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Abstract. Approximate Bayesian Computation is used in this work for the selection and 

calibration of cell proliferation models. Four competing models based on ordinary differential 

equations are analyzed, by using the measurements of the proliferation of DU-145 prostate 

cancer viable cells during seven days. The selection criterion of the ABC algorithm is based on 

the Euclidean distance between the model prediction and the experimental observations. The 

Richards Model and the Generalized Logistic Model were selected by the ABC algorithm used 

in this work, providing accurate estimates of the evolution of the number of viable cells. Bayes 

factor revealed that there was no evidence in favor of any of these two selected models. 
 

 

 

 

1 INTRODUCTION 

Cell proliferation is numerically given by the difference between the numbers of newly-

divided and dying cells. In order to predict the number of viable cells, several mathematical 
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models have been proposed in the literature [1,2]. These models have been applied for tumors, 

since in cancer cells the proliferation process is increased due to the abnormal metabolic activity 

[3]. Costa et al. [4], for example, have used one of these proliferation models to represent the 

behavior of prostate cancer cells (DU-145) in vitro. In addition, they have analyzed a 

chemotherapy treatment using doxorubicin (DOX). Costa et al. [5] have applied Approximate 

Bayesian Computation via a Monte Carlo Sequential Method (ABC-SMC) [6-8] to select from 

competing models the one that best represented the proliferation of prostate cancer tumor cells 

during in vitro chemotherapy experiments. Distinct hypotheses are included in a specific model. 

Thus, the selection and calibration of these models are of great interest.  

The goal of this work is to select among four continuous models the one that better represents 

in vitro experimental data of the proliferation of DU-145 human prostate cancer cells. In order 

to perform this analysis, the Approximate Bayesian Computation (ABC) algorithm of Toni et 

al. [6] is applied for model selection and calibration, since this algorithm is robust and indicated 

for cases that the likelihood is not exactly known [4], such as in this work. 

 

2 MATHEMATICAL MODELS 

Different approaches can be used to model cell proliferation, by applying continuous, 

discrete or hybrid models. The choice of the model type for the investigation depends on the 

type of experiment, goal of the study and mainly the biological characteristics of the cells under 

analysis. In this work, the experimental data was obtained from ATCC [9], as shown in 

Figure 1. 

 

 

Figure 1: In vitro experiments results provided by American Type Culture Collection (ATCC) [9]. 

 

Due to the characteristics of the experimental data, without cycling or repeating behavior, 

only continuous models are used here in the inverse analysis of model selection/calibration. As 

can be seen in Figure 1, the number of viable cells did not grow without bounds. For this reason, 

the Exponential and Mendelsohn models were not considered in the analysis. In order to 

consider a bound in the proliferation process, four models are investigated: Logistic, Gompertz, 

Richards and Generalized Logistic [1-3]. The predictions provided by these models assume 
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uniform cell distribution and proliferation in the cell culture. In addition, the experiments are 

considered isothermal, at a constant temperature of 37 °C. 

In these models, Ni is the number of viable cells varying with time t , with the initial number 

of cells given by N0,i. The rate of proliferation is given by parameter αi and the growth saturation 

by the dimensionless parameter γi. The support capacity that takes into account the space 

condition, oxygen availability and nutrient source is considered by Ksup,i. The mathematical 

models are presented in Equations 1-8 where the subscripts i = 1, 2, 3, 4 designate the models. 

 

2.1 Model 1: Logistic Model 

dN1(t)

dt
= α1N1(t) [1 −

N1(t)

Ksup1

] ;               t > 0 (1) 

N1(0) = 𝑁01
;                                                 t = 0 (2) 

 

2.2 Model 2: Gompertz Model 

dN2(t)

dt
= α2N2(t) ln (

Ksup2

N2(t)
) ;                 t > 0 (3) 

N2(0) = 𝑁02
;                                                 t = 0 (4) 

 

2.3 Model 3: Richards Model 

dN3(t)

dt
= α3N3(t) [1 − (

N3(t)

Ksup3

)

γ3

] ;      t > 0 (5) 

N3(0) = 𝑁03
;                                                 t = 0 (6) 

 

2.4 Model 4: Generalized Logistic Model 

dN4(t)

dt
=

α4

γ4
N4(t) [1 − (

N4(t)

Ksup4

)

γ4

] ;      t > 0 (7) 

N4(0) = 𝑁04
;                                                  t = 0 (8) 
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3 SENSITIVITY ANALYSIS 

Before the solution of the inverse problem, it is important to analyze the sensitivity 

coefficients of the measured variables with respect to each parameter. An analysis of the 

reduced sensitivity coefficients (Xr) is performed here, which are obtained by multiplying the 

parameter by the first partial derivative of the response with respect to that parameter [10-21]. 

