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Summary. Thermal cycles occurring during arc welding affect the mechanical properties of the
welded parts. Fast heating and cooling cause high thermal gradients which induce plastic flow
and, then, residual stresses. Metallurgical changes can also take place according to the material
composition. Thermal cycles are a consequence of arc welding heat input. In order predict the
thermal field, it is necessary to estimate accurately the thermal loading (heat source). In this
work, a methodology is proposed for a fast estimation of heat source parameters based from
non-intrusive data (weld pool contour). A surrogate model is established to link the weld pool
contour to the heat source parameters. Thus the computational time required for the parameter
estimation was significantly reduced in the optimization loop. This methodology is applied to
the gas tungsten arc welding process on a thin stainless steel plate with a fully penetrated weld
pool. The weld pool was observed on the back side with a camera in order to avoid electrical
arc disruption.

1 INTRODUCTION

Arc welding is a widely used technique for joining metallic materials. Gas tungsten arc
welding (GTAW) is widely used for joining metallic parts in industries such as power plants,
petrochemicals, food processing ... Basically, an electric arc is created between a non fusible
electrode and the metallic parts to join. The arc produces a local melting of the part edges in
contact. A molten pool appears when the metal reaches its melting point. The arc and molten
pool are shielded against oxidation with an inert gas. Fluid motions develop within the weld
pool and redistribute heat everywhere in the pool. The weld pool grows until heat balance is
achieved. Once the welding torch moves away, the liquid metal solidifies, which ensures material
continuity.

However, critical defects such as cracking can occur, due to high tensile stresses caused by the
local melting (and high local thermal gradients). Structural integrity of welded assemblies is due
mainly to the final microstructures in the heat-affected and fuzed zones and the residual stresses
[1]. Fast thermal kinetics play a crucial role in final stress states and metallurgical changes
in welded components [2]. The thermal field depends on the heat input, so the electrical arc
which is directly linked to welding process parameters (current, voltage and welding speed).
The prediction of the thermal field with respect to process parameters can be obtained from two
approaches: the first consists in a multiphysics modeling of the welding operation (all physical
phenomena are taken into account). This approach has the advantage of accurately predicting
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heat and mass transfer, weld pool shape ... [3]. Although this approach provides comprehensive
physics, it has some limitations. This approach is limited for predicting thermal field of large
structures because of computational time. The second approach, the equivalent heat source,
reduces the study to a heat conduction problem and, as a consequence, the computational time.
Although it does not fully capture the complexity of welding phenomena, it still provides a
comprehensive temperature field for most of the structure. The equivalent heat source approach
is particularly well suited for predicting the mechanical state of welded components (residual
stresses, metallurgical changes ...).

In the literature, several equivalent heat sources have been proposed according to the in-
vestigated welding operation. One of the most used equivalent heat source models is the one
presented by Goldak [4]. Moreover, other authors have proposed more sophisticated equivalent
heat source models that matches more precisely specific welding operations [5, 6]. However, the
equivalent heat source approach is defined with several parameters that must estimated.

A classical approach used to estimate unknown parameters is to solve an inverse problem.
This approach requires experimental data from intrusive or non-intrusive sensors (temperature,
weld pool cross-section ...). Intrusive sensor implementation is not advisable for industrial
purposes, especially for wire arc additive manufacturing or multi-pass welding as the thermal
sensor must be close to the welded zone to be pertinent.

Kusano et al. [7] studied selective laser melting and deployed a Bayesian optimization ap-
proach, which involved finite element calculations for solving inverse problems. They used
thermography and cross-sectional bead shapes for the parameter estimation. Hilal [8] devel-
oped a digital twinning methodology for calibrating thermal models in the Wire Arc Additive
Manufacturing (WAAM) process, focusing on optimizing parameters through Bayesian inverse
problem. This approach implements a surrogate model via sparse polynomial chaos expansion
and the Markov Chain Monte Carlo (MCMC) adaptive metropolis-Hastings algorithm to esti-
mate the a posteriori probability distributions of unknown modeling parameters on the basis of
thermocouple probe thermal measurements. Moselmi et al. [9] compared linear and quadratic
regression models, as well as neural networks, for predicting heat source parameters during weld-
ing. They used experimental data from thermocouples and molten pool geometry to directly
predict unknown modeling parameters.

