n, Laplacian,
L ∈ Rn×n, cell-to-face dot-interpolator, Γcs ∈ Rm×3n, collocated divergence, Mc ∈ Rn×3n,
collocated gradient, Gc ∈ R3n×n, convection C (us) ∈ R3n×3n, and diffusion D ∈ R3n×3n, are
then derived as:
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Figure 1: Geometric parameters needed to constitute the discrete symmetry-preserving opera-
tors.

Ω = I3 ⊗ Ωc, (3)

Ωs = Asδns, (4)

M = (Tfo − Tfn)As, (5)

G = −ΩsM
T , (6)

L = MG, (7)

Γcs = Ns

(
I3 ⊗ΠV

cs

)
, (8)

Mc = MΓcs, (9)

Gc = −ΩMT
c , (10)

Γsc = Ω−1ΓT
csΩs (11)

C (us) = I3 ⊗
(
Mdiag (us)Π

M
cs

)
, (12)

D = I3 ⊗ (−νL) , (13)

in which ν gives the kinematic viscosity and Πcs ∈ Rn×m gives the face-to-cell interpolator.
Superscript V denotes volumetric interpolation, whereas superscript M denotes midpoint in-
terpolation. The importance of using midpoint interpolation in the convective term is given in
[2] and [3], whilst the importance of the volumetric interpolator that appears in the collocated
divergence and gradient is discussed in [5].

The symmetry-preserving method conserves kinetic energy, Ek = 1
2u

T
c Ωuc. The temporal

evolution of this term is given by:

d

dt
EK = −1

2

 uT
c

(
C (us) + CT (us)

)
uc

+uT
c

(
D +DT

)
uc

+uT
c ΩGcpc + pT

c G
T
c Ω

Tuc

 . (14)

The first right-hand side (RHS) term is zero as the convective term is skew-symmetric by con-
struction, i.e. C (us) = −CT (us). The second RHS term is strictly dissipative as D is (sym-
metric) negative semi-definite, i.e. xTDx ≤ 0 for all x ∈ R3n. The third RHS term is strictly
dissipative and close to zero as GT

c Ω
Tuc = Mcuc ≈ 0c, which is related to the mass conservation

of the collocated velocity field [5].
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The symmetry-preserving operators are implemented in a time-stepping algorithm using the
projection method:

up
c = F (uc,us) , (15)

up∗
c = up

c −Gcp̃
p
c , (16)

Lp̃′
c = Mcu

p∗
c , (17)

p̃n+1
c = p̃p

c + p̃′
c, (18)

un+1
s = Γcsu

p
c −Gp̃n+1

c , (19)

un+1
c = up

c −Gcp̃
n+1
c , (20)

where p̃ = ∆tp denotes the pseudo-pressure. F (uc,us) denotes the temporal integration
method. In this work, the projection method was implemented within a Runge-Kutta framework
which uses the PISO method, which was implemented in the OpenFOAM solver RKSymFoam
[4][6].

2.2 Non-symmetry-preserving methods

The readily available OpenFOAM solver pimpleFoam was extended to include the Runge-
Kutta time-stepping framework to serve as a non-symmetry-preserving solver. There are two
main differences between pimpleFoam and the symmetry-preserving solver.

Firstly, as a default, OpenFOAM does not use symmetry-preserving spatial discretisations.
It uses linear interpolations from cells to faces, for example in the collocated divergence, Mc =
MΓL

cs. Furthermore, the collocated gradient is performed by a linear interpolation followed by a
Gauss-gradient operation, GGΠ

L
cs. This operator is described and rewritten to ΓV

scG in [7]. When
combining equations (9), (10) and (11), it can be observed that these operators are inconsistent,

as ΓV
sc ̸= Ω−1ΓLT

cs Ωs. Moreover, linear interpolation is used in the convective term, allowing it to
become non-skew-symmetric. Finally, a correction term is added to the gradient, G, such that
equation (6) no longer holds, i.e. G ̸= −ΩsM

T . This correction term of the gradient of field ϕc

is given by:

∇corr = (nf − df/ cos θf ) ·
[
ΓL
csGcϕc

]
f
, (21)

where df gives the unit vector of the vector connecting cells i and j, and θf denotes the angle
between nf and df .

Secondly, a flux-correction term, ϕcorr, is added to the term Γcsu
p∗
c , which appears implic-

itly on the RHS of equation (17). This flux-correction term depends on the chosen temporal
integration method, as an example, for Forward Euler time-stepping, it is given by:

ϕcoor = −Cusus,corr, (22)

us,corr = un
s − ΓL

csu
n
c , (23)

[Cus ]f,f = 1−min

(
|| [us,corr]f ||
|| [un

s ] ||f − ε

)
, (24)
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in which ε is a very small number to avoid division by zero. It was shown by [8] that this term
stabilises the results at the cost of introducing a sizable amount of numerical dissipation.