The reduced sensitivity coefficients of viable cells with respect to the parameters are presented 

in Figure 2 for all the four models. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2: Reduced sensitivity coefficients: (a) Logistic Model, (b) Gompertz Model, (c) Richards Model, (d) 

Generalized Logistic Model 

The reduced sensitivity coefficients were calculated with the parameter values given in 

Table 1. The sensitivity coefficients of the parameter N0 for all models suddenly increase and 

then decay until approximately a null value, as time increases. The sensitivity coefficients with 

respect to the parameter Ksup increases until the steady state is reached. The sensitivity 

coefficients are not linearly dependent for the parameters of the Logistic model and of the 

Gompertz model. On the other hand, parameters α and γ of Richards model and Generalized 

Logistic model are correlated, as shown by Figures 2c and 2d. 
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Table 1: Nominal values used for the sensitivity analysis 

Parameter Value 

N0 [cell] 10,000 

α [day-1] 0.9 

Ksup [cell] 220,000 

γ 1.7 

 

4 APPROXIMATE BAYESIAN COMPUTATION ALGORITHM 

The Approximate Bayesian Computation (ABC) algorithm of Toni et al [6] was used in this 

work for the simultaneous model selection and estimation of the model parameters. This 

algorithm is presented in Table 2.  

 

Table 2: ABC Algorithm [6] 

1. Define the tolerances 1, 2, … P for each of the iterations (populations) used for 

selecting the model and its parameters. Also, specify the distance function d(Y,Y*) 

that substitutes the likelihood function. Set the population indicator p = 0. 

2. Set the particle indicator i = 1, where each particle represents, at each iteration, a 

model and its parameters. 

3. Sample the model M* from the prior distribution for the models π(M).  

If p = 0, sample the candidate parameters P** from the prior distribution for the 

parameters of model M*, that is, π[P(M*)]. Else, sample P* from the parameters in 

the previous population 𝑃(𝑀∗)𝑝−1
𝑖 , with weights 𝑤(𝑀∗)𝑝−1

𝑖 , and perturb this 

particle to obtain P** ≈ Kp(P*, P**), where Kp is a perturbation kernel.  

4. If π(P**) = 0, return to step 3. Else, simulate from the forward problem (operator f) 

a candidate set of observable variables with model M* and parameters P**, that is, 

Y* = f(Y|P**, M*). 

5. If d(Y,Y*) > εp, return to step 3. Otherwise, set 𝑀𝑝
𝑖 = 𝑀∗, add P** to the population 

of particles 𝑃(𝑀∗)𝑝
𝑖  and calculate the particle weight 

𝑤(𝑀∗)𝑝
𝑖 = {

                                 1                                          𝑖𝑓 𝑝 = 0  

𝜋(𝑃(𝑀∗)𝑝
𝑖 )

∑ 𝑤(𝑀∗)𝑝−1
𝑗

𝐾𝑝 (𝑃(𝑀∗)𝑝−1
𝑗

, 𝑃(𝑀∗)𝑝
𝑖 )𝑁

𝑗=1

    𝑖𝑓 𝑝 > 0  

6. If i < N, where N is the number of particles, set i = i + 1 and go to step 3. 

7. Normalize the weights.  

8. If p < P, where P is the number of iterations (populations), set p = p + 1 and go to 

step 2. Otherwise, terminate the iterations. 

 

Instead of using the likelihood function, the ABC algorithm is based on a distance function 

calculated at each set of successive populations (formed by particles composed of the model 

selected and parameters estimated). A tolerance (ε) is prescribed at each population for the 

distance function given in this work by the Euclidean distance between the system dependent 

variable Y* and the experimental data Y. If the Euclidean distance is smaller than the tolerance, 
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the particle is accepted; otherwise, the particle is rejected and a new particle is generated.  

 

5 RESULTS AND DISCUSSIONS 

The ABC-SMC method with 4000 particles was applied to model selection and estimation 

of the model parameters. Uniform priors and uniform transition Kernels were adopted for the 

parameters, as presented in Table 3. Note that the upper and lower limits of the transition Kernel 

were assumed to be ± 1% of the upper bound of the prior for each parameter. 

 
Table 3: ABC Priors distribution and transition Kernels for the parameters 

Models Priori Transition Kernel 

1,2,3,4 N0 ~ U(1,000;19,000) U(-190;190) 

1,2,3,4 α ~ U(0.09;4.5) U(-0.045;0.045) 

1,2,3,4 Ksup ~ U(22,000;418,000) U(-4180;4180) 

3,4 γ ~ U(0.170;8.5) U(-0.085;0.085) 

 

The experimental data presented in Figure 1, obtained from ATCCTM (American Type 

Culture Collection) [9] for the number of viable cells of DU-145 prostate cancer cells during 

in-vitro experiments, were used in the inverse problem. In order to solve the inverse problem, 

the four mathematical models presented in Equations 1 to 8 were solved by the 4th order Runge-

Kutta algorithm. The choice of the tolerances for the sequential populations of the ABC 

algorithm were set by starting at 5.42x105 and finishing at 5.42x103, along a total of fifty-seven 

populations. The last tolerance was imposed in accordance with Morozov’s discrepancy 

principle, assuming a standard deviation (σ) of 1% of the maximum value of viable cells, that 

is, last measurementsN = . 

