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ABSTRACT

In this paper, we present a method using Haar wavelets for solving axially
functionally graded (FG) Timoshenko beam equations with non-uniform
cross-sections. We compare two different approaches to the solution. The
first approach involves approximating the resulting function (i.e., rota-
tion) of the differential equation with a polynomial function using Haar
wavelets, which is a classical application in the Haar wavelet method. The
second method employs an auxiliary function that uses Haar wavelets, but
the rotation or deflection do not directly equal the sought function. The
rotation and deflection are derived from this auxiliary function. In both
methods, the coupled governing equations are transformed into a single
governing equation. Using the Haar wavelet method, this single differen-
tial equation transforms into a system of linear algebraic equations. For
different boundary conditions, the roots of the characteristic polynomial
equation obtained from the system of linear algebraic equations are solved
to determine the lowest to highest-order natural frequencies. Our results
show that the use of auxiliary function is faster and more consistent
with the results available in the literature. We presented several natural
frequency predictions of Timoshenko beams with different taper ratios
and support conditions that have not been detailed in the literature before.
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1 Introduction

Timoshenko beam theory, which has been called [1,2] Timoshenko beam theory or Timoshenko–
Ehrenfest beam theory [2] since it first appeared in 1922, is the first major advance in beam theory
after the Euler–Bernoulli beam theory. Unlike Euler–Bernoulli beam theory, rotation of a cross-section
along with transverse deflection is considered in the governing equations. In this case, two governing
coupled second-order differential equations are obtained. The governing equations of a straight-axis
beam depend on a single spatial coordinate along the beam length, and time. The rotation of a cross-
section and the transverse deflection are obtained from the solution of the equations.

It is a well-known fact that the Euler–Bernoulli beam theory provides accurate results in the
analysis of long and slender beams but can produce erroneous results for short and thick beams
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[3]. Therefore, the Timoshenko beam theory is quite useful for analysing short and thick beam-
like structures, ranging from large [4] to macro [5] and nano scale [6]. Because of technological and
aesthetic needs, beam-like structures with non-homogeneous materials and non-uniform cross-section
shapes are required to optimize the weight and strength of the structure, both in line with electronics
and architecture. Modal analysis, which is often necessary for determining the dynamic behaviour
of beam-type structures, can be performed using the Timoshenko beam model due to its success
in predicting accurate frequencies across a range from low to higher modes of vibration. However,
the governing equations of Timoshenko beam theory are quite complex and difficult to solve when
dealing with non-homogeneous materials and non-uniform sections. Consequently, researchers have
been working for many years on developing faster solution methods that yield accurate results [3,7].
Most researchers have examined material gradation along the beam thickness direction when dealing
with non-homogeneous materials in Timoshenko beam analyses [8–10]. However, studies on beams
with material gradation and non-uniform cross-sections along the beam axis are relatively fewer.
The milestone works on the vibration of Timoshenko beams, which address the gradation of beam
material and section properties along the axis, are chronologically as follows: The modal analysis
of Timoshenko beams was conducted by Huang [11]. These analyses are for beams with uniform
cross-sections. While the solutions to the equations are relatively straightforward for beams with
uniform cross-sections, they become more complex when considering non-uniform cross-sections.
When considering the non-uniform cross-sections, varying cross-sectional properties along the length
make the solution more complicated. If the change in material properties along the length is also
considered, the solution becomes even more complex. To overcome the difficulty in solving the
non-uniform Timoshenko beam, the finite element method was mainly utilized. Thomas et al. [12]
developed finite element formulations for Timoshenko beams, providing a comprehensive approach
to handle both bending and shear deformations. Heppler et al. [13] introduced a finite element
method using trigonometric basis functions to improve the accuracy of Timoshenko beam analysis,
showing enhanced accuracy and convergence rates, particularly under complex loading and boundary
conditions. Ju et al. [14] investigated the free vibration characteristics of stepped beams using analytical
methods, offering detailed insights into the effects of step changes in cross-sectional properties on the
natural frequencies. Rossi et al. [15] analysed the transverse vibrations of a Timoshenko beam with
non-uniform thickness, clamped at one end and carrying a concentrated mass at the other, providing
accurate analytical solutions and highlighting the significant influence of these factors on vibration
behaviour. Loula et al. [16] developed Petrov-Galerkin formulations for Timoshenko beam problems,
enhancing numerical stability and accuracy. Grosh et al. [17] introduced Galerkin generalized least
squares methods for solving Timoshenko beam equations. Their method demonstrates superior
stability and accuracy in numerical analysis. These results make their methods valuable for complex
structural simulations.

Using different solution methods, researchers have continued to address the solution of the
Timoshenko beams considering material non-homogeneity along the length, added mass, and springs.
Lee et al. [18] presented exact vibration solutions for nonuniform Timoshenko beams with mass
attachments, utilizing analytical methods to explore the beam’s dynamic characteristics. Tong et al. [19]
investigated the vibration analysis of Timoshenko beams with non-homogeneity and varying cross-
sections, employing analytical techniques to understand the impact of cross-sectional variations on
vibration modes. Leung et al. [20] have explored the non-uniform Timoshenko column vibration
using the dynamic stiffness method. They have presented a power series approach to the dynamic
stiffness matrix of the Timoshenko beams. Shahba et al. [3] conducted free vibration analyses of non-
homogeneous, variable cross-section Timoshenko beams using the finite element approach. Their

2https://www.scipedia.com/public/Baran_2025a



finite element formulation uses exact shape functions. They reported that they have adopted the
shape functions from Reddy [21]. Huang et al. [7] investigated the free vibration behaviour of axially
functionally graded Timoshenko beams with non-uniform cross-sections, highlighting the influence
of material gradients on natural frequencies. They have presented a polynomial auxiliary function
to obtain a fourth-order differential governing equation from coupled two second-order differential
equations. Yuan et al. [22] derived exact solutions for the free vibrations of axially inhomogeneous
Timoshenko beams with variable cross sections, emphasizing the analytical approach to predict
vibration modes accurately. Their methods are suitable for solving cases where material and cross-
sectional area variations are exponential and power series. Wang et al. [23] analysed the free vibration
characteristics of metal foam core sandwich beams on elastic foundations, focusing on structural
damping and foundation effects.

In recent years researchers have continued the FG Timoshenko beams for different cases employ-
ing various solution methods. Chen [24] has studied the vibration analysis of axially functionally
graded Timoshenko beams with non-uniform cross-sections, providing insights into the effects of
material grading on beam dynamics. Zhang et al. [25] have investigated the buckling and free vibration
sandwich Timoshenko beams resting on elastic foundation. They have considered both beam and
the foundation nonlocal. The generalized differential quadrative method (GDQM) is utilized to
obtain frequencies. Their study revealed that size-dependent characteristics should be given greater
consideration in structural problems. Zhang et al. [26] have presented a unified local-nonlocal integral
formulation for analysing the dynamic stability of functionally graded (FG) porous viscoelastic
Timoshenko beams resting on a nonlocal Winkler-Pasternak foundation, and the model incorporates
both strain- and stress-driven local-nonlocal elasticity theories. Numerical examples demonstrate
how foundation forces and nonlocal effects influence beam stability. Sinha [27] has presented a
free vibration analysis method for Timoshenko beams considering arbitrary non-uniform material
with discontinuities and constraints. His algorithm gives exact solutions when the continuous beam
segment between discontinuities is uniform. Burlayenko et al. [28] have presented a comparison of
one-dimensional and three-dimensional models to simulate the free vibrations of axially functionally
graded material (AFGM) beams with non-uniform cross-sections. They employed commercial finite
element method software and developed user-defined material model subroutines (UMAT). They
reported that as the geometric complexity and material inhomogeneity of the AFGM beams increase,
the differences between the one-dimensional and three-dimensional models become more pronounced
at higher-order frequencies. Subsequently, Burlayenko et al. [29] focused on the free vibration analysis
of axially functionally graded material (AFGM) beams with curvilinear tapered cross-sections. Their
study provides insights into how factors like material gradation, beam shape, and slenderness ratio
affect the natural frequencies of AFGM beams. In another study, Burlayenko et al. [30] explored the
modal characteristics of functionally graded porous Timoshenko beams with variable cross-sections.
They presented a parametric study on the effects of porosity and taper ratios on the vibrational
behaviour of FG Timoshenko beams. Deneme et al. [31] investigated the dynamic behaviour of AFGM
variable cross-section Timoshenko beams employing the Complementary Functions Method. They
validated their method using commercial finite element software and literature examples and stated
that their method is efficient in solving this type of problem.

