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Montréal, Québec, Canada, H3T 1J4

marc.laforest@polymtl.ca
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Abstract. Lately, the approximation of operators for partial differential equations using deep
learning has been extensively investigated. However, these deep learning approaches have lim-
itations in terms of accuracy. In this work, we present a multi-level approach to accurately
approximate linear operators using physics-informed Green operator networks. This method
allows for the iterative reduction of the approximation errors through a sequence of operators,
each targeting errors of increasing complexity at progressively smaller scales. Numerical exam-
ples for the one-dimensional Poisson problem will be presented to demonstrate the effectiveness
of the proposed multi-level approach.

1 INTRODUCTION

The solution of boundary-value problems using deep learning approaches has been exten-
sively investigated in recent years. These approaches are used to approximate either a single
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boundary-value problem [3, 4, 5], or the operator associated with a family of boundary-value
problems [2, 6, 7]. However, achieving high accuracy in the approximations obtained from
these methods often remains a significant challenge. Recent works [1, 8, 9, 10] were success-
ful in estimating and reducing the errors of the approximated solutions using a sequence of
networks. The multi-level neural networks (MLNNs) approach proposed in [1] allows one to
iteratively reduce the error by employing a sequence of networks when using physics-informed
neural networks [4]. This is done by training a correction network of increasing complexity to
reduce the remaining residual of the boundary value problem after each level.

The authors in [2], introduced the Green operator networks (GreenONets) in which the op-
erator of the wave equation is approximated by learning the corresponding Green’s function.
In this work, we extend the multi-level approach to estimate and reduce the errors using Green
Operator Networks. The main idea is to iteratively reduce the approximation error using a se-
quence of operators. This approach can be applied to other linear operators, but for simplicity,
we will present it only for the one-dimensional Poisson problem. Given a source term f(x)
and a boundary condition b(x), the objective is to find the solution u(x), for all x ∈ Ω ⊂ R
satisfying

R
(
x, u

)
= f(x) + ∂xxu(x) = 0, ∀x ∈ Ω, (1a)

B
(
x, u

)
= b(x)− u(x) = 0, ∀x ∈ ∂Ω. (1b)

To do so, we will approximate the operator of the Poisson problem for a family of source terms
f and a family of boundary conditions b.

2 GREEN OPERATOR NETWORKS

We start by briefly reviewing the Green operator networks approach proposed in [2] and
present it for the Poisson problem. For given Banach spaces U and S, the objective is to learn
the operator Q : S → U such that, for any input parameter s ∈ S, Q(s) ≡ u ∈ U is the solution
to the Poisson problem (1). In this work, the input parameter s will represent the source term
f or the Dirichlet boundary condition b. We start by defining the input vector [s(xi)]i=1,...,ms

with the input function evaluated at a collection of ms points {xi}ms
i=1, known as sensors. The

GreenONet, inspired by the Green’s function solution, aims to approximate the operator Q(s)
with the following architecture

Q̂(s)(x) =
1

ms

ms∑
i=1

G(x, xi)s(xi), (2)

where G is the output of a simple feedforward neural network.
To train this operator, we consider a physics-informed loss, where the network is trained by

penalizing the residuals associated with the governing partial differential equation and with the
boundary conditions for a family of N input functions {s(i)}Ni=1. The input functions will be
randomly sampled from a zero-mean Gaussian random field (GRF) with a length scale l, as
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presented in [7]. The loss function in this case reads:

L(θ) = 1

N

N∑
i=1

[
wr

∫
Ω

R
(
x, Q̂(s(i))(x)

)2
dx+ wbc

∫
∂Ω

B
(
x, Q̂(s(i))(x)

)2
dx

]
. (3)

3 MULTI-LEVEL NEURAL NETWORKS WITH GREEN OPERATOR NETWORKS

In this section, we extend the multi-level approach introduced in [1] to Green operator net-
works. A straightforward approach is to approximate the Green’s function with an initial net-
work as presented with GreenONets, then add further corrections to the Green’s function to
continuously reduce the residual of the training functions. Although this method seems promis-
ing, it suffers from overfitting as one needs a very large family of training functions to generalize
well on small scales. To overcome this issue, we propose to approximate multiple operators,
each trained with a family of input functions of increasing complexity. First, we present this
approach for the Poisson problem with strongly imposed boundary conditions and then extend
it to weakly imposed boundary conditions.

