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1 INTRODUCTION 

Conducting research based on active influence on the examined object or process requires 
distinguishing an explained quantity, measured quantitatively, the possible changes of which 
will be considered as influencing it through a group of quantities considered as explanatory 
quantities. This approach implicitly postulates the existence of a cause-and-effect relationship 
between the explanatory quantities and the explained quantity. In practice, especially industrial 
practice, explanatory quantities are often called controlled factors. 

Knowledge of possible cause-and-effect relationships can be graded, from the most 
comfortable situation of the existence of appropriate binding equations and their exact 
solutions, through the existence of binding equations but without knowing the exact solutions, 
to the absence of such equations. While in the first case, experimental research serves to refine 
the results originally calculated for idealized models, in the second case, it is a necessary stage 
of identifying the parameters of the postulated model, and in the third case, it is a necessary 
stage of collecting data for which the simplest possible forecasting model will be constructed. 
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Carrying out experimental research is almost always an expensive and time-consuming 
endeavor. Available resources are limited, and cost minimization is essential. Design of 
experiments (DOE) is a methodology known since Fisher [1] for optimizing the design of 
multifactorial experimental studies, later extended by Yates to factorial designs [2], by Box and 
Wilson [3] to response surface designs, and by Scheffe to for mixtures [4]. Kiefer and 
Wolfowitz's formalization of the DOE concept [5] enabled the development of formal 
techniques, including optimal plans. 

DOE has found wide application not only in experimental scientific research but also in 
industry, where it has been, among others, integrated into Six Sigma [6] or Red-X [7] 
procedures, allowing for the optimization of production processes in the steel industry [8], 
automotive [9, 10], machinery [11, 12], railway industry [13], as well as in the area of industrial 
materials engineering [14], armaments [16] and even phytochemistry [17]. 

3.1 Non-Classical Statistical Approaches 

Despite all these successes, there were also quite strong limitations resulting from the 
postulation of simple forecasting models: factor models with low-order interactions [6] and 
polynomial RSM models of at most second order [17]. An additional limitation results from 
using stochastic approximation in the context of a small number of experimental samples. 
Probabilistic, as axiomatized by Kolmogorov, considers abstract probabilities, and their 
relationship to the real world is defined as limited compliance with large sample frequencies, 
which, in a sense, refers to the abandoned concepts of von Mises' empirical frequentist 
probabilism. 

Unfortunately, in practice, experimental trials are rarely numerous. The real world, unlike 
virtual experiments, generates high or very high costs. For this reason, statistical assessments 
are burdened with large uncertainties, and in the case of individual samples, they lose their 
meaning altogether. Work on an alternative approach to individual events was conducted at one 
time by de Finetti [18], but after his death, they were not continued. Zadeh [19] proposed single 
fuzzy estimates as substitutes for subjective probability. His concept was consistently deepened 
when the fuzzy assessment of membership in a fuzzy set was introduced, thus creating type II 
fuzzy sets [20] and then inductively extending to type III sets, etc. Atanassov [21] developed 
Zadeh's concept to form two assessments, creating intuitionistic fuzzy sets. In turn, Pedrycz, 
wanting to avoid the need to specify membership too precisely, introduced shaded sets [22]. 

Buckley [23] developed a method of operationally combining classical statistics and the 
fuzzy approach, consistently developing subsequent operational elements of the modified 
formalism. Grzegorzewski [24] proposed a complete ontology and taxonomy describing 
hypothesis testing in the context of decision theory. Considering three components: data, 
hypotheses, and requirements, he identified eight different possibilities for combining fuzzy 
and non-fuzzy elements. One of them is traditional statistics, which have all three non-fuzzy 
components. 

The development of fuzzy set operators (sum S and product T) led to an explosion of 
proposed operational variants of these operations, each satisfying the formal axioms. Pietraszek 
[26] proposed the interpretation of this ambiguity as resulting from the mutual correlation of 
fuzzy variables, at the same time providing an operational method of determining appropriate 
correlations and operators. 
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1.2 Electro-Spark Machining 

