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Abstract 

Conventional concrete is the most common material used in civil construction and its behavior is 

highly nonlinear, mainly because of its heterogeneous characteristics. Compressive strength is 

one of the most critical parameters when designing concrete structures and it is widely used by 

engineers. This parameter is usually determined through expensive laboratory tests, causing a 

loss of resources, materials and time. However, artificial intelligence and its numerous 

applications are examples of new technologies that have been used successfully in scientific 

applications. Artificial Neural Network (ANN) and Support Vector Machine (SVM) models are 

generally used to resolve engineering problems. In this work, three models are designed, 

implemented and tested to determine the compressive strength of concrete: Random Forest, 

SVM and ANN. Pre-processing data, statistical methods and data visualization techniques are 

also employed to gain a better understanding of the database. Finally, the results obtained show 

high efficiency and are compared with other works, which also captured the compressive strength 

of the concrete. 
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1. Introduction 

Conventional concrete is the most common material used in civil construction, being a mixture 

composed of water, cement and different aggregates. Its resistance mainly depends on factors 

such as cement consumption, water-cement factor, degree of condensation and the nature of 

aggregates. The compressive strength of concrete is quite considerable, but its tensile strength 

is much lower. Owing to this, the concrete can be classified as a fragile material, having entirely 

different strength properties under tensile and compression tests [1]. 

The compressive strength of concrete is still one of the most widely used parameters in structural 

engineering for the design of reinforced concrete structures. The performance of concrete, when 

defined empirically, can be affected by nonlinear factors, when using the concrete compression 

test as a destructive procedure on concrete specimens. However, this activity involves time, 

planning and financial resources because the commonly used compressive strength factor is 

obtained on the 28th day [2]. 

Technological advancement allows engineering problems to be solved by the use of machine 

learning methods and their applications can represent good examples of fields explored with 

different expectations and realistic results. In general, artificial intelligence systems have shown 

their ability to solve real-life problems, particularly in nonlinear tasks [3]. Structural engineering 

has been a field of significant development through the implementation and testing of new 

computational models, that are able to predict the different properties of concrete mixtures. In the 

case of behavioral models, pattern recognition is constructive and computational intelligence 

methods can be used. Bio-inspired models can also be an excellent aid to the design of structures 

for civil engineering [4–8]. With the development of artificial intelligence, it is easier to forecast 

concrete compressive strength. When compared with other traditional regression methods, 

machine learning adopts specific algorithms that can learn from the input data and gives highly 

accurate results.  

Currently, several machine learning algorithms are used for concrete compressive strength 

prediction, among which are Random Forest, Artificial Neural Network and Support Vector 

Machine models. A brief review on the subject is given below. 

Recently, Feng et al. [9] used a new technique called XGBoosting to predict the concrete 

compressive strength with good results. They also used ANN and SVM to compare the obtained 



 

 

results with excellent predictions. ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) 

models were used to predict a cement-based mortar material compressive strength [10]. The 

paper demonstrates the ability of ANN and ANFIS models to approximate the compressive 

strength of mortars reliably and robustly. Also, ANN were applied to predict the strength of 

concrete containing construction waste, recycled aggregate concrete [11] and self-compacting 

concrete containing bottom ash [12]. ANN were used again to predict the strength of 

environmentally friendly concrete [13]. They showed that ANN models can provide high-

performance prediction for concrete compressive strength. The application of ANN in predicting 

the compressive strength of concrete containing nano-silica and copper slag was also addressed 

by Chithra et al. [14], showing promising results. Machine learning techniques such as ANN and 

SVM were used [15] and least-square SVM was improved using the metaheuristic optimization to 

predict the compressive strength of high-performance concrete [16]. The compared accuracy of 

different data mining techniques was applied for predicting the compressive strength of 

environmentally friendly concrete [17] and the machine learning approaches was used to analyze 

the compressive strength of greenfly ash-based geopolymer concrete [18]. Finally, Chou et al. 