3.1 STRONGLY IMPOSED BOUNDARY CONDITIONS

We start by considering the Poisson problem with zero Dirichlet boundary condition, thus
b(x) = 0, x ∈ ∂Ω, in (1b). Our objective is to approximate the operator Qf that solves the
Poisson problem for a family of source terms f(x), i.e. s ≡ f . The boundary conditions in
Section 2 are weakly imposed and are not exactly verified. For simplicity, we consider in this
paragraph strongly imposed boundary conditions by multiplying the output of the network by
a function g(x) that vanishes on the boundary. Hence, the operator Qf is approximated by Q̂f

defined by (2) with G given as

G(x, xi) = g(x)J(x, xi), (4)

where J(x, xi) is the output of a feedforward neural network. Therefore, the loss can be given
as

L(θ) = 1

N

N∑
i=1

∫
Ω

R
(
x, Q̂f (f

(i))(x)
)2
dx, (5)

where the f (i), i = 1, 2, . . . , N , are the different training source terms. Similar to what has been
observed in [1], the errors would remain large if one uses only one level. In order to control
and reduce the errors when approximating a solution with GreenONets, we shall consider the
following approach:

1. Approximate the operator Qf with the GreenONets, Q̂f,0, . . . , Q̂f,L, by training each inde-
pendently with source terms, created with GRF of decreasing length scales, i.e. increasing
frequencies. In other words, the GreenONet Q̂f,k, k = 0, 1, . . . , L, is trained using a GRF
of length scale lk, where lk < lj for k > j.

3
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2. Calculate the initial approximation to u with ũ0 = Q̂f,0(f0), where f0 = f .

3. Calculate the first correction ũ1 = Q̂f,1(f1), where f1 = f0 + ∂xxũ0, which corresponds
to the PDE residual of the initial approximation.

4. Repeat this process and calculate the corrections ũk = Q̂f,k(fk), where fk = fk−1 +
∂xxũk−1, which corresponds to the PDE residual of the previous approximation.

After obtaining the initial solution ũ0(x) and the corrections ũk, k = 1, . . . , L, the final
approximation is obtained as

ũ(x) =
L∑

k=0

ũk(x).

Similar to the classical MLNN approach, the errors at higher levels exhibit higher frequencies.
This justifies the training of GreenONets, Q̂f,0, . . . , Q̂f,L, using input functions of increasing
frequencies. We note that the source terms are not normalized here, as done in the classical
multi-level approach. Actually, the correction with a GreenONet at the kth level is given as

ũk(x) = Q̂f,k(fk)(x) =
1

ms

ms∑
i=1

Gk(x, xi)fk(xi).

Since the architecture of GreenONets is scale-independent, the solution is naturally scaled
with the source term fk. In other words, if the source term has a small magnitude, the solu-
tion inherits the same property without the need to rescale the source term. Furthermore, this
approach minimizes the error in the approximation by reducing the residual of the PDE, which
constitutes the only source of error here. Nonetheless, in cases where boundary conditions
are weakly imposed, an operator for these conditions is necessary to further reduce the error
associated with the boundary term at each level.

3.2 WEAKLY IMPOSED BOUNDARY CONDITIONS

In the following, our goal is to approximate the solution of the Poisson problem for a family
of source terms f(x) and boundary conditions b(x). The boundary conditions will be weakly
imposed, and the GreenONets are trained by minimizing the loss (3). Due to the superposition
principle of linear operators, we will approximate the operators Qf and Qb separately, which
respectively take as input the source term and the boundary condition. In other words, we need
to approximate the operator Qf , that solves:

Rf

(
x,Qf (f)

)
= f(x) + ∂xxQf (f)(x) = 0, ∀x ∈ Ω, (6a)

Bf

(
x,Qf (f)

)
= Qf (x) = 0, ∀x ∈ ∂Ω, (6b)

and the operator Qb that solves:

Rb

(
x,Qb(b)

)
= ∂xxQb(b)(x) = 0, ∀x ∈ Ω, (7a)

Bb

(
x,Qb(b)

)
= b(x)−Qb(b)(x) = 0, ∀x ∈ ∂Ω. (7b)

4



Ziad Aldirany, Charlélie Bilodeau, Régis Cottereau, Marc Laforest and Serge Prudhomme

Thus the solution verifying Problem (1) can be obtained as u(x) = Qb(b)(x) +Qf (f)(x).
In order to apply the multi-level approach, one can simultaneously reduce the PDE and the

boundary condition residuals by superposing the two operators. Hence, the multi-level approach
for weak boundary conditions is given as:

1. Approximate the operator Qf with the GreenONets, Q̂f,0, . . . , Q̂f,L, by training each inde-
pendently with source terms, created with GRF of increasing complexity, i.e. decreasing
length scale.

