
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

ALGORITHMIC DIFFERENTIATION OF THE
PYTHONOCC GEOMETRIC MODELING LIBRARY

MLADEN BANOVIĆ1, THOMAS HAFEMANN1, ARTHUR STÜCK1

1 German Aerospace Center (DLR)
Institute of Software Methods for Product Virtualization

Zwickauer Str. 46, 01069 Dresden, Germany
e-mail: mladen.banovic@dlr.de, www.dlr.de

Key words: Algorithmic Differentiation (AD), Computer Aided Design (CAD), OpenCascade
Technology (OCCT), Gradient-based Optimization, mixed-language AD

Summary. Shape optimization workflows in the aeronautical and automotive industry often
rely on high-fidelity numerical simulations (e.g. Computational Fluid Dynamics) and involve
CAD-based parametrizations. Since such workflows may impose large computational costs, the
optimization itself can be driven by efficient gradient-based methods. This approach, how-
ever, requires gradient (sensitivity) information from each component used in the optimization
workflow, where the missing link are typically the so-called geometric sensitivities from CAD
systems or libraries. To retrieve the exact sensitivity information, one can apply algorithmic
differentiation (AD) to the CAD library if its source code is available. For instance, this was
successfully demonstrated in the past by differentiating the widely-used C++ geometric kernel
OpenCASCADE Technology (OCCT) using the AD tool ADOL-C. This study continues on the
previously mentioned work and introduces the following novel contribution: a mixed-language
AD of a hybrid Python/C++ geometric modeling library, namely pythonOCC. As its name
suggests, pythonOCC provides Python wrappers for OCCT. With the mixed-language AD ap-
proach, one can propagate geometric sensitivities from Python to C++ and vice-versa, thus
allowing the utilization of pythonOCC in CAD-based shape optimization workflows.

1 INTRODUCTION

In the aerospace and automotive industry, shape optimization techniques are nowadays pro-
foundly employed in the product development life cycle, especially in its preliminary phase to
accelerate design studies. Here, one typically utilizes optimization algorithms that can sys-
tematically explore the design space of a given problem, often consisting of hundreds or even
thousands of design variables.

Generally, the optimization algorithms are divided into two approaches: gradient-free or
gradient-based. The gradient-based optimization methods are recognized for their computational
efficiency, especially when dealing with problems defined by a large number of design variables.
In the case of optimization problems related to aeronautical applications, the efficiency aspect is
tremendously relevant because the objective function is usually evaluated by high-fidelity CFD
simulations imposing large computational costs.

For the above-mentioned reason, the gradient-based optimization methods are considered
in this work. To employ these methods, one requires the derivative calculation from each el-

M. Banović, T. Hafemann, A. Stück

ement or process executed in a given optimization chain, e.g.: (i) geometry generation driven
by CAD tools, (ii) creation or deformation of a computational grid (mesh), and (iii) evalua-
tion of the computational grid using Computer Aided Engineering (CAE) tools such as CFD
or CSM (Computational Structural Mechanics). In CFD, the adjoint approach is considered as
state-of-the-art [1, 2, 3, 4] for computing derivatives of an objective function w.r.t. grid node
coordinates. Since the grid node coordinates depend on a CAD parametrization, the next key
challenge is to systematically complement the overall sensitivity chain by the computation of
the so-called geometric sensitivities in CAD, i.e. derivatives of surface mesh nodes with respect
to design parameters of the CAD model to be optimized.

In commercial CAD systems (e.g. SIEMENS NX, SolidWorks, CATIA V5), this information
is usually approximated using finite differences (FD) in a black-box manner, as the software
sources are not available to many users. Here, a step size is introduced to each design parameter
to compute perturbed geometries, which may result in topological changes (patch re-numbering
and disappearance). A possible solution to this issue of topological changes is presented in [5] by
introducing an additional step in which the original and perturbed geometries are approximated
using surface tessellation of linear triangular elements (also referred to as a faceted representa-
tion). Then, distances between original and perturbed facets are computed by surface-to-surface
projections. Nonetheless, this approach fits for applications where a closed-source CAD system
is being integrated into a gradient-based shape optimization loop. However, approximation and
cancellation errors of the FD approach are a source of gradient-inaccuracies. Moreover, the FD
technique only allows for a forward sensitivity analysis, in which the numerical effort scales with
the number of inputs, hampering an end-to-end adjoint sensitivity chain.

