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Summary.
Large Eddy Simulations (LES) have been increasing popularity due to the decrease of com-

putational power cost. Indeed, engineering applications which have previously involved mainly
RANS, are now shifting to LES. Many eddy-viscosity models have been developed during the
last decades. They all share a general structure, which derive from a dimensional analysis:
νSGS = (Cm∆)2D(Ū), where in order appear the model constant, the length scale and the dif-
ferential operator underlying the model. The aim of this paper is to investigate the influence of
length scale ∆ definition on highly anisotropic grids, because most of the research has focused
mainly on the model constant and differential operator roles. The main length scale definitions
that will be compared are: i) the most popular is ∆vol = V

1
3 ii) ∆ω iii) ∆lsq. In order to

do so, we first calibrate the model constant, then we carry out a set of simulations in Open-
FOAM to assess the ∆ definition influence. In order to assess the resilience of the models for
highly anisotropic meshes, these simulations will be carried out also on meshes having control
volumes with high aspect ratios. Results for standard test cases such as a decaying Homoge-
neous Isotropic Turbulence (HIT) and a turbulent periodic plane channel will be presented and
compared to reference cases.

1 INTRODUCTION

LES equations are obtained by applying a spatial filter to the Navier-Stokes equations. Usu-
ally a simple ”box filter” is used, though more complex kernels can be used. This results in:{

∂tū+ (ū · ∇)ū = ν∇2ū−∇p̄−∇ · τ
∇ · ū = 0

In order to model the effects of turbulence acting on scales smaller than the filter length ∆ ,
a eddy-viscosity model (e.g. WALE [7], Vreman’s[9], QR[12], Sigma[11], S3PQR [16]) is usu-
ally applied, where the sub-grid scale viscosity is defined as νSGS = (Cm∆)2D(Ū) . This
is possible because the smallest resolved-scales motions provide information that can be used
to model the largest SGS motions [5] . The aim of this paper is to verify the behavior of an
eddy-viscosity turbulence model while different length-scale definitions are used on progressively
higherly anisotropic meshes.
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1.1 Length-scale definitions

In the LES community, the far more used mesh characteristic length-scale definition is the
cubic root of the volume ∆vol , introduced from Deardorff in 1970 [2]. Though, its performance
is affected from a high aspect-ratio of the volumes, as in unstructured or highly anisotropic
structured meshes. Indeed, this cause the model to be deactivated while the volume shrinks
along one direction. In this situation, defining an optimal ∆ it’s not a trivial task. Nevertheless,
in the DES community, a wider range of ∆ ‘s definitions have been settled, to overcome different
kinds of issues, for example taking into account flow and mesh anisotropy interaction for ∆ω .

Two ∆ definitions are identified for bounding others ∆ behavior: ∆max and ∆min . Indeed,
while refining the mesh in one direction, ∆max is not affected at all, and ∆min is progressively
deactivating the model.

Among the others, ∆ω [10] is meant to progressively deactivate the model while the mesh is
refined in either direction of each plane normal to the vorticity versor. This because the in-plane
velocity components associated to their vorticity component are acting in a progressively finer
mesh, hence making the LES model progressively less necessary in that plane. Instead, ∆lsq [17]
it’s based on a Taylor series approximation of the gradient model. The latter is characterized
by keeping the influence of ∆ as three separate components, in the form of diagonal of a tensor.

In the next section, the HIT case setup will be presented. Then the results in the form of
energy density spectra will compared for different models and degrees of anisotropies. It will
follow the Periodic Plane Channel case, where average velocities and Reynolds stresses will be
plotted. Finally, some concluding remarks to summarise the ∆ definitions behaviors.

