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Abstract. This paper aims to apply the Isogeometric Analysis(IGA) to fluid-structure interac-
tion problem in the civil engineering field. Recently, IGA has attracted much attention as an
analysis method to structure with arbitrary surfaces. In this paper, IGA is applied to a two-
dimensional incompressible viscous flow problem as a basic study for the fluid-structure inter-
action analysis using IGA. The vortex induced vibration of a circular cylinder is investigated as
a numerical example, and the effectiveness and validity of the coupled analysis using IGA are
discussed.

1 INTRODUCTION

In recent years, digital fabrication technologies such as 3D printers and Computer-Aided
Design (CAD) have been attracting attention in the field of civil engineering. 3D printers have
the feature of being able to create any shape with a high degree of freedom from CAD data.
Therefore,Isogeometric Analysis (IGA)[1][2], which has an advantage in analysis with arbi-
trary curved surfaces, is considered to be a very promising analysis method.
　 The ultimate goal of us is to develop a fluid-structure interaction analysis method with com-
plex surfaces using IGA as an application to the civil engineering field. However, it has been
difficult to represent complex geometries with single patch, and coupled analysis using it for
both fluid and structure. In this study, we develop a multi-patch method based on IGA with a
continuity condition[4] applied between patches for the purpose of applying IGA to complex
surfaces. As an example of numerical analysis, we have conducted analysis on a fixed-supported
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circular cylinder and confirmed the validity of the multi-patch method based on IGA by com-
paring the experimental results in terms of Strouhal number and drag coefficient. Based on
the results obtained in this study, vortex excitation analysis was conducted as an example of
application to fluid-structure coupled analysis, and its validity was examined.

2 NUMERICAL METHODS

2.1 Governing equations

For the governing equation of the fluid, the 2D Navier-Stokes equation described by ALE
and the continuity equation is employed.

ρ

(
∂u

∂t
+ ū · ∇u− f

)
−∇ · σ = 0 in Ω, (1)

∇ · u = 0 in Ω, (2)

Where Ω is the analysis domain bounded by the boundary Γ, ρ is the density, u is the velocity
vector, ū is the relative velocity vector, and f is the body force. The stress tensor σ and the
deformation rate tensor ε (u) are expressed as follows.

σ = −pI+ 2µε(u), (3)
ε(u) = 1

2

(
∇u+ (∇u)T

)
, (4)

Where p is the pressure and µ is the viscosity coefficient. The Dirichlet and Neumann boundary
conditions are given by

u = g on Γg, (5)
n · σ = h on Γh, (6)

Where Γg and Γh denote the Dirichlet and Neumann boundary conditions, respectively, and
g and h are the velocity and traction on the respective boundaries. The g and h are the flow
velocity and traction defined on the respective boundaries. The n is the outward unit normal
vector.

　 The object is assumed to be a spring-supported two-dimensional rigid body in the flow. Its
equation of motion is expressed by the following equation.

mv̈ + cv̇ + kv = F (7)

m represents the mass，c represents the damping，and k represents the stiffness matrix，all
of which are diagonal matrices with constant coefficients．
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Figure 1: Weight given to control points

2.2 NURBS

In this study, the NURBS[3] is used for the shape function. As shown in Figure 1, the
NURBS is characterized by its ability to represent various shapes with a small number of ele-
ments, depending on the weights assigned to the control points. The two-dimensional NURBS
function is represented by a two-way B-spline basis function, weights assigned to control points,
and position vectors of control points, where the B-spline basis function is the function defined
by the Cox de Boor’s gradient formula in equation (8).

　　 If p = 0：

Ni,0 (ξ) = 1 if ξi ≤ ξ ≤ ξi+1

Ni,0 (ξ) = 0 otherwise

　　 If p = 1, 2, 3・・・：

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ)

(8)

Where N is the B-Spline basis function in the ξ direction, i is the control point number, and p is
the order of the B-Spline basis function. The ξi are the knots, which are the coordinates of the
parameter space, given by a uniformly increasing sequence of numbers called the knot vector,
as shown below.