On the contrary, computing exact geometric sensitivities can be achieved by applying al-
gorithmic differentiation to the CAD sources. This approach has been demonstrated so far
on several CAD tools tailored for CAD parametrizations in turbo-machinery [6, 7, 8], written
in Fortran or C++. Moreover, a fully-developed C++ CAD kernel OpenCascade Technology
(OCCT) has been differentiated by integrating the AD software tool ADOL-C into its source
code [9].

The next advancement in this field is the application of AD to CAD libraries that provide
Python front-end. In the community of industrial users, automated, Python-controlled work-
flows and frameworks are increasingly popular and established, e.g. in conjunction with the
open-source library pythonOCC [11]. This imposes a new challenge for AD tools when, for in-
stance, Python and C++ are combined in a single CAD environment. To this end, we consider
pythonOCC in this study. It provides Python extensions for C++ OCCT, thus enabling the
usage of OCCT to a broader audience and industrial workflows that require Python interfaces
to CAD libraries. To differentiate it, one requires a mixed-language AD approach to ensure the
propagation of derivatives from Python to C++ and vice-versa. Here, this has been enabled by
ADOL-C.

This paper is organized as follows. Section 2 explains ADOL-C, its extension to support
Python differentiation and why it has been used to differentiate pythonOCC. Section 3 describes
how pythonOCC is differentiated. Section 4 shows verification of the differentiated sources by
employing a simple blade parametrization. Finally, Sect. 5 offers conclusions.

2

M. Banović, T. Hafemann, A. Stück

2 ADOL-C AND ITS INTERFACE TO PYTHON

There are multiple tools and packages that enable the derivative computation in Python,
several examples are mentioned as follows. The package SymPy provides capability for symbolic
differentiation. Algorithmic differentiation is natively supported for Python and NumPy func-
tions in the package Autograd, which is actively developed as a part of the JAX Python library
[14]. Furthermore, one can consider extensions to the existing operator-overloading C++ AD
tools. For example, PyADOLC [12] is a wrapper around ADOL-C developed using the Boost
library. Moreover, ADOL-C itself provides SWIG-generated wrappers described in [13].

Here, we consider ADOL-C as the AD tool of choice for differentiating pythonOCC. The
main reason is that the OCCT kernel is also differentiated with ADOL-C. Furthermore, one can
use ADOL-C to differentiate Python codes. Nevertheless, additional developments regarding
ADOL-C were required in this study, as described in Sect. 2.2.

2.1 Introduction to ADOL-C

ADOL-C (Automatic Differentiation by Overloading in C++) is an open-source AD tool
based on operator-overloading concept [10]. It is mostly used to differentiate vector functions
written in C++. As a result, one retrieves first or higher-order derivatives. To differentiate a
code with ADOL-C, one replaces the declaration types of almost all real variables (e.g. declared
as float or double) with the ADOL-C data-type named adouble.

There are two implementations of the adouble class (defined in different headers): traceless
and trace-based, providing different ways of derivative computation. The difference is that the
traceless option computes derivatives along the function (primal) evaluation by applying the
forward mode of AD. On the other hand, the trace-based option first generates an internal
representation of the function to be differentiated—called trace—which is later evaluated by
employing ADOL-C drivers in order to calculate corresponding derivatives. The trace-based
option supports both the forward and reverse mode of AD, where the reverse mode of AD has
a significant potential for improved efficiency when dealing with functions that have a much
smaller number of outputs (dependents) comparing to the number of inputs (independents).

Both options have been used to differentiate the OCCT kernel [9]. Since here the differen-
tiation of a hybrid Python/C++ code is considered, we chose the traceless option as the first
step of pythonOCC differentiation. There are a few practical reasons for such decision: (i) the
forward mode of AD serves later as a reference for validating derivatives computed using the
reverse mode of AD, (ii) the traceless option is much easier to debug than the trace-based option
because the overloaded operators implement both primal and derivative statements, and (iii)
it is straightforward to extract the primal and derivative information at any given point in the
computation.