Experimental work is essential for validating theoretical and numerical methods. However, only
a limited number of experimental studies have been conducted on the vibration of Timoshenko
beams [32–36], and none have independently considered material nonhomogeneity or cross-sectional
variations—or both. One of the earliest examples of these works was published by Kaneko [32]
focusing on the relationship between the shear coefficient and flexural vibrations. In subsequent
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years, Mendez-Sanchez et al. [33] examined the consistency between experimental frequencies and
mode shapes with theoretical predictions for different Timoshenko shear coefficients. Two related
studies by Díaz-De-Anda et al. [34] and Monsivais et al. [35] have made significant contributions to
the experimental investigation of Timoshenko beam vibrations. Both studies compare experimental
results with theoretical and numerical findings. A recent example of experimental work is provided by
Brøns et al. [36], who used a laser Doppler vibrometer to measure frequencies and mode shapes of
bending vibrations above the critical frequency predicted by Timoshenko theory. The authors com-
pared experimental results with theoretical and numerical predictions, noting a maximum deviation of
5% for frequencies above the critical threshold. For frequencies below the critical threshold, however,
they reported greater deviations between experimental, theoretical, and numerical results.

This work aims to find the free vibration frequencies of axially nonhomogeneous, variable-
sectioned Timoshenko beams for different boundary conditions, using the Haar Wavelet method
[37], which is very successful in high-order and complex differential equation solver. To the best
of the author’s knowledge, the Haar Wavelet method, which has been successfully applied to the
solution of Euler-Bernoulli beam equations [37,38], has only been used by Lepik et al. [37] in the
free vibration analysis of Timoshenko beams. However, the results presented in the relevant source are
limited and insufficient, and no other sources are available. This limitation may be due to the method’s
performance, which does not yield good results in some support conditions and may require large
calculation times. Another study by Mehrparvar et al. [39] serves as an example of the solution of
Timoshenko beams using the Haar wavelet method. They employed the higher-order Haar wavelet
method to solve the beam equations; however, they considered only variable cross-sections, not
material gradation.

In this study, instead of directly assuming the function obtained after the solution as the beam
section’s rotation, which is traditionally used in the Haar Wavelet method, an auxiliary function
approach adapted from Huang et al. [7] was employed. This approach yields consistent results with
the literature, reduces calculation times, and produces accurate results at lower resolutions. Structure
of the paper is as follows: a brief introduction to the Haar Wavelet method and its application to the
Timoshenko beam theory equations using both classical and auxiliary functions; verifications of the
proposed method; and finally, several frequency results for different boundary conditions of tapered,
non-homogeneous beams, which are not detailed in the literature.

2 Method
2.1 Brief Introduction to the Solution of Differential Equations Using Haar Wavelet Method

In this section, we present only the method for equal grid spacing for the sake of simplicity and
brevity. Please refer to Lepik et al. [37] for formulations of Haar matrices required for unequal grid
spacing (non-uniform Haar wavelets).

The method mentioned here is the n-th order ordinary differential equation (ODE) solution
method proposed by Chen et al. [40] for first-order ODE’s and described in detail by Lepik et al. [37] for
higher-order ODE’s. Although the method is an initial value problem solution method, the solution is
obtained by transforming boundary value problems into initial value problems with the Haar wavelets.
Following Lepik et al. [37], the n-th order linear differential equation with initial conditions may be
given as:∑n

ν=0
Aν (x) y(ν) (x) = f (x) , x ∈ [A, B] (1)
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y(ν) (A) = y(ν)

0 , ν = 0, 1, . . . , n − 1. (2)

where x is an independent variable with boundaries A, B, y(ν) (x) is x the dependent function and
derivative of functions, Aν (x), and f (x) are prescribed functions, ν is the order of the derivative, y(ν)

0 is
the initial condition of the ν-th order derivative, and n is the order of the ODE.

The highest-order derivative is taken equal to the Haar wavelet series,

y(n) (x) =
∑2M

i=1
aihi (x) (3)

where i is an index variable for the wavelet number, 2M is the number of grid points (M = 2J where J
is the maximum level of resolution), ai are wavelet coefficients, and hi (x) is the i-th (where i > 2) Haar
wavelet and may be given with equal grid spacing

hi (x) =

⎧⎪⎨⎪⎩
1 for
−1 for

0

x ∈ [ξ1 (i) , ξ2 (i)) ,
x ∈ [ξ2 (i) , ξ3 (i)) ,

elsewhere.
(4)

where

ξ1 (i) = A + 2kμΔx, ξ2 (i) = A + (2k + 1) μΔx,
ξ3 (i) = A + 2 (k + 1) μΔx, μ = M

m

(5)

appearing terms in Eq. (5) are m = 2j by introducing j = 0, 1, . . . , J and k = 0, 1, . . . , m − 1. The
wavelet number i may be given with i = m + k + 1. The grid interval step may be defined as Δx =
(B − A) / (2M).

For the case where i = 1, hi (x) may be given with hi (x) = 1. When i = 2, ξ1 (2) , ξ2 (2) and ξ3 (2)

should be calculated as ξ1 (2) = A, ξ2 (2) = 0.5 (2A + B) and ξ3 (2) = B respectively for substitution
in Eq. (4).

n − ν times integration gives the solution in the following form:

y(ν) (x) =
∑2M

i=1
aipn−ν, i (x) + Zν (x) , (6)

where

Zν (x) =
∑n−ν−1

σ=0

1
σ !

(x − A)
σ y(ν+σ) (A) , (7)

where pn−ν, i (x) is the (n − ν)-th integral of the Haar wavelet, σ is the index variable and A is the initial
point of x. Changing (n − ν) with α, the integral of the Haar wavelets may be given for i > 1

pα, i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < ξ1 (i) ,
1
α!

[x − ξ1 (i)]α for x ∈ [ξ1 (i) , ξ2 (i)] ,
1
α!

[(x − ξ1 (i))α − 2 (x − ξ2 (i))α] for x ∈ [ξ2 (i) , ξ3 (i)] ,
1
α!

[(x − ξ1 (i))α − 2 (x − ξ2 (i))α + (x − ξ3 (i))α] for x > ξ3 (i) .

(8)
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When i = 1 one should consider ξ1 (1) = A, ξ2 (1) = ξ3 (1) = B. Then the first wavelet integral
may be given

pα,1 (x) = 1
α!