In this work, a different approach is proposed. The use of finite element calculations is
substituted with a surrogate model at each optimization iteration. A surrogate machine learn-
ing regression model is used. Additionally, a camera is used to observe non-intrusively and
non-destructively the weld pool shape. This non-intrusive technique preserves the integrity of
the welding process. By using this non-intrusive technique, the applicability of this method-
ology can be extended to various welding processes. In summary, the proposed methodology
presents an efficient way for the thermal modeling of welding processes and the estimation of
heat source parameters. The integration of non-intrusive experimental data and the machine
learning approach significantly reduced the computational time of the inverse problem.

2 METHODOLOGY

The objective is to estimate heat source modeling parameters by employing non-intrusive and
non-destructive camera for recording the weld pool. Experimental arc welding was conducted
on a thin stainless steel plate measuring 150 mm in length, 70 mm in width, and 1.5 mm in
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thickness. A GTAW welding torch with a tungsten electrode having a diameter of 2.4 mm and
sharpened angle of 30◦ was used to generate a fully penetrated weld pool. In steady state,
process parameters are kept constant at 8.58 V for voltage, 81.7 A for current and 2.3 mm/s
for the travel speed. The weld pool was shielded against oxidation via the use of argon gas.
The camera is positioned on the opposite side to the welding torch in order to observe the fully
penetrated weld pool. To enhance the image quality, the plate back side is illuminated with
a laser, allowing to distinguish of liquid and solid regions as shown in Figure 1a. An image
processing algorithm is used to identify the contour of the weld pool. The weld pool contour is
described with rays regularly spaced at an angle of 5◦ from the weld pool centröıd as illustrated
in Figure 1b. The experimental data used as descriptors for the rest of the study are the lengths
of these rays.

Figure 1: (a) Image of the weld pool on the back side of the plate with contour line traced in dark blue
(b) geometry contour description with ray technique.

An overview of the estimation methodology is given in Figure 2. The physical problem is
modeled considering a purely conductive assumption with an equivalent heat source (thermal
loading). The first step is to create a training database based on a design of experiments covering
the range of variation of the main parameters to estimate. For each case, in the design of the
experiment, a parametric finite element analysis (FEA) is conducted. From each numerical
case, the calculated weld pool is extracted and described with ray lengths similar to those of
the method employed for describing the experimental weld pool. The numerical dataset is then
used to train a surrogate model linking heat source parameters and weld pool geometry. The
estimation of the unknown parameters is achieved with an optimization approach based on the
minimization of a cost function. The cost function is defined as the difference between the
experimental contour and the predicted contour (or their ray differences at a given angle).
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Figure 2: Methodology of heat source estimation with a surrogate model linking the weld pool contour
to heat source parameters.

2.1 THERMAL MODELING

Due to the symmetrical configuration of the experiment, the thermal problem is limited to
half of the 316L metal sheet plate as presented in Figure 3.

Figure 3: Configuration for the Finite Element Analysis: geometry and boundary conditions. The
darker zone corresponds to the clamped one.

As underlined previously, a purely conductive modeling is considered and a specific thermal
conductivity for the liquid cc, in the weld pool, is chosen to take into account the heat trans-
fer due to liquid movements. The thermophysical properties of 316L stainless steel alloys are
temperature dependent.
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An enthalpic formulation is used for energy conservation, and the equation is written as
follows:

∂H

∂t
− div (λ(T )∇T ) = 0 ∀(x, y, z) ∈ Ω ∀t ∈ [0, tf ] (1)

with the enthalpy H(T ) =
∫ T
T0
ρCp(u) du is interpreted as the heat energy of the material

at a given temperature, ρ is the mass density, Cp is the specific heat and λ(T ) is the thermal
conductivity.

Considering the symmetry of the system, on the symmetry surface (Γsym), we assume adia-
batic heat exchange, described by the following equation:

λ(T )
∂T

∂n
= 0 ∀(x, y, z) ∈ Γsym ∀t ∈ [0, tf ] (2)

For surfaces exposed to air (Γair), heat losses due to convection and radiation are considered,
as described by the following boundary condition equation:

−λ(T )
∂T

∂n
= hconv(T − T∞) + εσ(T 4 − T 4

∞) ∀(x, y, z) ∈ Γair ∀t ∈ [0, tf ] (3)

For the surfaces in contact with the clamping system (Γclamp), the thermal contact is modelled
as a convective boundary condition, with higher convective coefficient than the air one, by the
following equation:

−λ(T )
∂T

∂n
= hclamp(T − Tclamp) ∀(x, y, z) ∈ Γclamp ∀t ∈ [0, tf ] (4)

Figure 4: Equivalent heat source description.