[19,20] and Young et al. [21] also considered a dataset for testing SVM and ANN methods and 

other machine learning methods such as the gradient boost and Random Forest. 

This paper focuses on the use of computational intelligence techniques, especially Random 

Forest, Artificial Neural Network (ANN) and Support Vector Machine (SVM), to analyze the 

prediction of concrete compressive strength, emphasizing accuracy and efficiency, and their 

potential to deal with experimental data. This study also aims to contribute to the knowledge of 

the application of computational models in the prediction of compressive strength of concrete, 

using machine learning and pre-processing methods such as GridsearchCV and cross-validation, 

comparing the obtained results with other studies in the available literature. 

 

2. Computational Experiments – Material Database and Methods 

The compressive strength of concrete required a definition to establish reliable data in the 

literature. The chosen database was made available in the article written by Yeh [22]. The 

programming language used to implement these models was Python, and the Sci-kit-learn and 

Keras library were also used in this work. Initially, several neural networks were tested to obtain 



 

 

a preliminary result of the concrete compressive strength. To improve these results, other 

computational models and pre-processing data methods were also implemented. 

 

2.1. Data pre-processing and visualization 

Database visualization and preprocessing seek to obtain a better understanding of the dataset to 

be studied. The first one intends to visualize correlations between inputs and outputs to achieve 

this goal. 

Histograms can help to form a better understanding of the data by showing information about 

each entry. The purpose of using histograms is to estimate whether the database has a normal 

distribution or whether it is biased to the left or right. The figures obtained assist the user to 

visualize and analyze the resources more effectively and facilitate the choice of the most suitable 

computational models [23]. Moreover, the density plots are variables that provide an idea of each 

feature distribution in the dataset. With these plots, one can see a smooth distribution curve drawn 

over the top of each histogram. Box plots are still another effective way to summarize the 

distribution of each available resource in the dataset. These boxes are useful because they give 

a better indication of the median value and the first and last quartile of the used data. 

Finally, the correlation matrix is a factor that indicates how two variables are related in the dataset. 

This matrix describes the relationship between any pair of variables. In this matrix, it is possible 

to see whether the variables are positively or negatively correlated. The value obtained represents 

how closely these data are related. The correlation matrix can provide better insight into how the 

regression model can be used. Highly correlated input variables can affect the performance of 

specific algorithms [24]. 

The dataset needs to be pre-processed before its application. Pre-processing techniques have 

been proven effective and can improve the performance of computational models [25]. In this 

project, the database was pre-processed using the feature scale method. This method involves 

transforming all characteristics on a standard scale [26,27]. Usually, resources are transformed 

within a range between 0 and 1. The scale is necessary to construct the machine learning model 

because the Euclidean distance between points may lead to a domination point, having a more 

significant effect on the variable target. 

To obtain better results, the database is usually split into training and testing data. Thus, the 

algorithm is trained with a volume of data that is validated in the test set. This is done to guarantee 



 

 

that the result obtained is not biased and only learns from similar data used for training. The 

dataset is reorganized with re-sampling. In this work, cross-validation and GridsearchCV are 

used. There are several types of cross-validation. However, the most common is the k-fold 

method. In this method, several samples k are created, each sample being set aside while the 

model trains with the remainder. The process repeats until it is possible to determine the “quality” 

of each observation. The most common values for the number of samples are between 5 and 10. 

This technique is most commonly used when the amount of data is lower or not sufficient to obtain 

a good result with more straightforward divisions [24–26]. 

The GridsearchCV is used as a tuning process that uses hyper-parametrization to determine the 

optimal values for a given model. This means that the performance of the entire model is based 

on the values of a specified hyper-parameter. GridsearchCV performs an exhaustive search on 

the specified parameters. This method is computationally expensive but produces excellent 

results [28,29]. 