2. Approximate the operator Qb with the GreenONet Q̂b, by training it for a family of bound-
ary conditions. We note that since we are considering a 1D problem the boundary consists
of two points, hence the concept of complexity of the boundary function does not exist and
one operator is enough.

3. Calculate the initial approximation to u with ũ0 = Q̂f,0(f0) + Q̂b(b0), where f0 = f and
b0 = b.

4. Calculate the first correction by ũ1 = Q̂f,1(f1) + Q̂b(b1), where f1 = f0 + ∂xxũ0 and
b1 = b0 − ũ0.

5. Repeat this process and calculate the corrections ũk = Q̂f,k(fk) + Q̂b(bk), where fk =
fk−1 + ∂xxũk−1 and bk = bk−1 − ũk−1.

Finally, the approximation is obtained as

ũ(x) =
L∑

k=0

ũk(x).

4 NUMERICAL EXAMPLE

In the following section, we want to accurately solve the one-dimensional Poisson problem
using the multi-level GreenONets. In the first example, we consider strongly imposed bound-
ary conditions following the approach presented in Section 3.1. And for the second example,
the boundary conditions are weakly imposed and the solution is approximated as described in
Section 3.2.

4.1 STRONGLY IMPOSED BOUNDARY CONDITIONS

In this example, we will consider the Poisson equation with homogeneous Dirichlet boundary
conditions. The boundary conditions are strongly imposed by multiplying the output of the
network by the function g(x) = x(1 − x). We first train seven Green operator networks Q̂f,k,
k = 0, . . . , 6, with the following length scales lk ∈ {1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01}. For all
networks, we choose N = 5,000 training functions. The sensor points are uniformly distributed
on (0, 1) with ms = 201. Each GreenONet is trained using Adam followed by L-BFGS with the
learning rates 10−3 and unity respectively. For higher levels, the complexity of the network and
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the number of iterations are increased, as shown in Table 1, to approximate more complicated
solutions. Note that each L-BFGS iteration consists of 20 sub-iterations as set up by default in
the library PyTorch.

Table 1: Hyperparameters used in the example of Section 4.

Hyperparameters Q̂f,0 Q̂f,1 Q̂f,2 Q̂f,3 Q̂f,4 Q̂f,5 Q̂f,6

# Hidden layers n 2 2 2 3 3 3 4

Widths of the hidden layers 20 20 30 30 40 50 50

# Adam iterations 5,000 5,000 5,000 5,000 5,000 5,000 5,000

# L-BFGS iterations 300 300 300 300 300 400 400

Figure 1: Example of Section 4.1: Green’s function Gk(x, xi = 0.5), k = 0, . . . , 6, compared to the exact Green’s
function.

In Figure 1, we show the approximation of the Green’s function Gk(x, xi = 0.5), k =
0, . . . , 6, when trained with different length scales. We observe that when the GreenONet
is trained with higher frequencies, the approximated Green’s function converges to the exact
Green’s function of the Poisson problem. After training the operators we test our approach with
the source function

f(x) = (mπ)2 sin(mπx),

corresponding to the exact solution u(x) = sin(mπx). We start by considering the case with
m = 1. As described in the multi-level GreenONets, we compute the initial approximation ũ0

6
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and the corrections ũk, k = 1, . . . , 6, using the corresponding Green’s functions Gk. In Figure 2,
we show the pointwise error ek(x) = u(x) −

∑k
j=0 ũj(x), for each level. We observe that the

maximum pointwise error is around 3 × 10−2 after the initial approximation, then it decreases
after each correction to attain a maximum pointwise error around 7 × 10−9. Moreover, as
observed in MLNNs, larger gradients appear in the errors as more corrections are introduced.
For this reason, one cannot correct the solution with the same operator, so an operator that
handles higher frequencies is needed.

Figure 2: Example of Section 4.1: Errors ek(x) = u(x)−
∑k

j=0 ũj(x) , at each level.

Additionally, we test the same networks with different values of m. We show in Fig-
ure 3 (left) the evolution of the L2 error when approximating the solutions with the multi-level
GreenONets. We also report in Figure 3 (right) the L2 error of the solutions approximated only
with the GreenONet at level k (we do not have a sequential correction here). In other words, at
level k, the approximated solution is computed solely with Gk, such as

ũ(x) = ũk(x) =
1

ms

ms∑
i=1

Gk(x, xi)f(xi).