The ABC-SMC algorithm of Toni et al. [6] selected the Richards Model and the Generalized 

Logistic Model, as shown by Figure 3, to represent the experimental data presented in figure 1. 

In this figure it is possible to observe that after 27 populations only these two models have been 

selected. However, a total of 57 populations were needed to perform the correct calibration of 

the parameters of these two models.  
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Figure 3: Number of accepted particles at each population 

The problem of selecting models can be associated to hypothesis tests, such as the Bayes 

factor proposed by Kass and Raftery [22]. The Bayes Factor for Models 3 and 4 is given by the 

posterior probability of each model in relation to the data, that is, 

 

𝐵43 =
𝜋(𝑀4|𝐘)

𝜋(𝑀3|𝐘)
 (9) 

 

The criteria of Kass and Raftery [22] for interpreting the Bayes factor is presented in Table 4. 

At the final population shown in Figure 3, 2608 particles were selected for Model 4 and 1392 

were selected for Model 3, which gives a Bayes factor of 1.87. In accordance with Table 4, 

there is no evidence in favor of any of the models 3 or 4. 

 
Table 4: Bayes factor [22] 

B43 2ln(B43) Evidence against Model 3 

1 to 3 0 to 2 Not worth more than a bare mention 

3 to 20 2 to 6 Positive 

20 to 150 6 to 10 Strong 

>150 > 10 Very strong 

 

 

The histograms of the model parameters at the final population are presented by Figures 4 

and 5. These histograms exhibit approximate Gaussian behaviors, centered at mean values. The 

means, standard deviations and 95% credible intervals for the estimated parameters for both 

models 3 and 4 are presented in Table 5 and 6, respectively. 
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(a) (b) 

  
(c) (d) 

Figure 4: Histograms for the parameters of Model 3: (a) N03, (b) α3, (c) Ksup3, (d) γ3 

The numbers of viable cells computed with models 3 and 4, considering the mean of the 

accepted particles at the last population, are presented in figures 6 and 7, respectively. The light 

blue lines in these figures are the estimated curves calculated with each of the accepted particles 

at the final population. These figures show that both model estimations have an excellent 

agreement with the experimental data, thus confirming that either one of the competing models 

3 or 4 (Richards or Generalized Logistic) could be used to represent in vitro experiments 

performed with DU-145 human prostate cancer cells.  

We note that the results presented here were not influenced by the stochastic simulations 

performed. In fact, the results were qualitatively unchanged in four runs of the ABC-SMC 

algorithm used in this work.  
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(a) (b) 

  
(c) (d) 

Figure 5: Histograms for the parameters of Model 4: (a) N04, (b) α4, (c) Ksup4, (d) γ4 

Table 5: Parameters estimation - Model 3 

Parameter Mean 
Standard 

deviation 

Lower limit 95% Upper limit 95% 

N03 [cell] 5826.6 74.9072 5712.7 5998.6 

α3 [day-1] 0.7777 0.0049 0.7667 0.7858 

Ksup3 [cell] 191,660 671.9028 190,460 193,040 

γ3 2.8621 0.0662 2.7315 2.9938 
 

Table 6: Parameters estimation - Model 4 

Parameter Mean 
Standard 

deviation 

Lower limit 95% Upper limit 95% 

N04 [cell] 8476.1 80.0335 8309.2 8615.0 

α4 [day-1] 2.2823 0.0244 2.2316 2.3273 

Ksup4 [cell] 192,440 656.2398 191,200 193,700 

γ4 3.4078 0.0457 3.3164 3.4912 
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Figure 6: Comparison between experimental data and Model 3 estimation 

 

Figure 7: Comparison between experimental data and Model 4 estimation 

 

6 CONCLUSIONS 

The ABC-SMC algorithm of Toni et al. [6] was applied with 4000 particles for model 

selection and estimation of cell proliferation model parameters. The parameters were 

considered with uniform priors and uniform transition Kernels were used in the algorithm. In 

order to solve the inverse problem, the four mathematical models were solved with the Runge-

Kutta´s 4th order method. The tolerances for the sequential populations of ABC-SMC method 
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decreased from 5.42x105 to 5.42x103 along fifty-seven populations. The last tolerance was 

imposed in accordance with the assumed measurement uncertainty following Morozov’s 

discrepancy principle. The Richards Model and the Generalized Logistic Model were both 

selected by ABC-SMC algorithm, providing accurate estimations of the number of viable cells. 

An analysis of Bayes factor revealed that both models can be used to accurately represent in 

vitro measurements of the time evolution of the DU-145 human prostate cancer cells.  
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