 

2.2. Methods 

2.2.1. Random Forest 

Random Forest models are constructed from a collection of decision trees [30,31]. They are easy 

to use without many pre-processing strategies. The idea is to build a collection of trees with a 

controlled variation. Random Forest is a clustering technique that can perform regression and 

classification tasks using multiple decision trees and bootstrap aggregation, commonly known as 

bagging. Bagging, in the Random Forest method, involves training each decision tree with a 

different data sample, where sampling is done with a substitution. The biggest problem with 

decision trees is that they tend to over-fit training data. Error pruning is the most common 

technique for avoiding this type of problem [32]. In this project, the Random Forest model is 

defined with the help of GridsearchCV. 

 

2.2.2. Support Vector Machine 

SVM are popular learning algorithms that work in classification and regression problems. In 

addition to performing linear regression and classification, SVM have also worked well on 

nonlinear data [33,34]. To sort linearly separable data, there may be different hyperplanes that 

can separate the data. The problem here would be to find a hyper-plane (margin) that could 



 

 

maximize the separation between two classes [35]. Therefore, SVM can be defined as a machine 

learning technique that can be used for regression and classification problems. This technique 

builds a multidimensional hyper-plane space to separate a dataset into different classes. 

This paper used a support vector regressor as a non-parametric regression technique that relies 

solely on kernel functions. The goal is to find a function f(x) that deviates from yn by a value no 

larger than ε for each of the training points in our dataset and remains as flat as possible [34–36]. 

As the dataset is a multivariate supervised dataset, some of the cores used for regression 

comparison could be linear, polynomial, or RBFs [37]. In this project, GridsearchCV is used to 

evaluate possible kernels, linear, polynomial and RBFs. Thus, it is possible to assess the 

performance of these cores and evaluate different parameters of ε, which are the penalty 

parameters for the error. For polynomial and RBF kernels, there is a γ parameter called the kernel 

coefficient. The best performance is evaluated based on the results of R². Thus, it is possible to 

assess the best performance of the implemented model using different kernels, ε values and γ 

parameters. 

 

2.2.3. Artificial Neural Network 

ANN are a typical example of a modern method that solves various engineering problems that 

could not be explained by traditional methods. The neural network can collect, memorize, analyze 

and process a large amount of data obtained through experimental tests [38,39]. Training data 

are critical to the network as they convey the information needed to find the optimal operating 

point. ANN are one of the most useful computational models used in supervised regression tasks 

and learning classification and works primarily with three layers: the input layer, the hidden layers 

and the output layer. However, the performance of an ANN depends mostly on the performance 

of hidden layers. 

The number of neurons in the input layer is a pattern usually presented to the neural network. 

Each neuron in the input layer must represent an independent variable that affects the outcome 

of the network. Therefore, the number of nodes in the input layer is equal to the number of inputs. 

Problems that require two or more intermediate layers are unusual. A neural network with two 

intermediate layers can represent functions of any shape. Therefore, there are no theoretical 

reasons for using more than two middle layers. However, the higher the number of layers of 



 

 

neurons, the better the performance of the neural network. This is because it increases learning 

capacity [40]. Also, the input layer may have a particular neuron called bias that increases the 

degrees of freedom, allowing the neural network to better adapt to the knowledge. 

The number of neurons in the output layer is directly related to the task that the neural network 

performs. In general, the number of neurons the classifier must have is equal to the number of 

distinct groups. 

When ANN are built, it is important to consider a suitable model architecture. In an ANN, neurons 

appear as 

Tz w X b   (1) 

followed by the activation function that determines whether the neuron is dispensed or follows to 

the output presented in the following equation 

 ( ) ( )Ty a z a w X b    (2) 

However, it needs to train the neural network and evaluate the results using some function error 

and propagate through the neural network by updating weights (w) and bias (b). Therefore, 

derivatives of activation functions are used. 

 

2.3. Performance parameters 

To better evaluate the performance of predicting models, two different indicators are introduced, 

which are respectively defined as 

- Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = ඩ
1

𝑁
෍(𝑦௜ − 𝑦ො)ଶ
ே

௜ୀଵ

 

(3) 

- Coefficient of determination R-Squares (R²) 

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦ො)ଶே
௜ୀଵ

∑ (𝑦௜ − 𝑦ത)ଶே
௜ୀଵ

 
(4) 

where 𝑦ො is the predicted value of y and y is the average value of y; 𝑦ത is the mean value of all the 

measured values and N is the total number of the samples in the data set. 