2.2 Python interfaces for ADOL-C

As described in the previous section, ADOL-C offers two differentiation options (traceless and
trace-based) depending on which header file is being included. For the trace-based differentiation
option, Python interfaces already exist [13] and they are generated using the software develop-
ment tool SWIG (Simplified Wrapper and Interface Generator) [15]. Those developments have
been considered as a fundamental work in order to implement the Python wrapper for the trace-
less option required in this study (header file adolc/adtl.h). Furthermore, pythonOCC also

3

M. Banović, T. Hafemann, A. Stück

uses SWIG, which is an additional reason why this tool is chosen here (more details will follow
in Sect. 3).

SWIG creates interfaces for scripting languages (in this case Python) based on a specific file
that contains SWIG directives (macros), the so-called interface file (usually denoted with a .i

or .swg suffix). The SWIG directives are preceded by the % delimiter in order to distinguish
them from the C/C++ declarations. Furthermore, anything written between %{ and %} block
is copied as is to the resulting C++ wrapper file, i.e. it is not parsed or interpreted by SWIG.

A code snippet from the newly defined interface adouble.i is presented in Listing 1 and
described as follows. Typically, the first thing to do is to define the module name using the
%module directive, in this case adtl, as shown in Line 1. Lines 3–5 represent a block whose
body (Line 4) will be copied as is into the wrapper file. Such blocks are used to include header
files and other declarations in order to compile the generated interface. That is, just by using
the %include macro as in Line 20 does not mean that this include statement will appear in the
generated wrapper code. For this reason, the block represented by Lines 3–5 is required. Next,
the %ignore directive in Line 8 is introduced, because the behavior of the assignment operator
in Python is different than in C++. As the name suggests, this directive will cause SWIG
to ignore a certain C/C++ identifier. Furthermore, SWIG is not able to fully handle operator
overloading for operators that are not part of a class, i.e. the operators declared using the friend
keyword. For them, SWIG issues a warning. Such declarations exist in adolc/adtl.h and they
have been also ignored as shown, for example, in Lines 11–12 (the total number of the %ignore
statements in the complete adouble.i file is equal to 53). Afterwards, there are %import and
%include directives, listed in Lines 14–20. The %include directive (Line 20) instructs SWIG to
process the header file of interest and create the corresponding wrapper code. The purpose of the
%import directive is just to collect information from another SWIG interface file or a header file
without generating any wrapper code. That is, the code block between Lines 14–19 represents
what is required for the compilation purposes. Next, the code block between Lines 23–25 is an
example of how the tan function is redefined because it was ignored in Line 11. Finally, there is
an example how to extend the Python proxy adouble class (using the %extend directive) and
overload the rmul operator (Lines 27–31) which is called when an adouble object is multiplied
by a scalar (double) from the left. This operator is declared using the friend keyword in the
C++ adouble class and was therefore previously ignored as shown in Line 12.

Listing 1: SWIG interface file adouble.i for the traceless adouble class of ADOL-C

1 %module adtl

2
3 %{

4 #include "adolc/adtl.h"

5 %}

6
7 // ignore all assignments operators

8 %ignore *:: operator =;

9
10 // ignore all declarations that use the "friend" keyword , e.g.:

11 %ignore adtl::tan;

12 %ignore operator *(const double v, const adtl:: adouble& a);

13
14 %import <std_list.i>

15 %import <std_string.i>

4

M. Banović, T. Hafemann, A. Stück

16 %import <std_iostream.i>

17 %import "adolc/internal/common.h"

18 %import "adolc/internal/usrparms.h"

19 %import "adolc/internal/adolc_settings.h"

20 %include "adolc/adtl.h"

21
22 // redefine what was ignored previously:

23 adtl:: adouble tan(const adtl:: adouble& a){

24 return adtl::tan(a);

25 }

26 // redefine what was ignored previously by extending the proxy class:

27 %extend adtl:: adouble {

28 adouble __rmul__(const double a){

29 return (a * (*$self));
30 }

31 }

Once the interface file is created, one can invoke SWIG to build the desired extension module,
in this case adtl. There are multiple possibilities to invoke SWIG, here we employed CMake.
Once the build process with SWIG is finished, the following module files appear as a result:
adtl.py and adtl.so. They have to be added to the user’s Python system path such that the
module files can be imported.