The moving arc heat input (represented in the Figure 4) is modeled as a double elliptical
surface distribution of energy, formulated as follows:

qf (x, y, t) =
12ηUI

πβa2f (1 + α)
exp

(
−3

((
(x− vt)2

af

)2

+

(
y

βaf

)2
))

∀x ≥ 0

qr(x, y, t) =
12ηUI

πβa2f (1 + α)
exp

(
−3

((
(x− vt)2

αaf

)2

+

(
y

βaf

)2
))

∀x < 0

(5)
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qf is the front heat source function distribution, and qr is the rear function distribution.
and η is the efficiency. This mathematical description takes into account the welding process
parameters such as voltage U , current I, and welding speed v and the process efficiency η.
The origin of the equivalent heat source travels from x = 45mm in the longitudinal coordinate
system to the final position at the longitudinal coordinate system x = 105mm. The quintuplet
(af ,α,β,η,cc) is the set of unknown parameters to estimate.

2.2 TRAINING DATASET

As an essential step in training the surrogate model, a numerical dataset is generated con-
sidering parametric finite element analysis. The design of experiments is created on the basis
of Sobol quasirandom sampling; with this sampling method, 128 equally distributed numerical
cases are created in the parametric space of the quintuplet: Each unique case of the design of
experiments is used as input to perform parametric FEA.

{(af , α, β, η, cc) ∈ R5 : af ∈ [2mm, 5mm] α ∈ [1, 5] β ∈ [0.5, 2] η ∈ [0.5, 0.8] cc ∈ [1, 5]} (6)

Figure 5: Parametric space of quintuplet used for the design of experiments: Each of the 128 cases
corresponds to a set of quintuplets θ defined with a solid line.

A total of 128 FEA are generated within the parametric space. Each numerical case in
the design of experiments is a unique combination of heat source parameters (as illustrated in
Figure 5). Each of the 128 unique quintuplets is used as input in the parametric FEA. Code
aster software is used to solve each FEA case. The meshgrid used considers finer elements in
the weld zone (see Figure 3) leading to 19645 nodes, 52725 edge elements, and 40654 volume
elements. The average computational time for one FEA simulation is approximately 13 minutes.

Once the parametric FEA calculations are achieved, transient thermal fields are post-processed
to extract quantities of interest (QoIs) that is to say: the rays that describe the numerical weld
pool (the same technique used to describe the experimental weld pool). In some parametric cal-
culations, the weld pool did not fully penetrated or did not produce a weld pool; therefore, the
number of fully penetrated numerical weld pools was 109. The resulting numerical dataset D =
{(θi, contournumi) | i ∈ {1, 2, 3..., 128} \ {2, 9, 13, 21, 22, 27, 29, 37, 45, 53, 58, 65, 74, 85, 93, 107,
109, 121, 125}} consists of 109 pairs of instances and labels (heat modeling parameters — result-
ing numerical weld pool). To illustrate this dataset, we present a truncated table, due to a lack
of space, of some instances and labels in Tables 1 and 2.
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af (mm) α β η cc

θ1 3.5 3.0 1.2 0.65 3.0

θ3 2.8 4.0 0.9 0.72 2.0

· · · · · · · · · · · · · · · · · ·
θ128 2.0 2.3 1.7 0.78 2.9

Table 1: (a) Examples of some quintuplets
used for the parametric study.

r1 r2 · · · r37
contournum1 4.8 4.7 · · · 5.1

contournum3 6.9 6.8 · · · 7.3

· · · · · · · · · · · · · · ·
contournum128 6.1 6.1 · · · 6.7

Table 2: (b) Numerical contours represented
as rays, resulting from the parametric study.

2.3 SURROGATE MODEL

The surrogate model is defined as a function M that maps heat source parameters θ to the
numerical weld pool rays contourpredicted as presented below.