 

3. Simulation Results and Analysis 

 



 

 

3.1. Database 

As already said, this work required the acquisition of experimental data to determine the 

compressive strength of concrete through computational intelligence. The database chosen was 

obtained from studies by Yeh [22]. This database presents 1030 experimental stress versus 

compression tests. Eight input variables were used as shown in follows: 

 cement; 

 blast furnace slag; 

 fly ash; 

 water; 

 superplasticizer; 

 coarse aggregate; 

 fine aggregate; 

 age. 

The output variable is the compressive strength of concrete (Fc). 

Figure 1 shows the static parameters, such as maximums and minimums of input and output 

components. The figure presents a heatmap, which graphically represents the measured value 

of numerical data using a color scheme, with warm colors representing the high-value of data 

points and cold colors representing the low-value data points of the data set. 

 

Figure 1: Statistics parameters of data 



 

 

 

 

It can be seen that the presented database, provided by Yeh [22], is quite consolidated and has 

a proper distribution for input and output variables. This fact facilitates the application of 

computational methods such as those presented in this work. There are also several studies in 

the literature that use the same database, so that a fair comparison between their results and the 

results obtained here can be made. 

A visualization of histograms, density boxes and box plots obtained from the database used is 

provided in Figure 2. As stated earlier, this visualization aims to give a better idea of which method 

is more appropriate to obtain a better fit for the machine learning models. The variables have an 

almost normal distribution. Thus, it is possible to see that the efficiency of learning algorithms can 

be facilitated. 

 

Figure 2: Histograms and density plots 



 

 

 

 

Figure 3 shows the box plots for the variables used. An analysis of the outlier values for each 

input and output variable was also performed and the results are listed in Table 1. A proper 

distribution can be seen with no more than 10% of outliers in any attribute. 

 

Figure 3: Box plot 



 

 

 

 

Table 1: Analysis of outliers 

Model attributes 
Values 

(Number of outliers) (Percentage of outliers) 

Cement (kg/m³) 0 0.00 

Blast furnace slag (kg/m³) 2 0.19 

Fly ash (kg/m³) 0 0.00 

Water (kg/m³) 9 0.87 

Superplasticizer (kg/m³) 10 0.97 

Coarse aggregate (kg/m³) 0 0.00 

Fine aggregate(kg/m³) 5 0.49 

Age (days) 59 5.73 

Compressive strength of 

concrete (MPa) 
4 0.39 

 



 

 

Figure 4 presents the correlation matrix of the data used in the model. The correlation matrix 

shows no correlation between the variables used in the computational model. Therefore, it can 

be said that the components are mostly independent of each other. 

 

Figure 4: Correlation matrix 

 

 

To build up the used predictive models, the collected experimental data was split into two parts, 

the training set and the testing set. The training set is used to produce the final strong learner and 

the testing set is used to show the accuracy of the model in predicting the compressive strength. 

The results presented in this paper used 85% of the data (875 samples) for training the computer 

models; the remaining 15% of the data (155 samples) were used for testing. It is worth 

emphasizing that cross-validation was used to select the best parameters for each method, so 

there was not necessary to use the data validation set. 

 

3.2. Random Forest  



 

 

For the Random Forest machine learning model, the best parameters to be used in the kernel 

were defined after several tests. GridsearchCV and cross-validation were used to find a better 

correlation with the database and the model and to prevent overfitting of the models. Table 2 

presents the parameters used in the experiments. 