In the era of globalization, companies are fighting for a competitive advantage both by 
introducing new products and by improving the quality, especially the reliability and durability 
of existing products. One way to improve durability and reliability is to improve the coatings 
of components that are exposed to corrosive agents or to heavy traffic loads, leading to 
excessive wear. In both cases, special protective coatings are used. In aggressive environments, 
paint coatings or metallic anti-corrosion layers are used. When exposed to excessive wear, 
surface layers with increased wear resistance are used. They are applied using various 
techniques, including beam techniques using a concentrated energy stream: electro-spark 
deposition (ESD), electro-spark alloying (ESA), pulse electrode surfacing (PES), and electro-
discharge machining (EDM). During the process of applying coatings using electro-spark 
machining, the following physical phenomena occur: increase in electric field intensity as the 
electrodes get closer, electrical breakdown, gas ionization in the gap, formation of a plasma 
channel, light and thermal radiation and evaporation, short circuit of the electrodes, mechanical 
impact of the electrodes, erosion of the cathode and anode, material transfer, coating formation, 
diffusion and finally solidification. Electro-spark coatings are most often made of refractory 
metals (tungsten, molybdenum, chromium, titanium, zinc, tin, lead, cadmium), intermetallic 
compounds (including NiAl, Ni3Al, TiAl, Al3Ti, Ni3Ti), non-metals (graphite, oxides), 
carbides (tungsten, cobalt, molybdenum, silicon, boron) and borides (titanium or chromium). 
These coatings enable beneficial changes in the surface properties of the coated material: 
mechanical, electrical, thermal, and physical. The disadvantage, however, is the very high final 
roughness of the obtained coatings. This is compensated by the simplicity of the method and 
its low cost. Examples of use include the production of hard layers on the tips of turbine blades 
[26], increasing the mechanical properties of aluminum castings [27], or increasing resistance 
to biocorrosion [28]. 

Laser processing is used to improve the properties of electrodeposited coatings. Using a laser 
beam to smooth electrospark coatings reduces surface roughness and changes the shape of the 
unevenness profile. The porosity of the coating is reduced, and scratches, delaminations, and 
cracks on the coating surface are eliminated. For smoothing, low power densities and large laser 
beam diameters are recommended to melt the layer to a small depth. As a result of the laser 
modification of the surface layer, two zones appear: the remelting zone, with an increased 
concentration of the alloying element, and the heat-affected zone, with the same chemical 
composition as the substrate but a changed structure. 

2 MATERIALS AND METHODS 

2.1 Electrodes and laser 

The electrodes used in the process of applying electric spark coatings were made from a 
mixture of elementary Co nanopowders and WC and Al2O3 ceramic nanopowders. The basic 
properties of nanopowders are presented in Table 1. 
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Table 1: Properties of nanopowders used to produce electrodes 

Powder Grade Particle size Producer 
Co Extrafine 0.4 um Umicore (Belgium) 
WC Superfine 0.2 um OMG (USA) 
Al2O3 I317NH 0.15 um Skyspring Nanomaterials Inc. (USA) 

 
WC-Co-Al2O3 electrodes (84% WC, 6% Co, 10% Al2O3) in the shape of a cylinder with 

dimensions of 5x10 mm were manufactured using the pulsed plasma sintering (PPS) method. 
Sintering was carried out in a press furnace (Idea) at a temperature of 1100ºC and a pressure of 
50 MPa. The coatings were applied to C45 carbon steel samples using the EIL-8A device 
(Portable EIL-8A electro-spark deposition facility, TRIZ, Ukraine). Laser modification of the 
surface layers was performed with a Nd:YAG laser (Baasel Lasertechnik 720 Nd:YAG) run in 
pulsed mode at a power level of 20 W, spot size of 0.7 mm, pulse duration of 0.4 ms, and pulse 
repetition frequency of 50 Hz. The T-01M pin-on-disc tribometer was employed to determine 
the dry friction behavior of the WC-Co-Al2O3 coatings. A ball-on-flat contact geometry was 
chosen to measure the friction force between a 100Cr6 grade steel ball, 6.3 mm in diameter, 
and the tested coating. 

2.2 Design of Experiment 

The observed (explained) quantity was the roughness parameter Ra, and the controlled 
quantities were laser power P and scanning speed V. The tests were carried out using a central 
composition plan (Box-Wilson) with values consistent with Table 2. For the classic DOE 
analysis, a full quadratic model for two factors with a second-order interaction (P V PP VV PV) 
was adopted. 

 

Table 2: Design of experiment – Box-Wilson central composite, two factors 

No Power  
P (W) 

Scanning speed 
V (mm/min) 

1 17 220 
2 23 220 
3 17 285 
4 23 285 
5 16 250 
6 25 250 
7 20 208 
8 20 300 
9 20 250 
10 20 250 
11 20 250 
12 20 250 
13 20 250 
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3 CLASSIC RESULTS 

After carrying out tribological tests, the following roughness coefficient values were 
obtained (Table 3). 

 

Table 3: Obtained Ra roughness parameter 

Treatment 
Number 

Ra 

1 10.16 
2 8.27 
3 7.86 
4 8.55 
5 6.39 
6 9.42 
7 5.64 
8 4.77 
9 7.96 
10 6.03 
11 6.89 
12 7.21 
13 8.13 

 
After performing a classic regression analysis and eliminating statistically insignificant 

components, a model consisting only of a constant component and a quadratic component 
dependent on power was finally obtained – for coded values (Table 4). 