M : R5 → R37

θ =


af
α
β
η
cc

 7→ M(θ) =


h1(θ)
h2(θ)

...
h37(θ)

 =


r1
r2
...
r37

 = contourpredicted

Each ray ri is independently predicted from other rays via the multivariate polynomial model
hi. Polynomial model is a generalization of the linear regression model to largest basis of
functions, known as basis function expansion. Note that the surrogate model is linear with
weights w as shown in equation 8. Let’s remark that the variable Xi refers to one of the
quintuplet (af ,α,β,η,cc).

h(X) = w0 + wTφ(X) + ε = r (7)

Where φ(X) transformed feature vector.
For example, multivariate polynomial model of second order is written as follow :

h(X) = w0+w1X1+...+wnXn+w11X
2
1+...+wnnX

2
n+w12X1X2+...+wn−1nXn−1Xn+ε = y (8)

Here the transformed feature vector is :

φ(X) = (X1, X2, ..., Xn, X
2
1 , X

2
2 , ..., X

2
n, X1X2, X1X3, ..., Xn−1Xn) (9)

And w1, w2, ..., wn are the coefficients of the linear terms, w11, w22, ..., wnn are the coefficients
of the quadratic terms, w12, w13, ..., w1n, ..., wn−1n, are the coefficients of the cross-product terms.

Higher-order polynomial models are more accurate but prone to overfitting. To mitigate this,
regularization adds a penalty term to balance model weights. Finding the right balance between
polynomial order and regularization is crucial for model generalization, which is the ability
to perform well on unseen data. We assess generalization through cross-validation, selecting
optimal hyperparameters via grid search to maximize model performance for each function hi.
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First, we define the complete set of possible hyperparameters combinations for the surrogate
model, focusing on two primary factors: the polynomial order and the penalization weight.

Polynomial order: We consider polynomial orders ranging from 1 to 4:
Polynomial Order ∈ {1, 2, 3, 4}
Penalization Weight: The penalization weight λ is evaluated over the following set of

values:
λ ∈ {0.01, 0.013, 0.016, 0.02, 0.025, 0.032, 0.04, 0.05, 0.063, 0.079, 0.1, 0.126, 0.158, 0.2, 0.251,

0.316, 0.398, 0.501, 0.631, 0.794, 1}

We systematically explore all combinations of these hyperparameters using a grid search
methodology to select the best configuration for each polynomial model corresponding to the 37
QoIs.

(a)

(b)

Figure 6: Polynomial model hyperparameters and cross-validation results: (a) selected hyperparameters
that maximize cross-validation scoring (b) cross-validation means results over the training/testing k-fold
cross validation loop

Figure 6a shows the hyperparameters resulting from the search grid methodology, and each
predictive model for each QoI results in different hyperparameters. As shown in Figure 6b, the
polynomial models capture at least more than 92% of the variance within the data.
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2.4 THERMAL MODELING PARAMETER ESTIMATION

The estimation of the modeling parameters that best match the experimental observations
is achieved with an optimization method. The optimization problem is formulated with the
following equation:

θopt = arg min
θ

J (θ) (10)

with the cost function J (θ) define the dissimilarity between the surrogate model-predicted
numerical weld pool and the experimental weld pool. As the weld pool geometries are described
with 37 rays that are similar in length for the experimental weld pool and the numerical weld
pool, the dissimilarity between the numerical weld pool and the experimental weld pool is
calculated as the mean square error difference. The cost function is defined as the mean square
error difference between the predicted numerical weld pools as follows:

J : R5 → R

θ =


af
α
β
η
cc

 7→ J (θ) = MSE




h1(θ)
h2(θ)

...
h37(θ)

 ,


r1
r2
...
r37


 = 1

37

∑37
i=1(hi(θ)− ri)2

The minimization of the cost function is done via an optimization algorithm, namely quasi-
Newton algorithm. The optimization algorithm illustrated in the figure summarizes the work-
flow. The optimization algorithm works iteratively and the initial guess θ0 is used as an ini-
tialization of the optimization loop. Iterations after iterations, a new guess is proposed that
increasingly minimizes the cost function; when no further optimization of the cost function is
possible, the optimum set of parameters θopt is reached.

Figure 7: Representative diagram for the optimization of the modeling weld pool to the experimental
weld pool
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3 RESULTS AND DISCUSSION

To test the robustness of this methodology, we used synthetic data generated by a reference
finite element analysis (FEA). The weld pool contour from this reference FEA was used as input
in the optimization loop, replacing the experimental data. The goal was to assess whether the
method could accurately identify the parameters θref used in the reference FEA.

The parameters θref were randomly selected within the range of variation of unknown pa-
rameters defined in Equation 6. This reference weld pool contour was then used as input for the
inverse problem. The optimization process aims to produce an optimal parameter set θopt, which
should closely match θref . Finally, a new FEA was conducted using θopt, and the resulting weld
pool contour was compared to that obtained during the optimization loop with the surrogate
model.

af (mm) α β η cc MSE

θref1 2.82 3.54 1.32 0.64 2.38 -

θopt1 2.64 4.13 1.46 0.66 5.0 5.8e-4

θref2 3.69 3.90 1.24 0.65 2.93 -

θopt2 3.21 4.45 1.35 0.65 2.95 6.5e-2

θref3 4.55 4.43 0.56 0.75 4.03 -

θopt3 4.18 4.85 0.54 0.75 4.38 4.9e-3

Table 3: Reference and optimized parameters for the inverse problem with corresponding MSE.

