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ABSTRACT  
The construction time and cost of a rock tunnel project are highly dependent on the rock mass quality and encountered 
ground behaviour. In most rock tunnel projects, the knowledge about the ground conditions along the tunnel is limited, 
making it difficult to predict accurately the construction time and cost. The KTH model takes a probabilistic approach to 
address this problem; however, it does not account for the spatial variability of the ground conditions. This paper 
investigates an alternative probabilistic ground model to be used within the KTH model that enables accounting for the 
spatial variability through Markov random field theory. The new ground model employs a parametric approach to describe 
the properties of the Markov field, hence, enabling the simulation of the ground conditions with limited data, but does not 
consider the epistemic uncertainty in the model parameters. This will be the addressed in future research. 
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1. Introduction 
The construction time and cost of a rock tunnel 

project is highly dependent on the rock mass quality and 
encountered ground behaviour, as they affect the 
complexity of the excavation, amount of installed rock 
support, as well as the need for water-sealing measures. 
For most rock tunnel projects, however, the knowledge 
about the ground conditions along the planned tunnel 
route is limited, so the engineer must deal with a 
substantial epistemic uncertainty in the prediction of the 
project time and cost: The amount of rock support to be 
installed in a certain tunnel section will not be known 
until the section has been excavated and the actual ground 
conditions have been revealed. In addition, there are 
aleatory uncertainties related to occurrence of 
undesirable events, like excessive groundwater inflow or 
block fall. There are also aleatory uncertainties related to 
the performance of the contractor: Even if the ground 
conditions were completely known in advance, it would 
not be possible to predict the exact construction time and 
cost. These uncertainties – both epistemic and aleatory – 
are an important contributing factor to the apparent 
challenge of predicting accurately the final construction 
time and cost of tunnel projects (see e.g. Flyvbjerg et al. 
2002, Miranda Sarmento and Renneboog 2017, 
Mohammadi et al. 2023a). 

One way to address uncertainties in time and cost 
estimations is to apply a probabilistic model. Although 
this is not a heavily researched field in rock engineering, 
a few different models have been proposed:  

• The Decision Aids for Tunnelling (DAT) 
(Einstein et al. 1999, Min et al. 2008, and several 
others) consists of a set of probabilistic modules 

that model the ground conditions and activities 
involved in a tunnelling construction project;  

• The model by Špačková et al. (2013) uses a 
dynamic Bayesian network to model the tunnel 
construction process and assess its time and cost; 

• The KTH model separates the tunnel into a 
number of segments and estimates construction 
time and costs through crude Monte Carlo 
simulation of the production efforts per segment 
(Isaksson and Stille 2005, Mohammadi et al. 
2023b). 

The KTH model provides a straightforward and easy-
to-understand framework to assess the uncertainty in 
time and cost estimations. However, its approach to 
model the epistemic uncertainty about the ground 
conditions is rather simplified and mostly based on the 
engineer’s subjective judgement. An attempt toward a 
less subjective approach was presented by Spross and 
Lidmar (2023), who suggested modelling the proportions 
of construction classes along the tunnel as a Dirichlet 
distribution, which fits well into the overall framework 
of the KTH model. While the Dirichlet distribution has 
some attractive features, it ignores the impact of spatial 
variability; moreover, it is based on an underlying 
assumption that the geotechnical investigations provide 
independent observations, which is not entirely realistic.  

In this paper, we therefore investigate an alternative 
approach to model the uncertainty about the ground 
conditions in the KTH model. This approach considers 
spatial variability explicitly, through a Markov chain 
random field model of the ground conditions (Sartore 
2013, Li 2007). Markov random fields have been 
previously proposed for use within the DAT model 
(Einstein et al. 1999) and the model by Guan et al. (2014). 
However, Markov chain random fields require the 



 

specification of the full transition probability matrix, 
which is often infeasible with limited data leading to 
subjective choices. In this work, we apply a continuous-
lag Markov chain random field, which enables its 
specification with limited data.  

In the following, we first provide the basic theory of 
the KTH model, followed by the new approach to model 
and incorporate uncertainty of ground conditions along 
tunnels within the KTH model. The approach is 
illustrated with an illustrative synthetic example. The 
paper closes with a discussion on the advantages and 
limitations of the proposed approach. 