We observe that for m ∈ {1, 4, 7, 10} we were able to reduce the L2 error using the multi-level
approach compared to the approximation with a single network Gk, for any k. For example, for
m = 7 we can attain a minimum L2 error of the order of 10−5 with the multi-level GreenONets.
On the other hand, the best approximation for m = 7 with only a single network yields an L2

error of the order of 10−2.
We notice in Figure 3 (left) that for m = 7 and m = 10 the error increases at the early levels

and then it starts to decrease when the frequencies of the solution are captured. Therefore,
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Figure 3: Example of Section 4.1: (left) Evolution of the L2 error using the multi-level GreenONet approach for
different values of m. (right) L2 error of the solution when approximated solely with the GreenONet at level k
(without sequential correction) for different values of m.

one can start the initial approximation at a subsequent level to avoid the error introduction at
early levels. In Figure 4, we show the evolution of the residual of the PDE and the error in the
L2 norm with the initial approximation at level 0 or level 3. We observe that, since the latter
approach avoids the introduction of errors in the early levels, we were able to reduce both the
error and the residual by around an additional order of magnitude. Therefore, one should start
with the first level that reduces the residual to avoid introducing errors in early levels.

Figure 4: Example of Section 4.1: (left) Evolution of the residual in the L2 norm using the multi-level GreenONet
for m = 10 when starting the training from either level 0 or level 3. (right) Evolution of the L2 error using the
multi-level GreenONet for m = 10 when starting the training from either level 0 or level 3.

Moreover, to show that our sequence of neural networks is not specific to the problem with
f(x) = (mπ)2 sin(mπx), we test the same operators with a source term obtained from a GRF
with a length scale l = 0.1, see Figure 5 (left). The approximated solution is calculated using
the multi-level GreenONets and is presented in Figure 5 (middle). Finally, we show in Figure 5
(right) the evolution of the L2 error after each correction. We note here that the error is cal-
culated between the approximated solution and an over-kill solution calculated with the finite
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difference method. We observe that the L2 error starts to decrease at level 2 and is of the order
of 10−7 after all the corrections.

Figure 5: Example of Section 4.1: (left) Source term. (middle) Approximated solution ũ(x) =
∑6

k=0 ũk(x).
(right) Evolution of the L2 error using the multi-level GreenONets.

4.2 WEAKLY IMPOSED BOUNDARY CONDITIONS

In this section, we present a numerical example to validate the approach presented in Sec-
tion 3.2. Similar to the previous example, we train seven GreenONets Q̂f,k using the same
hyper-parameters, with the difference being that the boundary conditions are weakly imposed.
Hence, the network is not multiplied by g(x) and the loss (3) is used. Additionally, the operator
Q̂b is trained with a network of width 20 and depth 2 for 25,000 Adam iterations only. The
training is completed using 1,000 training function b(x) defined with a uniform distribution be-
tween 0 and 1. For the sake of clarity, 1,000 couples (b(0), b(1)) were generated. Following the
training, we test our approach with the same source function as before f(x) = (mπ)2 sin(mπx)
and b(x) = 0.

We show in Figure 6 the evolution of error, PDE residual, and boundary conditions resid-
ual in the L2 norm at each level for m ∈ {1, 4, 7, 10}, when the multi-level approach is used.
Similar to the previous example, we achieved a significant error reduction by several orders of
magnitude by minimizing both the PDE residual and the boundary conditions residual. How-
ever, we observe that the error and the boundary residual increase from level 4 to 5 for most
cases. Further numerical experiments are necessary to better understand this error behaviour
for strongly and weakly imposed boundary conditions.

5 CONCLUSIONS

In this work, we extended the multi-level approach to GreenONets for the Poisson problem.
By approximating a sequence of Green’s functions for input functions of increasing complexity,
we were able to sequentially reduce the errors when approximating the solution for a new source
term. We demonstrated the effectiveness of the multi-level GreenONets with source terms of
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Figure 6: Example of Section 4.2: Evolution of the error (left), the boundary condition residual (middle), and the
PDE residual (right) in the L2 norm, using the multi-level GreenONet approach for different values of m.

varying frequencies, achieving significant error reduction in all cases. These results highlight
the substantial benefits of extending the multi-level approach to operator approximation, where
error reduction is a primary challenge for further development. These findings should be further
extended to approximate different initial and boundary value problems in various dimensions
with high precision. Additionally, one could explore the approximation of the Green’s func-
tions, G1, . . . , GL, using transfer learning [11], where each network Gi is initialized with the
parameters of the trained network Gi−1. Finally, exploring the extension of the multi-level
approach to various neural operator methods presents an intriguing avenue for future work.
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