Table 3 presents the results of the inverse problem optimization using synthetic data. The
reference parameter sets (θref ) and the corresponding optimized parameter sets (θopt) are shown
along with the mean squared error (MSE) between the reference and optimized weld pool con-
tours. The low MSE values for all three cases indicate that the optimization process was suc-
cessful in identifying parameter sets that closely reproduce the reference weld pool contours.

Figure 8: Comparison of synthetic (or reference) weld pools (black lines) and weld pools resulting from
FEA conducted after parameter estimation (red lines) for three different sets of parameters θ

As shown in Figure 8, the three test cases exhibit good agreement between the synthetic weld
pool and the numerical weld pool resulting from the estimated parameters. The optimization
method with the surrogate model is able to estimate an optimal set of parameters θopt that
find the right weld pool contour used as input in the inverse problem. Thus, the optimization
approach is used for parameter estimation on the experimental configuration described in section
2 (page 3).
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af (mm) α β η cc MSE

θopt1 2.61 4.1 2.0 0.8 1.0 0.65

θopt2 4.54 2.38 0.96 0.8 1.0 1.12

Table 4: Inverse problem optimal sets of parameters θopt1 and θopt2

Let’s note that the surrogate model is used as a substitute of the FEA within the optimization
loop. This allows reducing significantly the computational time and memory resources. The
surrogate model allows predicting the QoI in approximately 3 ms against 13 min with the FEA.
Thanks to this short computation time, 30 optimization loops are ran with different initialization
parameters θ0. From these 30 tests, two optima are reached as presented in Table 4. These
two optima are the solutions of the inverse problem with the experimental weld pool contour
observed for the GTAW operation presented in section 2. These two solutions suggest that the
optimal equivalent heat source distribution function can either be highly concentrated at the
longitudinal front part (with af = 2.61 mm) or exhibit a broader distribution with a larger
frontal radius (af = 4.54 mm). The rear radius (ar = α × af ) is found to be more spread out
in both solutions (ar1 = 10.7 mm and ar2 = 10.8 mm). For the transverse radius (b = β × af ),
both solutions have similar values (b1 = 5.22 mm and b2 = 4.35 mm).

These results lead to two possible physical interpretations. Both interpretations share a
conductivity coefficient multiplier equal to 1 (cc = 1), suggesting that heat convection within
the melt pool is not significantly involved in this welding scenario. Additionally, the spread of
heat towards the rear in both cases indicates that the heat input by the arc is distributed more
in the opposite direction of welding. The primary difference lies in the front distribution, where
the heat input by the arc could either be very concentrated at the front or more spread out.

Figure 9: Parameter estimation from an experimental weld pool contour. Comparison between experi-
mental contour and numerical weld pool contour: (a) first solution (b) second solution.

These two solutions give similar weld pool contour that match quite well the experimental
weld contour as shown in Figure 9. This suggests that the defined inverse problem is ill-posed
according to Hadamard’s definition. This issue of inverse problems is well documented in the
literature. To address the ill-posed nature of the problem, consider regularization or Bayesian
inference.

This work was based on the weld pool contour measured in thermal steady state. It could
be possible to enhance the input data used in the inverse problem by mixing measurements:
weld pool contour and some local temperatures away from the weld pool. Perhaps, the use of
weld pool contour at the ignition of the arc until it reaches the thermal steady state could give

11



Z. BOUTALEB, I. BENDAOUD, S. ROUQUETTE, F. SOULIÉ

relevant data and leads to an unique solution of the inverse problem.

4 CONCLUSIONS

In this work, a methodology was proposed for heat source parameter estimation. A surrogate
model has been trained and used to replace the FE analysis in the optimization loop. The
experimental data required, in the optimization loop, is the weld pool contour (solid - liquid
interface). A camera was used to record the weld pool as it is a non-intrusive and non-destructive
technique. The surrogate model established maps the heat source parameters to the weld pool
contour. By using a machine learning methods to construct the surrogate model, the estimation
of the modeling parameters can be achieved within few seconds.
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