The following section describes how the Python wrapper of the traceless adouble class can
be employed to differentiate pythonOCC.

3 MIXED-LANGUAGE AD OF PYTHONOCC

The open-source pythonOCC geometry modeling library provides Python wrappers to almost
all OCCT C++ classes. On top of that, it provides utility functions, e.g. for various topological
operations, and 3-D visualization in Python GUI (Graphical User Interface) libraries such as
PyQt5/6 or PySide2. More information and additional features can be found in [11]. The version
7.6.2 is considered in this study.

pythonOCC is differentiated in the forward mode of AD using the SWIG-generated Python
extension for the traceless adouble class (described in the previous section). Moreover, it is
compiled and linked against the AD-enabled OCCT C++ kernel v7.6.2, also differentiated with
ADOL-C.

ADOL-C is integrated into OCCT by changing the OCCT’s alias Standard Real (defined
in Standard TypeDef.hxx) from double to the adouble data-type. Such a change triggered
a substantial amount of compile- and run-time issues that had to be tackled to finalize the
differentiation process. More details about these obstacles and the corresponding solutions are
described in [9].

The differentiation of pythonOCC is described as follows. Since pythonOCC uses the CMake
build system, the first step is to modify the CMakeLists.txt file in this fashion: (i) add paths
to the ADOL-C installation directories containing the header adtl.h and the library file, (ii)
add path the interface file adouble.i described in the previous section, and (iii) add adolc to
each existing swig link libraries command to ensure that all pythonOCC modules are linked
against ADOL-C.

Next, the source files located under the path src/SWIG files are modified as follows. First,
an include statement for adolc/adtl.h is written to headers/Standard module.hxx. This is

5

M. Banović, T. Hafemann, A. Stück

one of the top-level header files and therefore a good candidate to make adtl.h present all
over the pythonOCC sources. Afterwards, the interface file wrapper/Standard.i is modified as
shown in a code snippet of Listing 2. As one can notice, the adouble.i is imported (Line 2).
Followed by that is the change of the alias Standard Real (Line 7). It is important to note
that this typedef is not propagated to the generated wrapper code. One possibility to make it
accessible also on the Python level is to use the %pythoncode directive—an example is shown
between Lines 10–13. Nonetheless, this step is optional, i.e. one could also work directly with
adouble on the Python side.

Listing 2: Modifications done in the SWIG interface file Standard.i

1 // add import directive for the traceless adouble interface

2 %import "adouble.i"

3
4 // --- original code ---

5 typedef double Standard_Real;

6 // --- AD code ---

7 typedef adtl:: adouble Standard_Real;

8
9 // optional AD code - an example of alias definition

10 %pythoncode {

11 import adtl as ad

12 Standard_Real = ad.adouble

13 }

Thereafter, the directory src/SWIG files/wrapper contains about 300 additional SWIG
interface files, corresponding to each source package of OCCT. These interfaces were checked
and accordingly modified such that each class and its methods match the signature of the
corresponding classes from the differentiated OCCT kernel. For most cases, no adjustments were
required, as most of the interfaces make correct use of the alias Standard Real. Nevertheless,
there were certain mismatches reported by SWIG during the compilation, mainly because the
differentiated OCCT has slightly different method signatures comparing to the original version.
That is, the adouble class is not used everywhere in the source code, as reported in [9].

For every interface file there is a corresponding stub file (extension: .pyi), installed together
with the pythonOCC modules. These files contain useful type hints, i.e. signatures of classes
and methods that can be queried by a type checker. In the original version, all real variables
were declared using the float type—which is now changed to Standard Real in the AD version
wherever required to match the signatures from the SWIG interfaces.

In light of this information, it is important to note that the user experience in the differenti-
ated pythonOCC is now changed, since the real variables (in most cases) have to be initialized
as adouble objects. As an example, a code snippet is presented in Listing 3. Here, Line 5 shows
how a 3-D point object can be initialized in the original version, while Line 8 demonstrates the
corresponding initialization in the AD version.