2 TEST CASES

2.1 HIT

The first test case is the Homogeneous Isotropic Turbulence (HIT) decay in a periodic cube.
For this case we have used as reference the results from the historical paper by Comte-Bellot
and Corrsin (CBC) [3].
The comparison between the time-evolving HIT and the spatial decay of stationary turbulence
in a wind-tunnel, it’s relying on Taylor’s hypothesis. This latter leads to the assumption that
the spatial correlations of the turbulent velocity components correspond well enough to their
self-correlations in time i.e. (using CBC notation) R11(r, 0, 0; t0, 0) ≈ R11(0, 0, 0; t0, r/Ū) , which
have been verified from Favre et alia [1].
The non-dimensionalization procedure preserves the Taylor micro-scale Reynolds number
Reλ = urms·λ

ν = 71.6, with a cubic box side length Lbox = 0.09 · 2π, a urms = 0.222 and a
viscosity ν = 10−5 .
The mesh anisotropy is increased by progressively refining the mesh along z-axis. We started
with a uniform mesh of 643 volumes, with the following mesh refinement: 64 × 64 × Nz with
Nz ∈ {64, 128, 256, 512, 1024}.
Regarding the turbulence model, we have chosen Smagorinsky for its simplicity, due to the ab-
sence of walls in this case; whereas for the time integration, a backward 2ndorder explicit Euler
is used , with a constant ∆t = 10−3.
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HIT Results

The resolved kinetic energy density spectrum are computed at dimensionless times tU0/M =
42 ; 98 ; 171 and compared with the results from CBC [3]. In Figure 1 are summarized the
outcomes of the HIT case. In each plot is presented the temporal decay of the energy density
spectra, where time correspondence is done by keeping the dimensionless similarity with the
reference.

(a) (b)

(c) (d)

Figure 1: Energy density spectra

In the plot 1(a) is illustrated the spectrum of the main case run in OpenFOAM i.e. on a
isotropic mesh using Smagorinsky model with ∆vol . A consistent energy loss in the energy-
containing range can be noticed, but overall the Kolmogorov 5

3 law is fulfilled in the inertial
subrange. Anyway, the model produces results (red dash-dotted) in agreements with the refer-
ence (always represented as thinner black dotted) [3].
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In the plot 1(b) , keeping the reference in the background, we still show the spectrum at
the last of the considered time-steps, run on isotropic mesh with ∆vol (red dash-dotted). Then
we compare the latter, at first with the same case run without LES model (blue continuous)
to verify that the model is acting properly by modelling the SGS scales and dissipating the
non resolved modes. Indeed, νsgs is properly damping the turbulent kinetic energy pile-up that
can be seen instead in the model-less case. We also show the ∆max (thick green dashed) and
∆min (thin green dashed) spectra from the most anisotropic case (64x64x1024). Intuitively,
∆min is showing a dissipating behavior similar to the model-less case, because the z-axis grid
spacing it’s so small that is almost deactivating the model. Instead, all ∆ ’s behaves equally
to the ∆vol on isotropic mesh, because they are returning the same length-scale, hence same νsgs.

In the plot 1(c) we show the pencil of spectra generated by increasing the degree of anisotropy
in the case of ∆vol . Here the isotropic case spectrum (blue dash-dotted) and the highly
anisotropic case spectrum with Nz = 1024 (green dashed) upper/lower bound the results: the
isotropic case upper-bounds in the inertial subrange and lower-bounds in the dissipation range
; increasing anisotropy leads to an over dissipation in the inertial sub-range and an under-
dissipation in the dissipation range due to the non realistic turbulence seen in the plot 1(b).
This leads graphically to the pivoted pencil visible in plot 1(c).

Finally in plot 1(d) we do the most relevant comparison: are plotted the spectra of all the
used models in the higly anisotropic case. We have already seen the behaviors of ∆min and
∆max , and here we see that they upper and lower bound the results of all the other length-
scale definitions. ∆vol , even if in a minor extent, still suffers model deactivation due to high
anisotropy, because the volume is simply reduced by the refinement. The models that show to
perform the best are ∆ω and ∆lsq , which substantially agree with the reference [3].