Ξ = (ξ1, ξ2, . . . , ξn+p+1) (9)

The knot vector is a sequence of numbers obtained from the CAD drawn shape model and is a
parameter that defines the elements in the B-Spline basis functions and IGA.
　 Using the B-Spline basis functions expressed in equation (8), the basis functions of the
NURBS functions Rp,q

i,j (ξ, η) and the NURBS surface S (ξ, η) can be expressed as in equations
(10) and (11).

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1Nî ,p(ξ)Mĵ ,q(η)wî ,̂j

(10)
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S (ξ, η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j (11)

Where M is the B-spline basis function in the η direction, j is the control point number in the
η direction, q is the order of the B-spline basis function in theη direction, wi,j is the weight
assigned to the control point, Bi,j is the position vector of the control point Bi,j is the position
vector of the control point.

2.3 Finite element method

For the governing equations (1) and (2), the following finite element equations are obtained
by applying the stabilized finite element method based on the SUPG/PSPG method for the
discretization in the spatial direction.

(M+Mδ)
∂u

∂t
+ (K(ū) +Kδ(ū))u

− (C−Cδ)
1

ρ
p + νSu− (N+Nδ) f = 0, (12)

CTu+Mε
∂u

∂t
+Kε(ū)u− Fε +Cε

1

ρ
p = 0, (13)

Where M, K, C, S, N are the coefficient matrices, and the indices δ and ε are those due to the
SUPG and PSPG terms, respectively. Also, ν denotes the kinematic viscosity coefficient. The
finite element equations (12) and (13) in the fluid can be rewritten as follows.

Mu̇+Ku−Gp = f (14)

GTu = 0 (15)

Where M represents the mass matrix，K represents the matrix of convective and viscous terms,
G represents the gradient matrix, and f represents the external forces and boundary integral
terms. The variables in equations (14) and (15) are separated into components on the moving
boundary ΓI (object surface) and components elsewhere as follows.

u̇ =

{
uα

uγ

}
, u =

{
uα

uγ

}
, f =

{
fα

fγ

}
(16)

Where the subscript γ represents variables on the moving boundary ΓI , and the subscript α
represents others. The variables defined at the center of gravity of the object for the surface
variables of the object need to satisfy the compatibility condition (17) and equilibrium condition
(18) shown below.

u̇γ = T T v̈, uγ = T T v̇ on ΓI (17)
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Figure 2: Patch division

X + T fγ = 0 on ΓI (18)

Regarding the finite element equations (14) and (15), by separating the components into those
on the moving boundary ΓI (object surface) and else (where the subscript γ denotes variables on
the moving boundary ΓI (object surface) and the subscript α denotes variables elsewhere), and
substituting the compatibility condition of equation (17), the finite element equations become
as follows.

Equation of Motion： [
Mαα Mαγ

Mγα Mγγ

]{
u̇α

T T v̈

}
+

[
Kαα Kαγ

Kγα Kγγ

]{
u

T T v̇

}
−
[
Gα

Gγ

]{
p
}
=

{
fα

fγ

}
(19)

Continuity Equation： [
GαT GγT

]{ uα

T Tv

}
= 0 (20)

Find the nodal force fγ on the object surface from the second line of equation (19). Also, the
equilibrium condition equation (18) and substituting it into the equation of motion of the object,
we obtain

m∗v̈ + c∗v̇ + kv = −T (Mγαu̇α +Kγαuα −Gγp) (21)

Where

m∗ = m+ TMγγT T , c∗ = c+ TKγγT T

This means that the mass m and damping c of the object are added to the additional mass
and damping effects of the coupling with the surrounding fluid, respectively. The first line of
equation (19) shows the equations of motion of the fluid with respect to nodes other than the
object surface nodes.
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Figure 3: (a) Analysis Model (b) Analysis Mesh

Figure 4: Flow direction velocity visualization

2.4 Multi-Patch Method

Multi-patch method was applied. In this method, the geometry is represented by multiple
NURBS surfaces, and each patch has its own shape and geometrical characteristics, which is
expected to increase the degree of freedom of geometry representation and the accuracy of
analysis.
　 In this study, a multi-patch analysis is performed by applying a continuous condition of
Matrix-Vector superposition between patches. The analysis is performed with 10 patches, and
the patch division is shown in Figure 2.

3 NUMERICAL EXAMPLES

As numerical examples, flow analysis around a two-dimensional cylinder and vortex excita-
tion analysis are shown.