Listing 3: Example of initializing a 3-D point in the original vs. differentiated pythonOCC

1 from OCC.Core.Standard import *

2 from OCC.Core.gp import gp_Pnt

3
4 # --- original code ---

5 aPnt = gp_Pnt (1., 2., 3.)

6

M. Banović, T. Hafemann, A. Stück

6
7 # --- AD code ---

8 aPnt = gp_Pnt(Standard_Real (1.), Standard_Real (2.), Standard_Real (3.))

During the execution of the tests provided with the pythonOCC sources, a lot of run-time
errors had to be resolved, mainly due to the type change from float to Standard Real, which
is now adouble. Furthermore, adouble is not used everywhere in pythonOCC. For instance,
the ShapeTesselator class of pythonOCC is used by WebGL (Web Graphics Library) which
requires the float data-type. Thus, the SWIG interface of the ShapeTesselator class remained
unchanged (i.e. floats are used). However, the underlying C++ code was adapted because it
uses the classes of the AD-enabled OCCT. In this process, the primal values of the adouble ob-
jects (e.g. point coordinates) were extracted by calling the getValue method wherever required.

The following section describes the validation of the differentiated pythonOCC with respect
to: (i) its original (primal) functionality, and (ii) calculation of geometric sensitivities.

4 VERIFICATION OF DIFFERENTIATED PYTHONOCC

After a successful compilation of the AD-enabled pythonOCC using SWIG, it is important to
check its original functionality. For this purpose, one employs the test suite provided together
with the sources. In this process, many changes were made to the utility classes of pythonOCC
and to the test suite itself, because everything has to be adapted such that adoubles are correctly
used. The latest results are shown in Table 1. The remaining four failed tests require further
investigation, however it is important to note that they are not related to the geometric modeling
functionality of pythonOCC.

Table 1: Test results for the pythonOCC primal functionality

Number of succeeded tests Number of failed tests Success rate

126 4 96.9%

Figure 1: Blade geometry used for sensitivity verification

In the following step, the correctness of the computed derivatives is verified using a simple
blade geometry, as illustrated in Fig. 1. Its 2-D base profile is the NACA0012 airfoil approxi-

7

M. Banović, T. Hafemann, A. Stück

mated using two B-splines that are joined at the leading and the trailing edge. This base profile
is cloned, scaled and transformed to another position. Finally, the lofting algorithm named
BRepOffsetAPI ThruSections is employed, which takes two profiles (cross-sections) as input
and generates the final blade stored as a topological data structure. Afterwards, one obtains the
underlying geometric information—surfaces in this case—to calculate surface point coordinates
and their corresponding derivatives.

In terms of working with the traceless adouble class of ADOL-C to calculate the derivatives
using the scalar forward mode of AD, the following steps are important to note: (i) one activates
(in terms of AD) a certain design parameter (i.e. independent variable) by calling the method
setADValue with the derivative seed equal to 1., and (ii) one retrieves the derivative information
on the surface point coordinates (i.e. dependent variables) by calling the method getADValue.

As a representative example, the surface point derivatives are computed w.r.t. the weight
parameter of the control point marked with green color (in Fig. 1). The correctness of the
computed derivatives is verified in a few steps described as follows.

C++ OCCT AD Sensitivity

Difference

pythonOCC AD Sensitivity

2.0e+01

15

10

5

0.0e+00

2.0e+01

15

10

5

0.0e+00

1e-13

2e-13

3e-13

4e-13

5.2e-13

0.0e+00

M
ag

ni
tu

de

M
ag

ni
tu

de

M
ag

ni
tu

de

Figure 2: C++ OCCT AD vs. pythonOCC AD sensitivities

First, the blade parametrization written in Python (pythonOCC) is also written in C++
(OCCT). The sensitivities are compared as demonstrated in Fig. 2 and they show mutual con-
sent. This concludes that the derivatives are correctly propagated from Python to C++ (and
vice-versa) using the SWIG-generated ADOL-C interface. An additional remark to this compar-
ison is that the workflow regarding ADOL-C is the same between the AD-enabled pythonOCC
and C++ OCCT, but one can benefit from the flexibility that Python as a high-level program-
ming language has to offer, for example, in terms of rapid prototyping.