2.2 Periodic Plane Channel

The second test case is the periodic plane channel where the flow’s turbulence developement
is guaranteed by applying periodic boundary condition at stream-normal faces while the station-
arity is enforced by a volume force in the stream-wise (x) direction. The reference for this case
is the DNS from Kim, Moin and Moser [4] . We have used a channel size (20π, 2, π) . Viscosity
is set in order to keep the viscous Reynolds number Reτ = 180 as in the reference. Due to
the wall-normal (y-axis) mesh inhomogeneity, we have refined the mesh in either stream-wise or
span-wise directions. Wall-normal spacing have been kept the same as the initial mesh, which
is a homogeneous 323 except along wall-normal direction, where a hyperbolic tangent mapping
is applied to resolve the boundary layers. The meshes are respectively Nxx32x32 and 32x32xNz

with Nx, Nz ∈ {64, 128, 256, 512, 1024} .
For this case we have used the turbulence model WALE [7] that properly deactivates the model’s
effect close to the walls. For time integration, we have used a CFL-adaptive time-stepping, with
Cmax = 0.6 on a 3rd order Runge-Kutta scheme implemented in the solver RKsymFoam, which
has implemented a symmetry-preserving spatial discretization. [8, 13, 18]
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Periodic Plane Channel Results

In order to compare the run cases with the reference [4], we plot in both the homogeneous-
ensemble average velocity and the Reynolds stresses.

(a) (b)

Figure 2: Ensemble-average stream-wise velocity and trace of Reynolds stress tensor in 323 mesh

In figure 2 are shown the behaviors of different ∆ definitions on the same 323 mesh (which is
not isotropic due to the channel aspect ratio). Again, ∆max and ∆min are bounding the others
∆ definitions. Anyway, it can be seen that even with ∆min , the model is over-dissipating
turbulence, which leads to a higher bulk velocity due to a lack of transport of momentum from
the walls towards the central plane of the channel.

In figure 3 is shown how the mesh refinement along the x-axis have reduced this over-
dissipation effect by reducing the pencil-shape volume’s length such that the volume become
a x-axis pancake-shape one. This is considered a natural behavior since in finer meshes, turbu-
lence models become progressively less necessary, up to a resolution that allows for DNS.

Also, this refinement led all the ∆ definitions to converge to the same average velocity profile,
which still present an over-dissipation of turbulence, hence making this discrepancy independent
of LES model.
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(a) (b)

Figure 3: Ensemble-average stream-wise velocity and trace of Reynolds stress tensor in
512x32x32 mesh

As it can be seen in figure 4, the mesh refinement impact consistently the behavior of each
∆ definition. We can see in plot 4(b) that the refinement makes ∆ω to converge closer to the
actual result, even if the limit curve it’s still not the reference from [4]. Anyway, it shows
an asymptotical behavior to a steady value. Instead, ∆vol in plot 4(a) shows a less significant
dependency on the mesh. Indeed the mesh refinement don’t show a monotonic approach to
a limit curve, but the curves’ pencil shows a consistent behavior compared to the asymptotic
value of ∆ω . The ∆ definition which is showing the most resilience to mesh anisotropy is the
∆lsq [17], which results overlap while refining the mesh along x-axis.
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(a) ∆vol (b) ∆ω

(c) ∆lsq

Figure 4: Ensemble-average stream-wise velocity: length-scale definition influence on x-
refinement

3 CONCLUSIONS

In this work we have tested different length-scale definitions on a range of mesh anisotropies
in two cases, namely the HIT and the plane channel. We have seen how different ∆ definitions
have shown quite different resilience properties with respect to mesh refinement. In particular,
∆lsq [17] have shown to be the least affected from the anisotropies among the tested length-scales,
which is in line with the fact that it has been designed with this purpose. Further research can
be done with other lenght-scale definitions as ∆SLA [15], which is a modification of ∆̃ω [14]
suited to trigger Kelvin-Helmoltz instability in the shear layer, or ∆Sco [6] which is one of the
corrections of Deardorff’s ∆vol [2] required for highly anisotropic meshes as for near wall turbu-
lence and shear layers.
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