(x − A)
α . (9)

For the numerical solution, Haar wavelet discretization is required. A definition may be made to
calculate grid points at equal intervals

x̃l = A + l�x, l = 0, 1, . . . , 2M. (10)

where l is the grid index and x̃l are the grid points. Then using the collocation method, collocation
points may be calculated with

xl = 0.5
(
x̃l−1 + x̃l

)
, l = 1, . . . , 2M. (11)

By replacing x and x̃ with xl in the above equations and writing Eq. (1) in discrete form, one may
obtain the linear system of equations from ODE. Putting the linear system of equations in matrix form
is advantageous. Thus, we can introduce the 2M ×2M Haar operational matrices as H, P1, P2, . . . , Pν

with their elements in the form of H (i, l) = hi (xl) , Pν (i, l) = pν, i (xl) , ν = 1, 2, . . . After successfully
solving the linear system of equations, unknown wavelet coefficients (ai) can be easily determined.
Then, using Eqs. (6) and (7), one may reorganize the sought function y (x).

2.2 Free Vibration Evaluation of Timoshenko Beams Using Haar Wavelet Method: Conventional
Approach (HWM-C)

For the sake of brevity, we do not again derive the governing equations of the FG Timoshenko
beams with variable cross-sections along the length. We adopted the equations from Shahba et al. [3].
Please refer to Shahba et al. [3] and Huang et al. [7] for the derivation of the governing equations.

The second-order coupled differential equations that govern the free vibration of a Timoshenko
beam with a length of L, variable cross-sections and material properties along its length are as
follows [3]:

d
dx

(
E

(
x̃
)

I
(
x̃
) dθ

(
x̃
)

dx̃

)
+ kG

(
x̃
)

A
(
x̃
) (

dw
(
x̃
)

dx̃
− θ

(
x̃
)) + ρ

(
x̃
)

I
(
x̃
)
ω2θ

(
x̃
) = 0,

d
dx̃

(
kG

(
x̃
)

A
(
x̃
) (

dw
(
x̃
)

dx̃
− θ

(
x̃
)))

+ ρ
(
x̃
)

A
(
x̃
)
ω2w

(
x̃
) = 0.

(12)

where x̃ is the lengthwise axis variable, E
(
x̃
)

is the modulus of elasticity, G
(
x̃
)

is the shear modulus

or rigidity and is defined by G
(
x̃
) = E

(
x̃
)

2 (1 + ν)
(where ν is the Poisson’s ratio), I

(
x̃
)

is the moment of

inertia, k is the shear correction factor, A
(
x̃
)

is the cross-sectional area, ρ
(
x̃
)

is the mass density, and
ω is the circular frequency. w

(
x̃
)

and θ
(
x̃
)

are the transverse displacement and the bending rotation,
respectively which are the sought functions. The terms E

(
x̃
)

and ρ
(
x̃
)

in Eq. (12) govern the material
gradation along the length, whereas the effect of the variation in the cross-section is considered with
A

(
x̃
)

and I
(
x̃
)
.

Expressing the equations dimensionless based on length provides ease of formulation. It should be
noted that since the equally spaced Haar wavelets are defined between 0 and 1, dimensionless equations
are essential. Thus, the beam length is equal to 1. Following Lepik et al. [37], the required steps may
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be given as follows:

E
(
x̃
) = E0E1

(
x̃
)

, ρ
(
x̃
) = ρ0ρ1

(
x̃
)

,

A
(
x̃
) = A0A1

(
x̃
)

, I
(
x̃
) = I0I1

(
x̃
)

,
(13)

where E0 = E (0) , ρ0 = ρ (0) , A0 = A (0) , and I0 = I (0).

After introducing the dimensionless parameters,

x = x̃
L

, 
 2 = ω2 ρ0A0L4

E0I0

, s2 = 2r2 (1 + ν)

k
, r2 = I0

A0L2
, (14)

we may reorganise the governing equations of vibration for the Timoshenko beam with unit length as

s2
[
E1 (x) I1 (x) θ (x)

′]′ + E1 (x) A1 (x) [w′ (x) − θ (x)] + r2s2
 2ρ1 (x) I1 (x) θ (x) = 0,
[E1 (x) A1 (x) (w′(x) − θ(x))]′ + s2
 2ρ1 (x) A1 (x) w (x) = 0.

(15)

where primes denote differentiation with respect to x. To apply the Haar wavelet method, two coupled
equations need to be reduced to a single equation. First, the term (E1 (x) A1 (x) [w′ (x) − θ (x)]) should
be evaluated from the first equation and then substituted into the second equation. From the resulting
equation, the function of transverse displacement (w (x)) may be given as

w (x) = F5 (x) θ ′′′ (x) + F6 (x) θ ′′ (x) + F7 (x) θ ′ (x) + F8 (x) θ (x) (16)

where

F5 (x) = E1 (x) I1 (x)


 2ρ1 (x) A1 (x)
, F6 (x) = 2 (E1 (x) I1 (x))

′


 2ρ1 (x) A1 (x)
,

F7 (x) = r2
 2ρ1 (x) I1 (x) + (E1 (x) I1 (x)) ′′


 2ρ1 (x) A1 (x)
, F8 (x) = r2 (ρ1 (x) I1 (x))

′

ρ1 (x) A1 (x)
.

(17)

After evaluating w′ (x) using Eq. (16) and substituting it into the equation at the first line of
Eq. (15), the resulting simplified equation that needs to be solved may be given as

F4 (x) θIV (x) + F3 (x) θ′′′ (x) + F2 (x) θ′′ (x) + F1 (x) θ′ (x) + F0 (x) θ (x) = 0, (18)

where

F4 (x) = F5 (x) ,
F3 (x) = F ′

5 (x) + F6 (x) ,

F2 (x) = F ′
6 (x) + F7 (x) + s2I1 (x)

A1 (x)
,

F1 (x) = F ′
7 (x) + F8 (x) + s2 (E1 (x) I1 (x))

′

E1 (x) A1 (x)
,

F0 (x) = F ′
8 (x) − 1 + r2s2
 2ρ1 (x) I1 (x)

E1 (x) A1 (x)
.

(19)
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Now, the Haar wavelet method may be applied. Using Eqs. (3), (6) and (7) and replacing y (x) with
θ (x) the following relations may be obtained

θ IV (x) = ∑2M

i=1 aihi (x) ,

θ ′′′ (x) = ∑2M

i=1 aip1, i (x) + θ ′′′
0 ,

θ ′′ (x) = ∑2M

i=1 aip2, i (x) + θ ′′′
0 x + θ ′′

0 ,

θ ′ (x) = ∑2M

i=1 aip3, i (x) + 1
2
θ ′′′

0 x2 + θ ′′
0 x + θ ′

0,

θ (x) = ∑2M

i=1 aip4, i (x) + 1
6
θ ′′′

0 x3 + 1
2
θ ′′

0 x2 + θ ′
0x + θ0.