2. KTH model for time and cost estimation 
The KTH model separates construction time into two 

uncertain components: normal construction time, 𝑇𝑇N, and 
exceptional construction time, 𝑇𝑇E. The final predicted 
construction time is the sum of these two components: 
𝑇𝑇 = 𝑇𝑇N + 𝑇𝑇E. Here, 𝑇𝑇N considers the expected variability 
in time of the planned construction activities, while 𝑇𝑇E 
considers delays caused by any disruptive events, which 
can be of both geological and human origin. Noting that 
the KTH model’s cost estimation method is essentially a 
more complex variant of its time estimation method, we 
consider in this paper only time estimation. 

The model calculates 𝑇𝑇N as the sum of the time it 
takes to construct a large number of small segments of 
unit lengths. Their positions along a tunnel of length L 
are denoted l. The construction times of segments are 
introduced as the parameter production effort, denoted 𝑄𝑄𝑙𝑙  
[h/m]. Thus, the normal time can be assessed as 

𝑇𝑇N = �𝑄𝑄𝑙𝑙

𝐿𝐿

𝑙𝑙=1

 (1) 

Conceptually, each 𝑄𝑄𝑙𝑙 , can be considered a function of 
the prevailing ground conditions at that location, such 
that 𝑄𝑄𝑙𝑙 = 𝑓𝑓(𝐗𝐗𝑙𝑙), where 𝐗𝐗𝑙𝑙  collects the impacting 
conditions, for example rock mass quality, groundwater 
flow, and overburden, As the ground conditions vary 
along the tunnel, as does the crew’s performance from 
one day to another, the 𝑄𝑄𝑙𝑙  will also vary accordingly. The 
engineering challenge in applying the KTH model is to 
represent this variation accurately in the determination of 
the 𝑄𝑄𝑙𝑙  along the tunnel. 

Recent research by Mohammadi et al. (2023b) 
improved the KTH model with respect to the variation in 
the crew’s performance in different construction 
activities for a set of predefined construction classes. 
Construction classes refer to a set of predetermined 
design variants for a tunnel excavated using drilling and 
blasting. Each design variant specifies, for example, type, 
spacing and length of rock bolts, as well as type and 
thickness of sprayed concrete, or other support measures 
as relevant. The design variants have been developed in 
the planning phase; the appropriate design variant for a 
particular tunnel segment is then selected based on the 
observed ground conditions after each blasting round. 

It is rather straightforward to estimate the production 
effort for each construction class, 𝑄𝑄𝑘𝑘, where k denotes the 
considered construction classes, say A–D. The 𝑄𝑄𝑘𝑘 only 
considers the aleatory variation in the crew’s 

performance in each work task in that construction class. 
Thus, for each construction class, 

𝑄𝑄𝑘𝑘 = � 𝑞𝑞𝑘𝑘,𝑚𝑚

𝑛𝑛act

𝑚𝑚=1

 (2) 

where 𝑛𝑛act are the number of construction activities, and 
𝑞𝑞𝑘𝑘,𝑚𝑚 denote the assessed required times to perform each 
activity for 1 m of tunnel in the ground conditions of 
construction class k. The 𝑞𝑞𝑘𝑘,𝑚𝑚 are random variables, often 
assigned triangular distributions for convenience, as they 
are easy for tunnel planners to work with. 

To consider the epistemic uncertainty about the 
ground conditions at any segment l, its production effort 
𝑄𝑄𝑙𝑙  is modelled as a mixture distribution of the different 
𝑄𝑄𝑘𝑘, weighted with respect to the assessed probabilities 
(proportions) 𝜋𝜋𝑘𝑘,𝑙𝑙 of being in the respective construction 
classes at that segment: 

𝑄𝑄𝑙𝑙 = �𝜋𝜋𝑘𝑘,𝑙𝑙𝑄𝑄𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 (3) 

where 𝐾𝐾 is the used number of construction classes in the 
project. 

In the original KTH model, the probabilities 𝜋𝜋𝑘𝑘,𝑙𝑙 were 
interpreted as “deterministic” proportions of the 
respective classes along the tunnel, simplifying 𝜋𝜋𝑘𝑘,𝑙𝑙 to be 
identical for every segment, such that all probabilities can 
be collected in one deterministic vector,  𝛑𝛑 = [𝜋𝜋A, … ,𝜋𝜋𝐾𝐾]. 
As a consequence, the corresponding mixture 
distributions 𝑄𝑄𝑙𝑙  were also all identical. In Spross and 
Lidmar’s (2023) approach, the uncertainty in the 
assessment of the proportions was considered by letting 
the construction class proportions 𝛑𝛑 follow a Dirichlet 
distibution. In a Monte Carlo simulation, this implies that 
the NMC simulated construction times 𝑇𝑇N each have 
differently sampled proportions of construction classes, 
but the location of the classes along the tunnel is not 
addressed. 