 

Table 2: Parameters used for the Random Forest experiments 

Parameter Setting 

maximum depth 10 

Maximum of leaf nodes 120 

Minimum number of samples required to split 7 

Number of trees in the forest 500 

 

Figure 5 shows the graphical representation of the results of the test dataset. The original values 

are those obtained experimentally and the predicted values are the values obtained by the 

Random Forest model. Figure 6 presents the relationship between the predicted compressive 

strength values and the tested compressive strength values for the training and testing sets. For 

both sets, the graphs display a linear relationship between the predicted and testes values, 

especially for the training set. The figure also displays the value of R². 

 

Figure 5: Original versus expected results for the Random Forest 



 

 

 

 

Figure 6: Relationship between tested and predicted compressive strength for the 

Random Forest 

  

 

The Random Forest model shows excellent performance in predicting compressive concrete 

strength values. For the training data set, performance indicators are R²= 0.964 and RMSE = 

3.087 MPa, which means that the predicted value and original values of the experiment are almost 

the same. The test data set shows R² = 0.902 and RMSE = 5.614 MPa. The error ratio is very low 

and indicates that the Random Forest model is well suited for engineering practice. 

 

3.3. Support Vector Machine 



 

 

For the SVM learning model, the best parameters to be used in the kernel were defined. As 

GridsearchCV was used in this work to evaluate possible kernels, linear, polynomial and RBFs 

could be applied. The intention was to evaluate the performance of these cores in the database 

presented and estimate different parameters of ε, which are the penalty parameters for the error. 

For polynomial and RBF kernels, there is also a kernel coefficient called the γ parameter. In such 

cases, there is a need to search these parameters to find the relationships between them and the 

best metrics that can optimally predict relevant results for the database. 

By applying linear, polynomial and RBFs, it was found that the RBF was the best SVM kernel, 

i.e., which best predicts the results for the data presented. The best performance is evaluated 

based on the results of R². Thus, it is possible to evaluate the best performance of the model over 

different kernels, ε values and γ parameters. Table 3 presents the parameters used to find the 

results obtained in this work. 

 

Table 3: Parameters used for the SVM experiments 

Parameter Setting 

C 100 

Degree 3 

Epsilon 0.1 

Kernel RBF 

 

Figure 7 shows the graphical representation of the results of the test dataset. Figure 8 presents 

the relationship between the predicted compressive strength values and the tested compressive 

strength values for the training and testing sets. The relationship between the predicted and testes 

values can be considered linear for both sets, especially for the training set results. The figure 

also shows the values of R². 

 

Figure 7: Original versus expected results for the SVM 



 

 

 

 

Figure 8: Relationship between tested and predicted compressive strength for the SVM 

 

 

The SVM model shows good performance in calculating compressive concrete strength values. 

For the training data set, R²= 0.976 and RMSE = 2.554 MPa mean that the predicted value and 

original values of the test are very close. The test data set shows R² = 0.829 and RMSE = 7.456 

MPa. The error ratio is low and, despite being larger than that found by the Random Forest, it 

also indicates that the SVM model is suitable for engineering practice. However, this method does 

not seem to be the best suited for this database. 

 

3.4. ANN 



 

 

The current model used Keras, an open-source neural network library available in Python. Keras 

was used on the TensorFlow backend [41,42]. The neural network was trained using the SGD 

optimizer. The defined architecture with the best result is presented, as can be seen in Figure 9. 

 

Figure 9: Schematic representation of the ANN 

 

 

Eight neurons were used for the input layer. Further, 2 intermediate layers with 10 neurons each 

were used. One neuron was used in the output layer (the compressive strength of the concrete). 

The activation functions for the initial and intermediate layers are ReLU. This decision was made 

based on its well-known performance for regression problems [43,44]. It was necessary to use a 

linear activation function in the last layer because the method is regression [45]. Glorot uniform 

was used to initialize the weights, with small numbers close to 0 [46]. 

Figure 10 shows the graphical representation of the results of the test dataset, where the original 

and predicted values are compared. Figure 11 presents the relationship between the predicted 

compressive strength values and the tested compressive strength values for the training and 

testing sets. For both two sets, a linear relationship between the predicted and testes values is 

obtained. The figure also shows the values of R² for both sets. 