(20)

where θ0 = θ (0) , θ ′
0 = θ ′ (0) , θ

′′
0 = θ ′′ (0) , θ

′′′
0 = θ ′′′ (0). Unknown quantities can be calculated from

boundary conditions at x = 0 and x = 1 using Eqs. (16) and (20). After the unknown quantities are
evaluated, the terms in Eq. (20) are substituted into Eq. (18) and x is replaced with xl. Thus, the discrete
governing equation may then be obtained at 2M discrete points as

F4 (xl)
∑2M

i=1
aihi (xl) + F3 (xl)

(∑2M

i=1
aip1, i (xl) + θ

′′′
0

)
+ F2 (xl)

(∑2M

i=1
aip2, i (xl) + θ ′′′

0 xl + θ ′′
0

)
+ F1 (xl)

(∑2M

i=1
aip3, i (xl) + 1

2
θ ′′′

0 xl
2 + θ ′′

0 xl + θ ′
0

)
+ F0 (xl)

(∑2M

i=1
aip4, i (xl) + 1

6
θ ′′′

0 xl
3 + 1

2
θ ′′

0 xl
2 + θ ′

0xl + θ0

)
= 0. (21)

The Jacobian of Eq. (21) with respect to ai vanishes the ai terms and constants and derives the
2M × 2M linear, homogeneous governing square matrix of the vibration. In this situation, only
unknown is the square of the cyclic frequency parameter (
 2) is unknown. The matrix equation of
vibration is formed as follows:

K − 
 2M = 0. (22)

where K is the stiffness matrix, which includes flexural, shear, and geometric stiffness terms, and M is
the mass matrix. For a nontrivial solution, the determinant of the system in Eq. (22) must be zero. The
square roots of the roots of the characteristic equation are the circular frequencies that are sought. The
mode shapes may be determined for every circular frequency employing the discrete form of Eq. (16).

Boundary Conditions for HWM-C

To evaluate the boundary conditions, some kinematic relationships should be introduced. The
moment and shear force relationships with the transverse beam displacement and cross-section
rotation may be given as

Q = kG (x) A (x) (w′ (x) − θ (x)) , (23)

M = −E (x) I (x) θ ′ (x) . (24)

where M is the momen and Q is the shear force. This study examines the boundary conditions for
five different support cases. These cases are: i) clamped-free (C-F), ii) clamped-clamped (C-C), iii)
clamped-pinned (C-P), iv) pinned-pinned (P-P), and v) free-free (F-F). The initial unknown quantities
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i.e., θ0, θ ′
0, θ ′′

0 , and θ ′′′
0 at x = 0, which are necessary for solving Eq. (21), are evaluated from Eqs. (16)

and (20). The first derivative of Eq. (16) should be determined owing to the shear force relation (see
Eq. (23)) for the C-F and F-F cases. Boundary conditions yield a system of linear algebraic equations
with three equations for tree unknowns. The remaining unknown (usually θ0 or owing to the moment
relation θ ′

0 (see Eq. (24))) is already known at x = 0. Table 1 summarizes the boundary conditions for
all the cases.

Table 1: Boundary conditions for supporting cases

Case x = 0 x = 1

C-F θ (0) = 0, w (0) = 0 M (1) = 0, Q (1) = 0
C-C θ (0) = 0, w (0) = 0 θ (1) = 0, w (1) = 0
C-P θ (0) = 0, w (0) = 0 M (1) = 0, w (1) = 0
P-P M (0) = 0, w (0) = 0 M (1) = 0, w (1) = 0
F-F M (0) = 0, Q (0) = 0 M (1) = 0, Q (1) = 0

2.3 Free Vibration Evaluation of Timoshenko Beams Using Haar Wavelet Method: Auxiliary Function
Approach (HWM-A)

We introduce the Haar wavelet method with an auxiliary function application. To the best of the
author’s knowledge, this approach has not been used in the Haar wavelet applications. The method is
based on the work of Huang et al. [7]. In this approach, the sought function is an auxiliary function that
is not directly equal to the cross-section rotation. The rotation, transverse displacement, moment and
shear force are evaluated with newly defined functions that are derived from the auxiliary function. In
this work, we choose a Haar wavelet function as an auxiliary function. We may start with the derived
governing equation of the vibration by Huang et al. [7]∑4

i=1
Ai (x)

∂ i�(x, t)
∂xi

−
(∑2

i=0
Bi (x)

∂ i�(x, t)
∂xi

)
∂2�(x, t)

∂t2
+ C (x)

∂4�(x, t)
∂t4

= 0, (25)

where i is the index variable, t is the time variable, and � is the auxiliary function that is sought for.
Ai (x), Bi (x), and C (x) are functions that contain the stiffness, and mass terms. And they may be given
with

A1 (x) =
[

E(x)I(x)

(
1

ρ (x) A (x)

)′′]′

, A2 (x) =
[

2E(x)I(x)

(
1

ρ (x) A (x)

)′]′

+E(x)I(x)

(
1

ρ (x) A (x)

)′′
,

A3 (x) = 2E(x)I(x)

(
1

ρ (x) A (x)

)′
+

(
E(x)I(x)

ρ (x)

)′
, A4 (x) = E(x)I(x)

ρ (x) A (x)
,

B0 (x) =
[

E(x)I(x)

(
1

kG (x) A (x)

)′]′

− 1, B1 (x) =
[

E(x)I(x)

kG (x) A (x)

]′

+E(x)I(x)

(
1

kG (x) A (x)

)′

+ρ (x) I (x)

(
1

ρ (x) A (x)

)′
,
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B2 (x) = E(x)I(x)

kG (x) A (x)
+ ρ (x) I (x)

ρ (x) A (x)
, C (x) = ρ (x) I (x)

kG (x) A (x)
. (26)

By choosing the auxiliary function as in the form

�(x, t) = f (x) ei
 t, (27)

the governing equation of the vibration of the FG material, a variable cross-sectioned Timoshenko
beam may be given with∑4

i=1
Ai (x)

dif (x)

dxi
+ 
 2

(∑2

i=0
Bi (x)

dif (x)

dxi

)
+ 
 2C (x) f (x) = 0. (28)

The expanded form of Eq. (28) is identical to that of Eq. (18), except for minor changes in the
coefficient functions of the derivative terms.

By changing θ ’s with f in Eq. (21) and defining new coefficients for derivative terms, the governing
equation of vibration using the auxiliary function may be given as

Θ4 (xl)
∑2M

i=1
aihi (xl) + Θ3 (xl)

(∑2M

i=1
aip1, i (xl) + f ′′′

0

)
+ Θ2 (xl)

(∑2M

i=1
aip2, i (xl) + f ′′′

0 xl + f ′′
0

)
+ Θ1 (xl)

(∑2M

i=1
aip3, i (xl) + 1

2
f ′′′

0 xl
2 + f ′′

0 xl + f ′
0

)
+ Θ0 (xl)

(∑2M

i=1
aip4,i (xl) + 1

6
f ′′′

0 xl
3 + 1

2
f ′′

0 xl
2 + f ′

0xl + f0

)
= 0. (29)

Knowing G (x) = E (x)

2 (1 + ν)
, and using Eq. (13) the coefficients may be defined as dimensionless.