The improved modelling of 𝜋𝜋𝑘𝑘,𝑙𝑙 is the focus of the 
present paper. Here we discuss an approach to model 
explicitly the spatial variation in 𝜋𝜋𝑘𝑘,𝑙𝑙 along the tunnel. 
The 𝜋𝜋𝑘𝑘,𝑙𝑙 should in this case be interpreted not as a 
proportion, but as the probability of tunnel segment l 
being in construction class k, which gives the following 
matrix for a tunnel of length L and a set of construction 
classes A, … , K: 

𝛑𝛑 = �
𝜋𝜋A,1 ⋯ 𝜋𝜋A,𝐿𝐿
⋮ ⋱ ⋮

𝜋𝜋𝐾𝐾,1 ⋯ 𝜋𝜋𝐾𝐾,𝐿𝐿

� (4) 

Thus, we arrive at different mixture distributions 𝑄𝑄𝑙𝑙  
along the tunnel, instead of them being identical. This 
means for a Monte Carlo simulation of 𝑇𝑇N that, for each 
segment l in the NMC simulated tunnels, one first samples 
the construction class from 𝛑𝛑, then samples the 
corresponding production effort (𝑄𝑄𝑙𝑙). The 𝑄𝑄𝑙𝑙  are then 
summed for each tunnel into 𝑇𝑇N (eq. (1)). 

As the present paper focuses on the modelling of 
normal time 𝑇𝑇N, the exceptional time 𝑇𝑇E is for simplicity 
not discussed further. 



 

3. Modelling of spatial variability and 
uncertainty 

The interpolation and estimation of geological and 
geotechnical conditions, including rock classes, between 
sample data generally entails a high degree of 
uncertainty. Simulation techniques are often employed to 
generate multiple equally probable estimations and 
evaluate the uncertainty. Each estimation, or realisation, 
is considered to have the same likelihood of representing 
the ground truth as all other realisations from the 
simulation. For categorical data like the construction 
classes A–D, such techniques include, but are not limited 
to, sequential indicator simulation (Journel 1983), 
Multiple-Point Statistics (Mariethoz and Caers 2014), 
Plurigaussian Simulation (Armstrong et al. 2011) and 
Markov Chain random fields (Carle and Fogg 1997).  

In this study, we employ a continuous-lag 1-D 
Markov chain random field to model the constructions 
classes that enables the Monte Carlo simulation of the 
construction classes along the tunnel (Sartore 2013, Li 
2007). This method was selected based on its advantages 
for handling complex probability distributions and its 
ability to generate reasonable estimates from limited 
observations. 

In this approach, the spatial variability of the 
categorical dataset is assumed to be characterized by a 
second-order stationary model defined through the 
transition probability matrix: 

𝐓𝐓(ℎ) = �
𝑡𝑡11(ℎ) ⋯ 𝑡𝑡1𝐾𝐾(ℎ)
⋮ ⋱ ⋮

𝑡𝑡𝐾𝐾1(ℎ) ⋯ 𝑡𝑡𝐾𝐾𝐾𝐾(ℎ)
� (5) 

where ℎ is the lag separation distance, and the entries are 
the conditional probabilities defined as  

𝑡𝑡𝑗𝑗𝑗𝑗(ℎ) = Pr �
(category 𝑘𝑘 is at 𝑙𝑙 + ℎ) ∣

(category 𝑗𝑗 is at 𝑙𝑙) � (6) 

where 𝑗𝑗,𝑘𝑘 = A,…., 𝐾𝐾, denote the different possible 
categories and l is the location along the tunnel. 