 

Table 4: Coefficients of the reduced model (coded values) 

Treatment 
Number 

Coefficient Std. dev -95% CI +95% Ci 

const 6.89 0.30 6.05 7.72 
PP factor 0.90 0.28 0.12 1.68 

 
The reduced model expressed in uncoded quantities takes the form: 

Ra = 5.90 + 3.848∙10-3∙P2 (1) 

Analyzing the variance of the reduced model made it possible to assess the significance of 
the lack of fit. The lack of fit turned out to be insignificant, which means that the model 
inaccuracies (residual values) are insignificant compared to the value of the pure error 
calculated from the repetitions (Table 5). 
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Table 5: ANOVA of the reduced coded model 

Term SS df MS F p 
PP 7.53 1 7.53 10.40 0.032 
Lack-of-fit 17.52 7 2.50 3.45 0.124 
Pure error 2.90 4 0.723   
Total 27.95 12    
 
Calculating the predicted values using the obtained model allowed the determination of 

residual values (differences between measured and predicted values) – see Table 6. 
 

Table 6: Measured, predicted, and residual values 

No Measured Predicted Residuals 
1 10.16 7.02 3.14 
2 8.27 7.94 0.33 
3 7.86 7.02 0.84 
4 8.55 7.94 0.61 
5 6.39 6.89 -0.50 
6 9.42 8.31 1.11 
7 5.64 7.45 -1.81 
8 4.77 7.45 -2.68 
9 7.96 7.45 0.51 
10 6.03 7.45 -1.42 
11 6.89 7.45 -0.56 
12 7.21 7.45 -0.24 
13 8.13 7.45 0.68 

 
According to the assumptions of the model, the distribution of residual values should be 

consistent with the normal distribution. The Shapiro-Wilk normality test was performed, and 
for the SW-W statistic value = 0.96, a critical level of p = 0.77 was obtained. 

4 ANALYSIS 

Variance analysis was chosen as an example of fuzzy interpretation. The null hypothesis in 
the analysis of variance is that the F statistic assumes a zero value, i.e., H0: F = 0. The 
distribution of the F statistic is additionally parameterized by the degrees of freedom of the 
numerator, i.e., the tested source of variability, and the denominator, i.e., unexplained 
variability. In the case under consideration, the source of variability is the quadratic component 
related to the laser power with a degree of freedom f1 = 1 and a statistic value F = 10.40. 
Unexplained variability has a degree of freedom f2 = 4. Buckley's approach requires treating 
the statistical significance of β, i.e., the complement of the confidence interval (1 – α), as a 
membership value in the sense of fuzzy sets. Because the F distribution is one-sided, this means 
that the fuzzy description of the F statistic has the form: 

m(x) = 1 – CDF(x, f1, f2) (2) 

where CDF is the cumulative distribution function of the F distribution. If, additionally, 
limiting the support is applied only for values of m(x) greater than the assumed α significance 
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level (alpha-cut), then the issue of accepting/rejecting the hypothesis comes down to 
determining whether the obtained empirical value of the F statistic falls within in support of 
such specific fuzzy zero value – see Fig.1. 

 

Figure 1: A fuzzy representation of the zero-value present  
in the null hypothesis of ANOVA i.e. H0: F = 0 with f1 = 1 and f2 = 4 

This way of representing the hypothesis allows you to express in a more transparent way 
than usual the fact of accepting or rejecting the null hypothesis: the calculated value of the 
statistic either falls within the range of the fuzzy zero support of the hypothesis and then the 
hypothesis is not rejected, or it does not fit, and then the hypothesis is rejected. In the actual 
sense, the state of inference is identical, but the transparency, also didactic, is much greater than 
in the situation when one has to explain quite complicated relationships between the α 
significance level and the critical level of the p test. 

Additionally, the gradually decreasing membership of the fuzzy zero clearly shows the 
weakening position of the null hypothesis, which is finally rejected after reaching the rather 
arbitrarily selected alpha-cut position. In most cases, people who use statistics in practice do 
not realize that the acceptance/rejection of a hypothesis is not strictly one-and-done but is a 
process of gradual change of belief from one judgment to the opposite. 

M
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5 CONCLUSIONS 

A designed experiment was carried out in accordance with the DOE methodology, consisting 
of laser processing of a special coating prepared using the ESD method. A forecasting model 
was identified that allows predicting the value of the surface roughness parameter Ra based on 
the knowledge of the laser power. The scanning speed turned out to be statistically insignificant 
and was not included in the set of model parameters. One of the elements of the diagnostic 
assessment of the obtained model was the ANOVA analysis of variance. The traditional way 
of interpreting the analysis is based on comparing the critical value of the p-test with an 
arbitrarily adopted significance level of alpha. The authors proposed using Buckley's approach 
to change how the null hypothesis is interpreted. The zero value appearing in the ANOVA null 
hypothesis is interpreted as a fuzzy number trimmed according to alpha-cut, and the obtained 
statistic value is compared. If the value of the statistic does not fall within the range of the fuzzy 
number support, then the null hypothesis is rejected. 
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