Thus, appearing Θ terms in Eq. (29) may be given

Θ0 (x) = 
 2

((
E1 (x) I1 (x)

(
1

G1 (x)

)′)′

− 1 + 
 2

(
ρ1 (x) I1 (x)

G1 (x)

))
,

Θ1 (x) =
(

E1 (x) I1 (x)

(
1

ρ1 (x) A1 (x)

)′′)′

+ 
 2

((
E1 (x) I1 (x)

G1 (x)

)′

+E1 (x) I1 (x)

(
1

G1 (x)

)′
+ ρ1 (x) I1 (x)

(
1

ρ1 (x) A1 (x)

)′)
,

Θ2 (x) =
(

2E1 (x) I1 (x)

(
1

ρ1 (x) A1 (x)

)′)′

+ E1 (x) I1 (x)

(
1

ρ1 (x) A1 (x)

)′′

+
 2

(
E1 (x) I1 (x)

G1 (x)
+ ρ1 (x) I1 (x)

ρ1 (x) A1 (x)

)
,

Θ3 (x) =
(

E1 (x) I1 (x)

ρ1 (x) A1 (x)

)′
+ 2E1 (x) I1 (x)

(
1

ρ1 (x) A1 (x)

)′
,

Θ4 (x) = E1 (x) I1 (x)

ρ1 (x) A1 (x)
.

(30)
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When taking the Jacobian of Eq. (29) with respect to ai, the only remaining unknown in the
governing system determinant is the cyclic frequency 
 2. A successful nontrivial solution of the
characteristic equation of the governing determinant gives the cyclic frequencies.

Boundary Conditions for HWM-A

The same boundary conditions as those shown in Table 1 for HWM-C are applicable to HWM-A.
However, new expressions are required to define w (x), θ (x), Q (x), and M (x) in terms of the auxiliary
function � (x, t). Therefore, the functions that define the relationships between w (x), θ (x), Q (x), and
M (x) with � (x, t) may be provided following Huang et al.’s [7] approach,

w (x) = ρ1 (0) I1 (0)

ρ1 (x) A1 (x)
�′ (x) , (31)

θ (x) = −
 2 ρ1 (0) I1 (0)

G1 (x)
−

(
ρ1 (0) I1 (0)

ρ1 (x) A1 (x)
�′(x)

)′
, (32)

Q (x) = −
 2 ρ1 (0) I1 (0)

G1 (x)
, (33)

M (x) = −E (x) I (x)

[

 2

(
ρ1 (0) I1 (0)

G1 (x)

)′
+

(
ρ1 (0) I1 (0)

ρ1 (x) A1 (x)
�′(x)

)′′]
. (34)

3 Results and Discussions

In this section, first, verifications are given, and then, frequency predictions for some support
conditions that are not detailed in the literature, are presented.

The cross-sectional profiles utilised for the beam in the analyses are defined with, Case I : A =
A0 (1 − cxl) , I = I0 (1 − cxl)

3 and Case II : A = A0 (1 − cxl)
2 , I = I0 (1 − cxl)

4, where c is the taper
ratio. In these cases, at the left end (x = 0) the cross-sectional properties are given with A0 and I0.
c varies between 0 and 1, and where case c = 1 is practically meaningless. The case where c = 0
corresponds to a uniform cross-sectioned beam. The material properties that vary along the beam
axis fit the power-law form and can be defined as follows [3]: the modulus of elasticity is E (xl) =
E0 + (E1 − E0) (xl)

n, and the density is ρ (xl) = ρ0 + (ρ1 − ρ0) (xl)
n, where n is the gradient parameter

and n = 0 implies the homogeneous material. Subindices 0 and 1 indicate the material properties at
the left and right ends, respectively. In the present work, the materials are assumed to be zirconia and
aluminum with corresponding properties of ZrO2 : E0 = 200 GPa, ρ0 = 5700 kg/m3 and Al : E1 =
200 GPa, ρ1 = 5700 kg/m3. In all the numerical calculations, r2, Poisson’s ratio (ν), and the shear
correction factor (k) are set to 0.01, 0.3 and 5/6, respectively.

Before we start, we note that the grid point spacings are equal in all analyses. Another point
that should be noted is that when a high taper ratio and material change are considered, the most
challenging case appears. This case, which involves uniform cross-sections and materials, is easier
because some of the derivative terms are zero because of the constant material and cross-sectional
properties. Thus, we conducted several analyses with different beam support conditions and high taper
ratios considering Case I for the convergence study. It is a well-known fact that support conditions
strongly affect the vibration frequencies [3,7]. Hence different support conditions may require different
convergence rates. First, the C-F beam results when different J values are employed to obtain the
optimal resolution are compared with those of Shahba et al. [3] in Table 2.
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Table 2: First four non-dimensional natural frequencies for the C-F beam (Case I, n = 2 and c = 0.8)

HWM-C HWM-A


i [3] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

1 4.718 4.1979 4.6273 4.6947 4.7103 4.7187 4.7163 4.7156 4.7154
2 13.4793 10.5789 12.9277 13.3366 13.4326 13.4722 13.4679 13.4651 13.4644
3 25.9735 19.6389 24.6163 25.6143 25.8482 26.0059 25.9610 25.9349 25.9275
4 40.8666 32.6386 38.6367 40.2363 40.6132 41.0942 40.9074 40.7837 40.7489

Deviation from [3] (%)

HWM-C HWM-A


i J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

1 11.0240 1.9228 0.4949 0.1637 0.0144 0.0363 0.0505 0.0541
2 21.5174 4.0921 1.0587 0.3466 0.0530 0.0847 0.1051 0.1109
3 24.3886 5.2252 1.3830 0.4823 0.1248 0.0482 0.1488 0.1770
4 20.1337 5.4566 1.5423 0.6200 0.5570 0.0997 0.2029 0.2881

As expected, we realise from Table 2 that higher resolution provides better results for HWM-C.
However, HWM-A yields better results at resolution level 3 for all frequencies. Usually, the Haar
wavelet method suggests better accuracy with higher resolution, but the use of an auxiliary function
suggests an optimal resolution. Notably, higher resolution levels lead to increased computational time.
To provide some data as an example of calculation speed: HWM-C calculations take approximately
2, 14 min, 2 h, and over 24 h for resolution levels ranging from 2 to 5, respectively. In comparison,
HWM-A calculations take approximately 1, 8 s, 5 min, and up to 16 h for the same resolution levels. All
calculations were performed on a laptop equipped with an Intel second-generation i7-7700HQ@2.80
GHz processor.

Fig. 1 illustrates the first mode shapes corresponding to the frequencies in Table 2 for both
methods. Fig. 1a displays all resolution levels listed in Table 2, while Fig. 1b is shown for J =
3 for comparison. From the analysis of Fig. 2, it is evident that HWM-C represents a coarser
approach and fails to fully capture the displacements of the first mode for the cantilever beam.
This explains why HWM-C lacks sufficient sensitivity in frequency estimation especially at lower
resolutions. While HWM-C calculates a mode shape similar to a uniform, homogeneous beam, HWM-
A presents a sharper curve, starting at zero displacement on the left boundary and reaching maximum
displacement, because a high taper ratio and material graduation causes decreasing stiffness towards
the right end. The mode shape calculated with HWM-A is intuitively reasonable.

Next, to present an unusual result we provide Table 3. We consider a C-C supported beam with
a homogeneous material (n = 0), Case I, and c = 0.8. As shown in Table 3, HWM-C calculates an
extra frequency in the first line, which we indicate with the index 0. The fact that other frequencies
closely match those reported by Huang et al. [7] suggests that the HWM-C formulation is correct
but imperfect. However, this extra frequency, which decreases as the resolution increases, significantly
affects the value of the first frequency. The extra frequency which does not appear in HWM-A
solutions, occurs only in the C-C and C-P support conditions while using HWM-C and may stem from
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the complicated boundary condition equations. We should note that this extra frequency emerges with
a taper and increases in value with higher taper ratios: the additional frequency did not appear for the
uniform beam. The optimal resolution is J = 5 for both HWM-A and HWM-C.