In spatial applications, it is convenient to employ 
parametric transiograms expressed as continuous-lag 
functions, such that the transition probability can be 
computed for any lag distance. This function is assumed 
to take an exponential form such that 

𝐓𝐓(ℎ) = exp (𝐑𝐑ℎ) (7) 

where 𝐑𝐑 is the transition rate matrix, 

𝐑𝐑 = �
𝑟𝑟𝐴𝐴𝐴𝐴 ⋯ 𝑟𝑟𝐴𝐴𝐴𝐴
⋮ ⋱ ⋮
𝑟𝑟𝐾𝐾𝐾𝐾 ⋯ 𝑟𝑟𝐾𝐾𝐾𝐾

� (8) 

Entries 𝑟𝑟𝑗𝑗𝑗𝑗 are the autotransition rates denoting 
conditional rates of change per unit length from category 
𝑗𝑗 to category 𝑘𝑘. The autotransition rates are based on 
mean lengths 𝐿𝐿�𝑗𝑗 and transition frequencies of embedded 
occurrences 𝑓𝑓𝑘𝑘𝑘𝑘∗  for the respective category. The diagonal 
entries are estimated as 𝑟𝑟𝑗𝑗𝑗𝑗 = −1/𝐿𝐿�𝑗𝑗 and the off-diagonal 
entries as 𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑖𝑖𝑗𝑗∗/𝐿𝐿�𝑖𝑖. 

There are several ways to compute 𝐿𝐿�𝑗𝑗, including 
taking the arithmetic mean or median of the observed 
lengths of each category. A more robust approach when 

stratum lengths are not well-understood is to use the 
maximum likelihood approach where lengths are 
assumed to be independent realizations from a log-
normal distribution (Sartore et al. 2016). Calculation of 
𝑓𝑓𝑘𝑘𝑘𝑘∗  is performed using a ‘maximum entropy’ method that 
involves the following iterative proportion filling 
algorithm (Goodman 1968): 

1. Initialise: 𝑓𝑓𝑗𝑗 with 𝑝𝑝𝑗𝑗/𝐿𝐿‾𝑗𝑗 
2. Compute: 𝑓𝑓𝑗𝑗𝑗𝑗∗ = 𝑓𝑓𝑗𝑗𝑓𝑓𝑘𝑘 
3. Compute:  

𝑓𝑓𝑗𝑗 = �𝑝𝑝𝑗𝑗 ∑  𝐾𝐾
𝑖𝑖=1 ∑  𝐾𝐾

𝑘𝑘≠𝑗𝑗  𝑓𝑓𝑖𝑖𝑖𝑖∗ � �𝐿𝐿‾𝑗𝑗 ∑  𝐾𝐾
𝑘𝑘≠𝑗𝑗  𝑓𝑓𝑗𝑗𝑗𝑗∗ ��   

4. Repeat the second and the third step until 
convergence. 

where 𝑝𝑝𝑗𝑗 is the assumed proportion of class 𝑗𝑗. 
The prediction or simulation of categories at 

unsampled locations is performed using Markov chain 
random field (MCRF) theory (Li 2007). In this approach, 
a random path is taken for each realization of the 
sequential simulation. At the first randomly picked 
location, the nearest neighbours are used to estimate the 
conditional probability distribution (CPD) from which a 
specific category is drawn. This newly simulated location 
is added to the sample data set for conditioning in 
subsequent simulations of other unknown locations. This 
process is repeated until all unknown locations are visited 
and assigned a simulated value. 

4. Simulation of encounter probabilities of 
construction classes 

To illustrate the application of incorporating spatial 
variability modelling into probabilistic construction time 
estimation, a synthetic dataset for a 1000 m long tunnel 
constructed in a rock of variable quality is presented. 
Four construction classes are deemed possible in the 
geological setting. Classes A and B represent good 
quality hard crystalline rock mass with few (A) to 
moderate (B) number of rock joints. Classes C and D 
represent weaker zones and faults, where Class D is 
particularly challenging to tunnel excavation due to its 
severely crushed, almost soil-like material.  

In this synthetic dataset, 26 observations have been 
made within the tunnel horizon. We assume no prior 
information of the geological deposition history. The 
positions of the observations were, however, decided by 
an engineering geologist based on some geological 
understanding of the area, slightly favouring areas 
deemed more likely to be challenging (classes C and D). 
Thus, the sampling cannot be considered independent. 
The observed classes are presented in Table 1. 

Fig. 1 presents the transition rate matrix (Eq. (8)). It 
can be observed that the model estimates a high transition 
rate for Class D relative to other classes, which 
corresponds to higher frequency transitions to other 
states over a short distance. Class A has the lowest 
transition rates, indicative of continuous sections of this 
class over longer distances. 

For the random field modelling, N = 1000 different 
samples using unique random paths were drawn. For 
each location, the two nearest neighbours are used to 
estimate the conditional probability distribution (CPD) 
from which a specific category is drawn. From the 1000 



 

Table 1. Position of observed construction classes along 
1000 m tunnel. 