Three different solver algorithms where tested in total for this work, of which an overview is
given in table 1. Firstly, pimpleFoam, which contains the two major issues described in section
2.2. Secondly, ϕ-Foam, which is the same as pimpleFoam, except it has been stripped of the
flux-correction term given in equation (22). And finally, the symmetry-preserving algorithm, as
described in section 2.1, denoted as Sym-Pres.

pimpleFoam ϕ-Foam Sym-Pres

Conservative operators × × ✓
Conservative fluxes × ✓ ✓

Table 1: Comparison of different tested solvers

3 RESULTS

3.1 Case set-up

To test the cost-versus-accuracy between the different solvers, a turbulent channel flow case
at Reτ = 180 was used. The dimensions of the channel domain were Lx = 4πh, Ly = 2h
and Lz =

4
3πh, in streamwise (x), wall-normal (y) and spanwise (z) direction respectively, with

channel half-height h, as used in [9], see figure 2. Periodic boundaries were used in x- and z-
directions and no-slip and zero-gradient boundary conditions at the walls for the velocity and
pressure, respectively. A pressure gradient of −1 was imposed to drive the flow, leading to
uτ = 1. The kinematic viscosity was set so that Reτ = uτh

ν = 180.
To examine a relation between the cost and the accuracy, the number of cells in the y-direction

was varied as Ny ∈ {40, 60, 80, 100, 120, 140}, while Nx and Nz where kept constant at 40, which
leads to different computational costs and accuracies of the solutions. The cell spacing in the y-
direction was done with a hyperbolic tangent function, as was done in [10]. A diagonally-implicit
Runge-Kutta 2 (DIRK2) temporal integration scheme was used with time-step size ∆t = 0.001
to meet the Courant-Friedrichs-Lewy (CFL) condition for all meshes.

The statistical quantities that were measured were the mean stream-wise velocity, ⟨ux⟩, the
Reynolds shear stress ⟨u′xu′y⟩, the Root-Mean-Square (RMS) velocities, RMS(ui), the turbulent
kinetic energy (TKE), k = u′iu

′
i. Furthermore, the higher-order statistical quantities of the

kinetic energy budget terms were calculated, consisting of production, Cp
k , transport, C

T
k , viscous

diffusion,Dv
k, dissipation,D

ϵ
k and pressure diffusion, Pk [4]. All statistical quantities are averaged

in the periodic spatial directions. Spatial averaging was started after developing turbulence from
an initial state, and was performed over 30 time units, which showed statistical convergence.

To express the results of each mesh-solver combination as a single data point, the accuracy
was expressed as an error value, compared to reference solution of [9]. For this comparison,
three statistical quantities were used, ⟨ux⟩, ⟨u′xu′y⟩ and k, and the sum of the budget terms,
Σbuds. Two different methods of expressing the error were used. Firstly, the weighted RMS of
the difference between the obtained values and the reference values, using the cell size as weights
for the averaging. The second method was by simply looking at the difference in the peak values
(maximum absolute values) of each statistical quantity. The error in Σbuds was only expressed
with the weighted RMS, as analytically it should be zero everywhere. With ⟨ux⟩ as an example,
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Figure 2: Snapshot of the turbulent channel flow, showing spatial discretisation (left), contours
of vorticity at an arbitrary level to show turbulence (middle) and instantaneous velocities (right).

these values are then calculated as:

max∆(⟨ux⟩) =
∣∣∣max⟨|⟨ux⟩|⟩ −max⟨|⟨ux⟩ref |⟩

∣∣∣, (25)

wRMS∆(⟨ux⟩) =

1

h

Ny∑
j=1

[dy]j (⟨ux⟩j − ⟨ux⟩j,ref )2
 1

2

. (26)

3.2 Cost-versus-accuracy results

Firstly, the results of the lower-order statistics are given in figure 3. The results for different
values of Ny are lumped together in a single colour for each solver, so that a comparison of
the range of the accuracy can be seen quickly from the image. In general, the results converged
towards the reference result, therefore the partially overlapping lines form a range of spatial con-
vergence for each solver. In figure 3a, it can be seen that in the wall region, the solutions mostly
overlap. In the bulk region, however, pimpleFoam lies furthest away from the reference solution,
with a large improvement when using conservative fluxes, as the ϕ-Foam results demonstrate.
The Sym-Pres results lie closest to the reference solution and are best at reproducing the mean
velocity profile that is expected. Similar results are observed for the RMS velocities, figure
3c and the TKE, figure 3d. The difference is less distinct in the Reynolds shear stress, figure
3b, where a distinction between pimpleFoam and ϕ-Foam is somewhat clear, but the effect of
the spatial discritisation in Sym-Pres seems to have neither a positive nor a negative effect on
accuracy for this set-up.