Figure 1: Transverse displacement mode shapes of C-F beam for different resolution levels: (a) A
complete comparison of mode shapes for HWM-A and HWM-C, (b) A closer look at HWM-A and
HWM-C at resolution level 3 (Case I, n = 2 and c = 0.8)

Figure 2: (Continued)
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Figure 2: The variations in the dimensionless cyclic frequencies of Timoshenko beams with the taper
ratio (Case II, n = 2): (a) C-F beam, (b) P-P beam, (c) C-P beam, (d) C-C beam and (e) F-F beam

As a remedy for the inaccurate results of HWM-C, the non-uniform Haar wavelets mentioned
earlier can be employed. We stated that for the sake of brevity, we do not present how the non-
uniform Haar wavelets are calculated. We encourage the reader to refer to Lepik et al. [37] for detailed
information about non-uniform Haar wavelets. To provide a brief knowledge, the non-linear Haar
wavelets utilise the denser grid spacings where needed. In our case, the critical zone is the end of
the beam because high taper ratios require the calculation of more precise cross-sectional properties,
especially at the right boundary. Let us introduce the parameter q, which identifies the grid spacing
at the end zone of the beam using the geometric series rule. When q is close to 1, the grid spacing
is uniform, and the range [0.6, 0.9] produces meaningful grid spacings. We present Table 4, which
includes the HWM-C results for J = 4, to demonstrate the improved accuracy when q = 0.8 and
q = 0.9 are used. However, while the first frequency shows good accuracy, there is still an extra
frequency. Moreover, starting from the second frequency, the results begin to diverge compared with
the equally spaced grid situation. This divergence accelerates from the sixth frequency for q = 0.8
because of the less dense grids at the beginning of the beam. Table 4 indicates that the quantities at
the end boundary must be accurately calculated to estimate the frequencies successfully. Because the
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Haar wavelet method transforms the boundary value problem into an initial value problem using the
quantities at the end boundary. However, we should point out that this does not mean that the values
at the end boundary directly affect the lowest frequencies that might be interpreted from Table 4. The
values at both the left and right boundaries, as well as the grid spacing, should affect the frequencies.
With a well-estimated transverse beam deflection curve, which is possible with equal grid spacing,
the most accurate frequencies can be obtained. The accuracy of this judgment is demonstrated by the
results of the HWM-A with equal grid spacing in Tables 2 and 3. Although the HWM-C produces
accurate frequency estimations for the C-F beam at high resolutions, the results for the C-C beam are
not as satisfactory as those of the HWM-A.

Table 3: First five non-dimensional natural frequencies for the C-C beam (Case I, n = 0 and c = 0.8)

HWM-C HWM-A


i [7] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

0 – 5.5126 4.5171 2.79190 1.4787 – – – –
1 9.7271 16.4847 12.6633 10.45904 9.9052 9.7287 9.7244 9.7263 9.7269
2 22.4303 32.5146 23.9143 22.69676 22.4919 22.6479 22.4824 22.4431 22.4336
3 37.7417 59.1315 37.8607 37.72293 37.7353 38.5710 37.9764 37.8019 37.7572
4 54.4994 88.2081 53.7582 54.31274 54.4493 56.5165 55.1534 54.6670 54.5384
5 71.9943 93.2928 71.1183 71.85737 72.0220 75.6616 73.5203 72.4624 72.1738

Deviation from [7] (%)

HWM-C HWM-A


i J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

0 – – – – – – – –
1 69.4715 30.1849 7.5242 1.8301 0.0158 0.0278 0.0091 0.0021
2 44.9585 6.6161 1.1880 0.2745 0.9702 0.2325 0.0572 0.0149
3 56.6743 0.3152 0.0497 0.0171 2.1974 0.6218 0.1594 0.0411
4 61.8517 1.3600 0.3424 0.0918 3.7012 1.2001 0.3076 0.0716
5 29.5836 1.2167 0.1901 0.0385 5.0939 2.1197 0.6502 0.2493

Table 4: First ten non-dimensional natural frequencies for the C-C beam ( J = 4, Case I, n = 0 and
c = 0.8)

HWM-C

i [7] q = 0.8 q = 0.9 Uniform grid spacing

0 – 1.7717 1.1023 2.7919
1 9.7271 9.7457 9.7457 10.4590
2 22.4303 21.4216 21.4216 22.6968
3 37.7417 36.0785 36.0785 37.7229

(Continued)
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Table 4 (continued)

HWM-C

i [7] q = 0.8 q = 0.9 Uniform grid spacing

4 54.4994 53.1228 53.1228 54.3127
5 71.9943 72.4012 72.4012 71.8574
6 – 92.0828 89.8013 89.0195
7 – 95.1446 93.7853 93.7418
8 – 122.8103 110.4052 108.9680
9 – 124.4464 123.7054 123.4165
10 153.7935 129.8417 128.3750

Although the success of HWM-C was demonstrated by Hein et al. [38] for the Euler–Bernoulli
beam, which has relatively simple governing equations, our results show that a new approach is
required for the Timoshenko beam, whose governing equations are more complex. Many attempts
have been made to solve this problem while considering different support conditions, which are not
presented here for the sake of brevity, and HWM-C did not yield satisfactory results for all the cases.
Since the results of HWM-C are not satisfactory, we present the results obtained using HWM-A.

Tables 2 and 3 offer the different optimal resolutions needed for the C-F and C-C support
conditions when HWM-A is employed. To determine the optimum resolution level for the remaining
C-P, P-P, and F-F beams, we perform HWM-A analyses with different resolution levels. We compare
them with solutions available in the literature in Tables 5–7, respectively. Table 5 indicates that the
optimal resolution is 5 for the C-P beam, and the deviations are acceptably small for all values of J.

Table 5: First four non-dimensional natural frequencies for the C-P beam (Case I, n = 2 and c = 0.1)

HWM-A Deviation from [7] (%)


i [7] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

1 10.8007 10.8310 10.8085 10.8027 10.8012 0.2807 0.0721 0.0181 0.0045
2 25.6179 25.9015 25.6933 25.6370 25.6227 1.1072 0.2943 0.0746 0.0187
3 42.6478 43.7597 42.9578 42.7268 42.6674 2.6071 0.7270 0.1852 0.0459
4 58.8595 59.6760 59.2491 58.9673 58.8824 1.3873 0.6619 0.1833 0.0390

Table 6: First four non-dimensional natural frequencies for the P-P beam (Case I, n = 2 and c = 0.9)

HWM-A Deviation [3] (%)

i [3] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

1 3.2016 3.3060 3.2143 3.1918 3.1864 3.2609 0.3965 0.3049 0.4741
2 15.3775 15.8036 15.4374 15.3496 15.3284 2.7712 0.3898 0.1817 0.3191

(Continued)
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Table 6 (continued)

HWM-A Deviation [3] (%)

i [3] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

3 29.9011 31.2568 30.1279 29.8572 29.7912 4.5339 0.7586 0.1468 0.3675
4 46.2153 49.3104 46.7740 46.1476 45.9919 6.6972 1.2090 0.1465 0.4833

Table 7: First five non-dimensional natural frequencies for the F-F beam (Case I, n = 0 and c = 0.2)

HWM-A Deviation from [20] (%)

i [20] J = 2 J = 3 J = 4 J = 5 J = 2 J = 3 J = 4 J = 5

1 15.7200 15.6725 15.7118 15.7211 15.7234 0.3023 0.0524 0.0071 0.0218
2 32.7900 32.8776 32.8185 32.7941 32.7874 0.2670 0.0869 0.0124 0.0080
3 50.6800 51.2065 50.9027 50.7660 50.7282 1.0388 0.4394 0.1696 0.0951
4 61.0500 63.6619 62.6475 62.3328 62.2508 4.2784 2.6167 2.1012 1.9669
5 66.9400 76.6140 76.4790 76.0044 75.8539 14.4517 14.2501 13.5411 13.3163

Table 6 compares the P-P beam results with those of Shahba et al. [3], considering Case I, for the
highest taper ratio. From Table 6 the optimal resolution may be determined to be 4.