 



 

 

Figure 10: Original versus expected results for the ANN 

 

 

Figure 11: Relationship between tested and predicted compressive strength for the ANN 

  

 

The ANN model shows a good performance in predicting compressive concrete strength values. 

For the training data set, R²= 0.908 and RMSE = 4.979 MPa, which means the predicted value 

and original values of the test are comparable. The test data set shows R² = 0.893 and RMSE = 

5.881 MPa. The found error ratio is low and indicates that ANN is appropriate for engineering 

practice too. However, it is worth saying that the ANN model spent, among the tested models, the 

highest processing time with the applied database. 

The summaries of the performance values obtained for the training set are summarized in Table 

4. The table presents the R², the RMSE and the runtime for the three methods used. 



 

 

 

Table 4: Comparison of obtained results 

 R² 
RMSE 

(MPa) 

Execution time 

(seconds) 

Random forest 0.902 5.614 5.506 

SVM 0.829 7.456 0.247 

ANN 0.893 5.881 86.46 

 

The best model, measured by the chosen performance parameters, was the Random Forest. This 

may be due to the fact that the random forest algorithms are known to be simpler to use and have 

a high learning rate. ANN algorithms still show good results and was second for the performance 

techniques chosen in this work. However, as seen, they have significantly higher CPU time.  

The results for the testing set parameters results are also compared to some previous studies 

using Random Forest, SVM and ANN algorithms with the same Yeh’s dataset, as shown in Table 

5. 

 

Table 5: Comparison with the results for the same dataset in previous studies 

Research Algorithm R² 
RMSE 

(MPa) 

Chou et al. [19] 
ANN 0.88 - 

SVM 0.91 - 

Chou et al. [20] 
ANN - 7.9 

SVM - 5.5 

Young et al.[21] 

Random 

Forest 
0.86 5.7 

ANN 0.82 6.3 

SVM 0.83 6.4 

This paper 

Random 

Forest 
0.91 5.9 

SVM 0.83 7.5 

ANN 0.89 5.6 

 

The RMSE performance results obtained in this study are slight better than the results obtained 

in previously studies. The overall performance results obtained are significantly better for ANN 

and Random Forest. However, the same behavior does not happen for SVM. Nonetheless, the 



 

 

performance results obtained for this type of algorithm is still consistent with those obtained in the 

existing literature. 

 

4. Conclusions 

This work aimed to present the study of computational intelligence applied to define the concrete 

compressive strength from a database obtained in the studies of Yeh [22]. Three computational 

methods of machine learning and artificial intelligence were used, namely Random Forest, 

Support Vector Machines and Artificial Neural Networks. Data pre-processing and data 

visualization methods were also used to improve the results. Preprocessed methods known as 

GridsearchCV and cross-validation were employed to improve the performance of machine 

learning methods. 

The obtained results show that the Random Forest gave the best performance (RMSE = 5.614 

and R² = 0.902) and an average execution time. It can be noted that the SVM method had the 

worst performance of the three used methods but presented the shortest execution time. On the 

other hand, the ANN showed the second-best result and the longest execution time. The overall 

error rate can be considered low and the techniques can adequately be used to predict the 

concrete compressive strength, staying within the acceptable safety range for engineering 

practices.  

The computational intelligence models used are reliable to solve different complex problems, 

such as prediction problems. These models can be used to solve a specific problem when a 

deviation in available data is expected and accepted, and when a defined methodology is not 

available. Therefore, to predict the properties of concrete with high reliability, instead of using 

expensive experimental investigation, conventional and innovative models can be replaced by 

computational intelligence models. 

Computational intelligence models can be used to predict the compressive strength of concrete 

specimens, as shown in this study. The prediction of mean percent error values for these 

simulations shows a high degree of consistency with compressive strength and is experimentally 

evaluated from the concrete specimens used. Thus, the present study suggests an alternative 

approach to evaluate compressive strength against destructive testing methods. 
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