In order to see the relation between cost and accuracy, these lower-order statistical results
were distilled into single data points using equations (25) and (26). The different RMS velocities
were not considered, as k is dependent on these terms and could give a better single-point value
of the accuracy of these sub-terms. The resulting relations are given in figure 4. The weighted
errors given by wRMS (⟨ux⟩) are in general highest for pimpleFoam, lowest for Sym-Pres, with
ϕ-Foam in the middle, with similar results for max∆(⟨ux⟩). However, mesh refinement does
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J.A. Hopman, À. Alsalti-Baldellou, J. Rigola and F.X. Trias

(a) Mean stream-wise velocity (b) Reynolds shear stress

(c) RMS velocities (d) Turbulent kinetic energy

Figure 3: Turbulent channel flow lower-order statistics compared for different solvers and values
of Ny. Results for the different meshes are lumped together in one colour to provide an insight
into relative solver performance at a quick glance, compared to each other and the reference
solution of [9].

not show a big improvement for this variable for any of the solvers, and it is hard to make a
direct cost-versus-accuracy analysis based on this data. This might be due to the fact that the
mesh remained very coarse in x- and z-directions for all meshes, suggesting that these spatial
directions should be refined first, before spending more resources on refinement in y. The results
for the TKE again show the same general difference in accuracy of the solvers, with a slightly
more visible trend of increased accuracy at higher cost. Although the results do not give a
strong relation between cost and accuracy, and the conclusion that Sym-Pres with Ny = 40 is
as accurate as ϕ-Foam with Ny = 140 seems far-fetched. Finally, the results for the Reynolds
shear stress also show the improvement in the solver by removing the flux-correction, however,
the results of ϕ-Foam and Sym-Pres largely overlap and no clear trends are visible. The main
conclusions from the results so far are that removing the flux-correction term improves the
accuracy of the results, while the spatial discretisation improves it only a little. While cost-
versus-accuracy trends and comparisons are not possible using this method. Improvements here
could be two-fold. Firstly, the mesh could be refined in all directions, to allow convergence to
the reference solution, and secondly, different methods of measuring accuracy could be tested.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Error-versus-cost plots for the relevant lower-order statistics of the turbulent channel
flow. Left/Right: weighted RMS of the deviation from the reference solution (Left), equation
(26), peak value difference (Right), equation 25. Top/Center/Bottom: mean stream-wise veloc-
ity (Top), turbulent kinetic energy (Middle), Reynolds shear stress (Bottom). A least squares
trend line is added for the set of solutions of each solver.
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The results of the higher-order statistics are depicted in figure 4. In general, the budget terms
overlapped mostly for all solvers. They are not analysed in detail, but an overview of all terms
is given in figure 5a. The sum of the budget terms, figure 5b, show that the problems mainly
reside at the wall, with some eratic results for pimpleFoam. The trend of the improvement in
accuracy for this term, figure 5c does show a nice trend of reduction in error with increasing
computational cost. However, the individual data points show some zig-zag and the trend lines
overlap, making it difficult to take conclusions in terms of comparing the different solvers from
these figures.

(a) (b)

(c)

Figure 5: Sum budgets. (a) Combined budget, (b) Sum budgets, (c) Integrated sum budgets.

3.3 Robustness and stability

So far only Cartesian meshes have been considered, where the gradient correction of pim-
pleFoam and ϕ-Foam are zero and therefore do not influence the results. Moreover, one of the
strengths of the symmetry-preserving method, is that it provides unconditional stability, even
on highly distorted meshes. For these reasons, additional tests were performed for the Ny = 100
mesh with highly distorted control volumes. These control volumes were formed by stretching
four out of eight diagonally placed vertices away from the cell-center, i.e. the (000), (011), (101)
and (110) vertices, see figure 6 for an example of such a control volume. The channel flow on
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this type of mesh run with pimpleFoam and ϕ-Foam quickly diverged due to accumulation of
kinetic energy, whereas the Sym-Pres solver converged to give a result. The accuracy of these
results is of course very low, and do not need to be examined in detail, see fore example the
Reynolds shear stress in figure 7. Although on this mesh, any accuracy is hard to guarantee,
the symmetry-preserving method is at least able to provide some result. This stability and
robustness of the solver is of very great value in industrial applications, where challenging ge-
ometry and meshes might be used, and end-users might not be interested in figuring out why a
simulation did not converge.

Figure 6: Control Volume Figure 7: Reynolds Shear Stress

4 CONCLUSIONS AND DISCUSSION

In this work, it is shown that the conservative properties of the symmetry-preserving method
can increase the accuracy simulation results. The derivation and implementation of the method
are shown in this work and then compared to a readily-available solver in the opensource software
OpenFOAM. The main differences that were identified were the non-symmetry-preserving spatial
discretisation and the flux correction term, of which the latter had the biggest negative impact on
the resulting accuracy. In theory, an increase in accuracy could equal a decrease in computational
cost, if the targeted accuracy is kept constant. The relation between computational cost and
accuracy in this work was shown using a turbulent channel flow case, using lower- and higher-
order statistics, distilled to single data points of accuracy. The results of this approach, however,
are not very convincing, and additional tests and an improved methodology are suggested.
Firstly, the grid should be refined in all directions, or should already be of DNS quality in
x- and z-directions, to allow convergence to the reference solution. Secondly, other measures
of accuracy should be sought after, for instance by using a different test case. For example,
the re-attachment point of the flow over a periodic hill could be a good measure. Finally, one
of the main advantages of the symmetry-preserving method, its stability and robustness, was
demonstrated by showing converged results even on highly distorted meshes. In conclusion, the
symmetry-preserving method shows improved accuracy and robustness, but additional work has
to be carried out to explore a clear cost-versus-accuracy relation.
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