3.1 Analysis of a fixed-supported cylinder

The stiffness matrix of the spring multiplier is set to be infinite, and the flow around a two-
dimensional circular cylinder is analyzed. The validity of the IGA fluid analysis method based
on the multi-patch method is verified.
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Figure 5: Comparison with expermental results

3.1.1 Numerical conditions

The analytical model and mesh are shown in the Figure 3(a), Figure 3(b). The analysis was
performed with 6120 total control points, 4096 total elements, and 10 patches. As boundary
conditions, no-slip condition is applied on the surface of the cylinder and the traction-free con-
dition is applied at the downstream outlet boundary. The Reynolds number is set to 10n (n=0,2)
and the time increment δt is set to 0.01.

3.1.2 Numerical results

As an example of the results, the visualization results of the velocity in the flow direction at
Reynolds number 100 at dimensionless time T=207, when the lift coefficient is maximum, are
shown in Figure 4. From these results, it is confirmed that IGA can be used to analyze the flow
around a circular cylinder and that periodic Kalman vortex sequences are generated.
　Next, the average values of drag coefficient for each Reynolds number and Strouhal number
are compared with the experimental results[5] (T=200 to 300) in Figure 5. The figure shows that
the results of the analysis are in good agreement with the experimental results, which confirms
the validity of the results in the analysis using IGA based on the multi-patch method.

3.2 Analysis of Elastically Supported Cylinder

As a second example of analysis, vortex excitation analysis of a circular cylinder is per-
formed. The analytical model is based on the experiment in which Anagnostopoulos and
Bearman[6] succeeded in capturing the lock-in at a flow of Reynolds number about 110. The
cylinder is assumed to be rigid, and the analysis is performed for a spring-supported one-degree-
of-freedom system.
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Figure 6: (a)Analysis model (b)Analysis mesh

Figure 7: Flow direction velocity visualization

3.2.1 Numerical conditions

The analytical model and various analytical conditions are shown in Figure 6(a). The no-
slip condition on the surface of the cylinders, the slip condition on the side, and the traction-free
condition on the outlet boundary are applied.
　 By changing the upstream velocity as the inflow condition, analysis was performed with
multiple Reynolds numbers. As shown in Figure 6(b), the analysis mesh has 10 patches with
2760 control points and 2048 elements.

3.2.2 Analysis results

The visualization results of flow direction velocity (Re=105) are shown in Figure 7. a) is the
visualization result at time T=29.95[s] when A/D is the lergest and b) is the visualization result
at time T=29.73[s] when A/D is the smallest. From these results, it can be seen that the Karman
vortex sequence is generated and the cylinder is moving under the influence of the flow.
　Next, the representative time history waveforms of the cylinder displacement from Re=90 to
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Figure 8: (a) Time history of cylinder vibration (b) Comparison with expermental results

Re=130 are shown in Figure 8(a) and the oscillation amplitude and vortex shedding frequency
of the cylinder at several Reynolds numbers and a comparison with experimental results are
shown in Figure 8(b). Where A is the amplitude of the cylinder, D is the diameter of the cylin-
der, f is the vortex emission frequency, and fn is the natural frequency of the cylinder. These
results show that the vortex shedding frequency is in good agreement with the experimental so-
lution. Although the analytical results for the amplitude show differences from the experimental
values, the lock-in phenomenon, in which the displacement of the cylinder increases in the re-
gion where the vortex shedding frequency and the natural frequency of the cylinder coincide,
can be confirmed.

4 CONCLUSIONS

In this paper, we investigated a divelopment of a fluid-structure interaction method based on
IGA for incompressible viscous flow problem. In order to investigate the validity of present
method, we applied the method to a two dimentional flow problem around a circular cylinder.
The following conclusions are obtained.

- A multi-patch method using IGA is developed and the validity of the results in the analysis
of flow around a cylinder is confirmed.

- We were able to catch the lock-in phenomenon around Reynolds number 105 and con-
firmed the resonance phenomenon caused by it.

- The amplitude of the cylindrical vibration is different from the experimental value, and
further investigation is required.
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　As future work, we plan to improve the accuracy of the cylindrical amplitude analysis and to
conduct an analysis using elastic bodies in the structure.
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