Position 
(m) 

Observed 
class 

 Position 
(m) 

Observed 
class 

20 A  536 D 
52 A  542 D 
75 B  553 C 
130 A  671 A 
144 B  732 A 
215 B  754 B 
247 C  798 A 
262 C  850 A 
345 A  891 B 
372 A  910 B 
405 C  924 C 
479 A  954 A 
515 B  989 A  

 
Figure 1. Transition rate matrix for the modelled dataset. 

 

 
Figure 2. Summary of the Markov random field simulation results: (a) observed categories, (b) an example random field realization, 
(c) the predicted (most probable) construction class, (d) prediction uncertainty as quantified by the standardized Shannon entropy, 
and (e) the encounter probability of each construction class versus position.  

 



 

simulations, statistics, including the probability of each 
class at a specific location and the most probable class, 
are estimated. The classification uncertainty is 
represented by the standardized Shannon entropy 
(Shannon 1948). The results of the Markov chain random 
field modelling are summarized by Fig. 2. Specifically, 
Fig. 2(e) shows the computed encounter probabilities for 
the construction classes along the tunnel (Eq. (4)), and 
Fig. 2(b) shows the outcome of one realization of 
construction classes along the tunnel. 

5. Computation of estimated construction 
time 

Having access to 1000 x 1000 realizations of 
construction classes in a matrix (equivalent to 1000 
tunnels of length 1000 m), the total normal construction 
time 𝑇𝑇N can be estimated. For this purpose, we apply the 
triangular distributions for production efforts 𝑄𝑄𝑘𝑘 that 
were used by Spross and Lidmar (2023) in their 
calculation example (Table 2).  

The 𝑇𝑇N is assessed by matching the relevant 𝑄𝑄𝑘𝑘 with 
the sampled construction classes for every position along 
the 1000 simulated tunnels (equivalent to sampling 𝑄𝑄𝑙𝑙  for 
every l using Eq. (3)), and then summing the 
corresponding samples of 𝑄𝑄𝑙𝑙  along the tunnel lengths 
(Eq. (1)). The result is shown as a histogram in Fig. 3 and 
as accumulated time in Fig. 4. 

6. Concluding remarks 
In this paper we have investigated a method to model 

the spatial variability in the location of construction 
classes along a rock tunnel, based on a dataset of 
observed construction classes at a limited number of 
locations. The purpose is to improve the KTH model for 
probabilistic time and cost estimations of tunnels. The 
investigated method employs Markov Chain random 
field theory to model and ground conditions along the 
tunnel and to sample from the corresponding 
construction classes at each 1-m tunnel segment. This 
allows straightforward sampling of the production effort 
𝑄𝑄𝑙𝑙 , which is a key parameter within the existing KTH 
model. 

Although the presented method addresses spatial 
variability explicitly, which is a big step forward in 
comparison to the deterministic method of assessing 
proportions used in the current KTH model, it does not 
address the epistemic uncertainty in the assessment of its 
model parameters. For rock tunnels, this is a limitation, 
as the epistemic uncertainty typically is substantial due to 
limited amount of data from geotechnical investigations 
in the planning phase. Moreover, we see a need to be able  
 

Table 2. Assumed triangular distributions, Tri(a, b, c), for 
production efforts in the four construction classes.  

Construction 
class 

a 
[h/m] 

b 
[h/m] 

c 
[h/m] 

A 2.5 3.0 5.0 
B 3.0 3.5 6.0 
C 4.0 5.0 8.0 
D 5.5 8.0 12.5 

Used with permission of ASCE, from Spross and Lidmar (2023); 
permission conveyed through Copyright Clearance Center, Inc. 

 
 
Figure 3. Estimated normal construction time for the 
illustrative example (1000 simulations). 

 

 
 
Figure 4. Accumulated time for 100 simulated tunnels. 
Segments of poorer ground (class C and D) stand out as steeper 
slopes, e.g. at position 540 m. 

 
to incorporate subjective information from engineering 
geologists’ expert judgement. To this end, we plan to 
continue our research, aiming at developing a Bayesian 
approach that is able to quantify the epistemic uncertainty 
in the model parameters through combining data from 
geotechnical investigations with subjective information 
from expert judgement. This would make the KTH model 
into a straightforward time and cost estimation tool that 
allows the user – a client or a contractor – to quantify 
their risks related to project delay and cost overrun. 
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