Table 7 compares the results given by Leung et al. [20] for a homogeneous F-F beam with a taper
ratio of 0.2. Table 7 suggests that the optimal resolution for the F-F beam is 5.

From Table 7, it is apparent that there are relatively high deviations from Leung et al. [20] for the
fourth and fifth frequencies. Shahba et al. [3] and Huang et al. [7] reported similar deviations from
Leung et al. [20] for the fourth and fifth frequencies when the taper ratios were considered. This may
be due to the method of Leung et al. [20], as Shahba et al. [3] and Huang et al. [7] are consistent with
each other.

To the best of the authors’ knowledge, solutions for Timoshenko beams with axial FG materials
and variable cross-sections using HWM-C have been provided in the literature only for the C-C beam
by Lepik et al. [37]. Unfortunately, Lepik et al. [37] did not specify the value of J in their study. In
Table 8, we compare the limited data provided by Lepik et al. [37] with our HWM-A for Cases I and
II cross-section variations. In our HWM-A analyses, we employed J as 4 which is a relatively low
resolution. The computational time is a maximum of 15 min. Table 8 shows that the HWM-A results
are closer to those of Shahba et al. [3]. The results presented thus far suggest that HWM-A provides
more stable and accurate results than HWM-C does, even at low resolutions.
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Table 8: First five non-dimensional natural frequencies for the C-C beam (Cases I and II, n = 2)

c = 0.1 c = 0.5 c = 0.7


i [3] [37] HWM-A [3] [37] HWM-A [3] [37] HWM-A

Case I 1 12.4689 12.4577 12.4664 11.1706 11.1699 11.1663 10.1036 10.1212 10.0938
2 26.4153 26.3780 26.3982 24.6797 24.6430 24.6642 22.9773 22.9460 22.9559
3 43.0904 – 43.0326 40.6374 – 40.5859 38.3161 – 38.2642
4 59.6829 – 59.5916 57.5925 – 57.4754 54.9627 – 54.8499

Case II 1 12.4812 12.4697 12.4783 11.3199 11.3140 11.3123 10.4579 10.5004 10.4434
2 26.4376 26.3922 26.4198 24.8744 24.8243 24.8511 23.3976 23.4245 23.3911
3 43.1098 – 43.0506 40.7919 – 40.7262 38.6570 – 38.7132
4 59.7067 – 59.6133 57.7257 – 57.5864 55.2354 – 55.4816

Our final comparison is with experimental data provided by Díaz-De-Anda et al. [34] for the first
ten frequencies in Table 9. Díaz-De-Anda et al. [34] conducted experiments on an F-F beam with a
homogeneous, uniform cross-section and a length of 0.5 m. The rectangular beam has dimensions of
0.0252 m in height and 0.0504 m in width. The beam material is aluminum with elastic constants of G
= 26.92 GPa, E = 67.42 GPa, and ρ = 2699.04 kg/m3. Table 9 shows HWM-A estimates frequencies
with less than 6% deviation.

Table 9: First ten experimental and numerical natural frequencies of the uniform and homogenous
F-F beam

Frequency no. [34] (kHz) HWM-A (kHz) Deviation from [34] (%)

1 1.0211 1.0001 2.0566
2 2.6594 2.6480 0.4287
3 4.8462 4.9083 1.2812
4 7.3878 7.5859 2.6817
5 10.1630 10.5299 3.6101
6 13.0820 13.6320 4.2042
7 16.0810 16.8227 4.6120
8 19.1335 20.0599 4.8420
9 22.1699 23.3197 5.1862
10 25.1638 26.5882 5.6607

Table 10 lists the first 15 frequencies for the C-P and F-F beams, for which detailed results have not
been presented in the literature. In the table, the material non-homogeneity parameter is n = 2. Table 10
shows that the difference between the C-P beam and the F-F beam frequencies is very noticeable up
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to the fourth frequency. However, the frequencies of the C-P and F-F beams are closer, starting from
the fourth frequency to the 15th. With increasing taper ratios, the higher frequencies of the C-P and
F-F beams become closer to each other. This trend can be interpreted as the high-order frequencies
are being influenced by the mass—stiffness distribution along the beam axis rather than the support
condition’s effect. The effect of support conditions is more noticeable at lower frequencies.

Table 10: First fifteen dimensionless natural frequencies of the axially FG material C-P and F-F beam
for various taper ratios (Case I, n = 2)


i c = 0 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8 c = 0.9

C-P

1 10.9964 10.8012 10.5822 10.3353 10.0551 9.7338 9.3604 8.9170 8.3705 7.6405
2 26.0222 25.6227 25.1677 24.6469 24.0460 23.3447 22.5125 21.5000 20.2160 18.4430
3 43.1965 42.6674 42.0558 41.3438 40.5062 39.5066 38.2901 36.7662 34.7662 31.8842
4 56.3164 58.8824 59.2303 58.6985 57.8549 56.7513 55.3358 53.4855 50.9522 47.1198
5 61.7849 62.8002 66.4477 71.1663 74.9179 74.3477 72.9432 70.9583 68.1016 63.5580
6 73.6122 75.2986 76.2944 76.3285 76.7996 80.6812 84.3268 86.7889 85.3831 80.6244
7 80.1125 80.3514 81.7727 85.0543 90.3751 92.9988 91.7425 90.7574 92.4073 94.6491
8 95.2704 95.5331 95.3532 94.8568 94.1279 97.9649 105.8898 107.1004 104.2675 99.6061
9 99.8055 101.0384 103.0539 105.8854 109.7266 111.3480 110.5784 115.0975 120.7066 116.5206
10 114.8810 114.4861 113.9819 113.3520 112.6368 115.7808 124.2037 125.5652 123.7654 128.7987
11 124.0349 125.6341 127.5851 129.8237 130.4467 129.6172 129.0225 137.8627 140.5140 135.0837
12 133.2043 132.7968 132.3334 131.9911 133.8761 138.2347 143.9649 143.8232 149.1923 152.6739
13 150.1412 150.3110 150.0138 149.4862 148.7727 147.8929 147.9408 158.7598 158.9928 159.7353
14 152.0448 152.9196 154.4953 156.6254 159.3984 162.7985 163.7761 162.0875 174.2421 171.1580
15 169.0249 168.6553 168.2072 167.6615 167.0175 166.5841 170.1403 180.2620 177.6932 188.1509