Second, the derivatives computed with AD are compared against FD. A qualitative compar-
ison is presented in Fig. 3. As one can notice, the overall magnitude plots between AD and FD
match to a high extent.

8

M. Banović, T. Hafemann, A. Stück

AD Sensitivity 2.0e+01

15

10

5

0.0e+00

M
ag

ni
tu

de

2.0e+01

15

10

5

0.0e+00

M
ag

ni
tu

de

FD Sensitivity

Difference

1e-6

2e-6

3e-6

4e-6

5e-6
5.4e-06

0.0e+00

M
ag

ni
tu

de

Figure 3: pythonOCC sensitivities: AD vs. FD

Finally, the AD-enabled surface sensitivities are additionally verified with a Taylor test:

f(x+ h)− f(x)− h
∂f

∂x
(x) = O(h2). (1)

The test was performed on eight different surface point coordinates, considering the following
range of step sizes h ∈ [100, 10−13]. The error plots (the left-hand side of Eq. 1) are presented in
Fig. 4. One can observe that the errors follow the theoretical convergence rate of h2 until they
reach machine precision around h = 10−6. The verification demonstrates that AD derivatives
are correct for this particular use-case.

100 10−2 10−4 10−6 10−8 10−10 10−12

Step size (h)

10−16

10−13

10−10

10−7

10−4

10−1

E
rr

or

Point: 0
Point: 1
Point: 2
Point: 3
Point: 4
Point: 5
Point: 6
Point: 7
h
2

Figure 4: Taylor test evaluation using the differentiated pythonOCC

9

M. Banović, T. Hafemann, A. Stück

5 CONCLUSION AND OUTLOOK

This paper presents the algorithmic differentiation of the hybrid Python/C++ geometric
modeling library pythonOCC. For this purpose, a SWIG interface for the traceless adouble

class was introduced to generate its Python extension. Then, this interface was employed to
differentiate pythonOCC.

In this process, the pythonOCC interfaces and the corresponding stub files were modified to
match class- and method-signatures of the differentiated OCCT in order to resolve the compile-
and run-time issues. The obtained derivatives were verified against FD, showing mutual agree-
ment. Furthermore, the results of the Taylor test aligned with the theoretical expectations. This
verification proved the correctness of the computed derivatives for a simple blade parametriza-
tion and serves as a proof of concept. The next step is to include more complex parametrizations
to verify the derivative computation of different functionalities of the differentiated pythonOCC.

The derivatives were computed using the forward mode of AD. Currently, the reverse mode
of AD is not supported in pythonOCC. To allow it, further work will be about integrating the
trace-based adouble class into pythonOCC.

Next, the differentiated pythonOCC is going to be integrated in the FlowSimulator environ-
ment, which is a high-performance computing framework for multidisciplinary simulations being
developed by DLR and partners in academia and industry. The benefits of this integration are:
(i) additional flexibility for the creation of CAD models and model constraints, and (ii) the
direct access to the associated geometric sensitivities with the convenience of the Python layer.
PythonOCC geometries can then be linked to the numerical meshes by the in-house FlowSimu-
lator plugin FSOCCT, which already serves as an entry point for certain OCCT functionalities
to the FlowSimulator framework with its Data Manager (FSDM). Moreover, other plugins of the
FlowSimulator ecosystem could easily access metadata attached to the geometry, for example,
required for boundary conditions, mesh deformation, etc. Finally, the whole framework will be
used to perform large-scale gradient-based optimizations of an aircraft backed by an end-to-end
adjoint sensitivity chain that is HPC-ready and features exact gradient information.

REFERENCES

[1] Giles, M.B.; Duta, M.C.; Müller, J.D.; Pierce, N.A.: Algorithm developments for discrete
adjoint methods. AIAA journal, 41(2), 198–205, 2003. http://doi.org/10.2514/2.1961.

[2] Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing, 3,
233–260, 1988. http://doi.org/10.1007/BF01061285.

[3] Pironneau, O.: On optimum design in fluid mechanics. Journal of Fluid Mechanics, 64(1),
97–110, 1974. http://doi.org/10.1017/S0022112074002023.

[4] Yu, G.; Müller, J.D.; Jones, D.; Christakopoulos, F.: CAD-based shape optimisation using
adjoint sensitivities. Computers & Fluids, 46(1), 512–516, 2011. ISSN 0045-7930. http://
doi.org/10.1016/j.compfluid.2011.01.043. 10th ICFD Conference Series on Numerical
Methods for Fluid Dynamics (ICFD 2010).

[5] Agarwal, D.; Robinson, T.T.; Armstrong, C.G.; Marques, S.; Vasilopoulos, I.; Meyer,
M.: Parametric design velocity computation for CAD-based design optimization using ad-

10

http://doi.org/10.2514/2.1961
http://doi.org/10.1007/BF01061285
http://doi.org/10.1017/S0022112074002023
http://doi.org/10.1016/j.compfluid.2011.01.043
http://doi.org/10.1016/j.compfluid.2011.01.043

M. Banović, T. Hafemann, A. Stück

joint methods. Engineering with Computers, 34, 225–239, 2018. http://doi.org/10.1007/
s00366-017-0534-x.

[6] Sanchez Torreguitart, I.; Verstraete, T.; Mueller, L.: Optimization of the LS89 axial turbine
profile using a CAD and adjoint based approach. Int J Turbomach Propuls Power 3(3):20,
2018.

[7] Voß, C.; Siggel, M.; Backhaus, J.; Pahs, A.: A Differentiated Geometry Blade Parameteri-
zation Methodology for Gas Turbines. Available at SSRN (2023).

[8] Banović, M.; Vasilopoulos, I.; Walther, A.; Meyer, M.: Algorithmic differentiation of an
industrial airfoil design tool coupled with the adjoint CFD method. Optim Eng 21, 1221–
1242 (2020). https://doi.org/10.1007/s11081-019-09474-x.

[9] Banović, M.; Mykhaskiv, O.; Auriemma, S.; Walther, A.; Legrand, H.; Müller, J.D.: Al-
gorithmic differentiation of the Open CASCADE Technology CAD kernel and its coupling
with an adjoint CFD solver. Optimization Methods and Software, 33(4-6), 813–828, 2018.
http://doi.org/10.1080/10556788.2018.1431235.

[10] Walther, A.; Griewank, A.: Getting started with ADOL-C. Dagstuhl seminar proceedings
09061, pp 181–202, 2009.

[11] Paviot, T.: pythonocc (7.7.0). Zenodo. 2022. https://doi.org/10.5281/zenodo.3605364.

[12] Walter, S.F.: PyADOLC, https://github.com/b45ch1/pyadolc.

[13] Kulshreshtha, K.; Narayanan, S.H.K.; Bessac, J.; MacIntyre, K: Efficient computation
of derivatives for solving optimization problems in R and Python using SWIG-generated
interfaces to ADOL-C. Optimization Methods and Software, 33(4-6), 1173–1191 (2018).

[14] Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Nec-
ula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; Zhang, Q.: JAX: composable
transformations of Python+NumPy programs. http://github.com/google/jax.

[15] Beazley, D. M.: Automated scientific software scripting with SWIG. Future Generation
Computer Systems, 19(5), 599–609 (2003).

11

http://doi.org/10.1007/s00366-017-0534-x
http://doi.org/10.1007/s00366-017-0534-x
https://doi.org/10.1007/s11081-019-09474-x
http://doi.org/10.1080/10556788.2018.1431235
https://doi.org/10.5281/zenodo.3605364
https://github.com/b45ch1/pyadolc
http://github.com/google/jax

	INTRODUCTION
	ADOL-C AND ITS INTERFACE TO PYTHON
	Introduction to ADOL-C
	Python interfaces for ADOL-C

	MIXED-LANGUAGE AD OF PYTHONOCC
	VERIFICATION OF DIFFERENTIATED PYTHONOCC
	CONCLUSION AND OUTLOOK