F-F

1 17.0716 16.5503 16.0003 15.4200 14.8070 14.1654 13.4963 12.8102 12.1401 11.6060
2 33.8148 33.3016 32.6883 31.9684 31.1371 30.1654 29.0339 27.7056 26.1286 24.2608
3 51.0197 50.6121 50.0435 49.3213 48.4682 47.3778 46.0318 44.3416 42.1534 39.1777
4 57.6850 59.6283 61.3218 62.4246 62.9118 62.6676 61.8512 60.4394 58.2555 54.8111
5 71.5801 72.7312 74.1678 74.7179 75.1535 75.1775 74.8459 74.0165 72.4207 69.3972
6 73.6041 74.0248 74.8526 77.4651 81.1189 84.5759 86.5536 86.6268 85.2351 82.2356
7 90.5628 91.7523 93.2736 94.1475 94.7219 95.4412 97.1416 99.0931 99.2964 96.2995
8 94.6273 94.5008 94.4362 95.6054 98.6030 102.0282 105.0827 106.6605 107.9827 108.8937
9 112.2955 113.5096 114.1515 113.9776 114.8797 115.8903 119.1848 121.8414 120.5304 117.5356
10 114.6882 114.4199 114.9922 116.7473 119.1045 121.1738 122.8854 126.9020 133.0631 132.5338
11 133.7703 133.6223 133.4890 133.4811 135.2645 136.5553 140.1632 142.0040 140.9890 143.3065
12 136.6780 137.6167 138.7024 139.8665 141.4077 142.3655 142.7611 148.0316 155.3155 152.8391
13 152.7509 152.7397 152.8485 153.2213 156.1754 157.8638 160.8963 162.0244 163.6787 168.7078
14 161.8345 162.2689 162.6432 162.8865 163.9899 164.1129 164.3775 169.2516 175.1003 175.4095
15 172.5452 172.9410 173.6007 174.6636 178.4645 180.4309 182.5774 183.1778 188.0462 189.5659
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Fig. 2 shows the variation in the natural frequencies of Timoshenko beams with respect to the
taper ratio considering Case II for five different support conditions. From Fig. 2, a general evaluation
may be given: for all beams, the first four frequencies decrease with increasing taper ratio except for the
C-F beam. While the first two frequencies increase with increasing taper ratio for the C-F beam, the
third and fourth frequencies exhibit a similar trend with the general evaluation. The same conclusion
was reported by Shahba et al. [3]. Moreover, an increase in the fourth frequency of the P-P beam for c
= 0.2 is also observed, as reported by Shahba et al. [3]. The variations in the first four frequencies with
respect to the taper ratio are nearly linear for all support cases of the Timoshenko beams. Starting from
the fifth frequency, the higher-order frequencies do not exhibit a systematic trend: highly oscillating
frequencies have been observed at particularly higher taper ratios for higher-order frequencies. The
F-F beam has the most ordered frequency variation with the taper ratio.

The effect of the taper ratio on the mode shapes is another focus of this study. To illustrate this
effect, Fig. 3 presents the variation of the first mode shapes vs. the taper ratio. Fig. 3 summarizes
the analyses of Case I with a material gradation coefficient of n = 2. To avoid clutter, mode shapes
corresponding to critical taper ratio changes are displayed for selected beam support cases, while in
some cases, more mode shapes are provided to describe the trend clearly. A general observation from
Fig. 3 is that, except for the F-F beam case, the curvature centre of the axis of the beam changes
direction after c = 0.5 in other support conditions, while in the F-F case, this change begins at c =
0.3. A significant change is observed in the mode shapes of all beam types as the taper ratio increases.
The stiffness, which decreases towards the right end of the beam due to the taper ratio and material
gradation, shifts the largest displacement towards the beam’s right end. Two noteworthy cases are
highlighted in Fig. 3a–e: (i) Beam behaviour with decreasing stiffness towards the right end resembles
the mode shape of a cantilever beam. (ii) As shown in Fig. 3e, the decreasing stiffness creates an ideal
cantilever mode shape in the F-F beam with high taper ratio, almost as if pseudo support were present
at the left end.

Figure 3: (Continued)
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Figure 3: Variation of the first mode shapes of Timoshenko beams for the different taper ratios (Case
I, n = 2): (a) C-F beam, (b) P-P beam, (c) C-P beam, (d) C-C beam and (e) F-F beam

For an interpretation of the relation between natural frequencies and beam taper, Fig. 4 is
provided. Fig. 4 illustrates the variation of the first 24 frequencies of an F-F beam along the taper
ratio for Case I (homogeneous wedge beam) and Case II (homogeneous cone beam). As reported by
Shahba et al. [3] and Huang et al. [7], the impact of material gradation on frequencies is minimal;
therefore, a homogeneous material beam was analysed. In Fig. 4, the horizontal bars and the numbers
next to the bars represent the frequencies and the frequency indices from lowest to highest order,
respectively. The beam material is aluminum, with material properties and other analysis parameters
as specified at the beginning of Section 3. The uniform case is represented by c = 0 in Fig. 4 as a
benchmark case. It should be noted that in some taper ratio scenarios, frequencies above 300 have
been excluded from the figure.
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In both cases shown in Fig. 4, it is noteworthy that beyond a certain frequency, the frequencies
appear in closely spaced pairs. This phenomenon is especially evident just after the first four modes in
the uniform and low taper ratios. As the taper ratio increases beyond c = 0.3, the frequency overlaps
shift to higher-order modes and disappear entirely at c = 0.9. The paired frequencies can be interpreted
as modes where the critical frequency is reached, and shear deformations become significant. In
contrast, frequencies that are far apart and do not overlap can be associated with flexural deformations
(For further readings on critical frequency and paired frequencies, please refer to references [32–36]).
It is worth interpreting that at the ratio c = 0.9, why there is no frequency overlap within the first 24
frequencies. Examining the trend across other taper ratios, it is likely that this overlap may appear in
higher-order modes beyond the 24th one. The taper ratio increases, the beam becomes more slender,
and the beam behaviour becomes increasingly dominated by flexural deformations. That’s why the
overlapping frequencies shift towards the higher-order modes.

Figure 4: (Continued)
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Figure 4: Variation of the first 24 dimensionless frequencies of homogeneous F-F beam vs. taper ratio:
(a) Case I (tapered beam), (b) Case II (cone beam)

4 Conclusions

In this work, the free vibration of variable cross-section Timoshenko beams with FG material
was investigated using Haar wavelets. The method was applied using two different approaches called
HWM-C and HWM-A. In both approaches, coupled governing differential equations are reduced to
a single differential equation. The equation coefficients are then arranged for the solution function.
With discretization, the equations that become a system of linear equations are solved, and the
frequencies are determined. The most important difference between the methods is that in the HWM-
C, the resultant function is directly equal to the beam cross-section rotation, whereas in the HWM-A,
rotation, and deflection are derived from an auxiliary function. It has been shown through many
comparisons that while HWM-C yields results compatible with the literature only under certain
support conditions, HWM-A yields results that are more compatible with the literature under all
conditions at lower resolutions. The Haar wavelet method can be increased with the alternative
function approach. The frequency estimations of some support conditions for which detailed results
are not given in the literature are presented.

Considering a certain material change situation, the variation of the free vibration frequencies
with respect to taper ratios of Timoshenko beams with different supports are presented with graphs
for the first 10 frequencies. In addition, the variations of the first mode shapes with respect to the taper
ratio for all support types are presented to provide further insight into the behaviour of auxiliary FG
beams. Finally, the frequencies of a homogeneous F-F beam varying with taper ratio are also provided
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as a diagram. This diagram shows the relationship between the geometric beam parameters and the
natural vibration frequencies and can be used to distinguish flexural and shear modes.
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