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INTRODUCTION 

Vibration is a prevalent issue in structural engineering, encompassing a wide array of 

problems that, if left unaddressed, can lead to severe consequences. These consequences can 

vary from causing discomfort for pedestrians traversing a perceptibly moving bridge to 

inducing premature fatigue in aeronautical structural components, ultimately resulting in 

catastrophic failures and loss of human life. Various sources can induce vibration in structural 

components, such as misalignment of rotating systems, seismic excitations, road loads on 

vehicles, and aerodynamic loads. 

To address these phenomena, in addition to appropriate structural design, various 

mechanisms, which can operate actively or passively, are used to attenuate oscillatory effects 

and minimize their impact. Active systems use electronic controllers to generate a response via 

actuators, reducing the signal transmissibility level based on specific oscillatory signals. Passive 

systems, on the other hand, mainly rely on viscoelastic polymeric materials, utilizing the 

reduction of the natural frequency associated with their use and a characteristic phenomenon of 

these materials for energy dissipation, hysteresis [1]. 

Hysteresis is a phenomenon where mechanical deformation energy is dissipated in the form 

of heat. In other words, part of the energy that would be transmitted to the structure is dissipated, 

thereby increasing the system's damping.  

Active systems are extremely efficient in their purpose, as they can isolate vibrations across 

a wide frequency spectrum and can be applied to structures of different magnitudes, from small 

and lightweight systems using piezoelectric actuators to large structures using hydraulic 

actuators, such as in active stabilization systems for reducing vibrations caused by seismic 

activities in buildings. However, they tend to be quite costly and imply an additional layer of 

systems, which, if not properly designed, can reduce the structure's reliability [2]. 
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As mentioned earlier, passive systems have low costs and perform well when correctly sized; 

however, they are not free from side effects. Cushions, for example, significantly increase the 

structure's flexibility, which can cause considerable deflection when subjected to static loads. 

Moreover, the significant increase in damping causes the opposite of the desired effect at higher 

frequencies, as it increases the signal transmissibility over the system above a certain frequency, 

as shown in Figure 1. 

An efficient and underexplored phenomenon in practical applications is elastic band gaps. 

These are regions in the frequency vibration spectrum where the propagation of elastic waves 

in periodic media is attenuated. This can be done by using, for example, local resonators, which 

will be the focus of exploration in the present work.  

 

Figure 1 – Transmissibility for diferent values of damping [3]. 

Elastic Waves 

The forces acting on a given body can be basically divided into two types: static forces and 

dynamic forces. In theory, all forces have a temporal variation in their application; however, 

when the rate of application is sufficiently low, such a load can be considered as static, a 

hypothesis widely used in structural engineering. Thus, dynamic load is characterized as a force 

applied in a very short period of time or at high frequencies, in which the rate of variation of its 

magnitude is considerably high [4]. 

As shown in Figure 2, with each increment of force during the application of a static load, 

represented by the forces F1 and F2, the entire system can be considered in static equilibrium, 

meaning that the internal forces are transmitted throughout the body immediately. This is 

evidenced in Figures (b) and (c), where, starting from an initial state (a), with the application 

of forces F1 and F2, there is no variation in the transverse deformation between sections A and 

B. 
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For dynamic loads, however, there is no instant transmission of internal deformations within 

the material from the point of force application. As shown in Figure 2, from the application of 

a dynamic force, represented by the arrow to the left of the figure, the propagation of 

deformations varies along the same component, which is evidenced by the difference in 

dimensions, and consequently, deformations, between sections A and B. 

The propagation of waves within a material is then defined as the transmission of movement 

within it from an external excitation. Such movement will generate internal stresses and 

deformations in the material, and these parameters are considered to define a wave as elastic. 

 

Figure 2 – Body under static (left) and dynamic (right) load [4]. 

Elastic waves are deformation waves within a solid that generate only stresses within the 

material's elastic regime; that is, after the passage of the wave, the body returns to its original 

state without permanent deformations. 

Elastic Band Gap 

The elastic band gaps are frequency ranges in which elastic waves has its propagation in a 

solid medium reduced or completelly forbiden [2]. This phenomenon is mechanically 

equivalent to the forbidden bands of electromagnetic waves and can be observed in photonic 

crystals, which are used, for example, in electrical insulators and extremely low-threshold lasers 

[5].  

Where there is a variation in the wave propagation velocity, part of the incident wave will 

be reflected and will carry part of its energy with it. The propagation velocity of elastic waves 

in solid media depends basically on two factors, the material density and its stiffness. Therefore, 

whether through metamaterials, which are formed by two or more other materials, or cellular 

structures, the elastic band gaps can be formed through the "Bragg Scattering" phenomenon 

[2]. 

Bragg scattering occurs when the reflected elastic waves, due to local variations in density 

and/or stiffness, interact constructively with each other, causing all the energy present in the 

incident waves, within a certain frequency range, to be reflected and unable to propagate in the 

medium in question. The repetitive structures that use this phenomenon to produce forbidden 
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bands are called phononic structures [2]. In practice, for a finite periodic structure, waves are 

not completely prevented from passing through, which occurs only in ideal infinite periodic 

structures [6]. 

A simple and didactic example of this phenomenon can be observed in the phononic structure 

shown in Figure 3, developed and studied by Policarpo [7]. It is a bar composed of a variation 

of steel and cork along its main axis, which, from harmonic excitations in the same direction, 

produces the frequency response function shown in Figure 4. As shown, such an arrangement 

produces forbidden bands starting from 2000 Hz. 

 

 

Figure 3 – Experimental setup [7]. 

 

Figure 4 – Frequency response spectrum [7]. 

As in the previous example, most practical applications of this phenomenon revolve 

around vibration attenuation mechanisms. Other practical cases involving the same 

phenomenon, however, using bi- and three-dimensional structures can be observed in Liu et 

al. [5] and Wang et al. [8]. 

The length of the path traveled by the waves between constructive interferences, when 

originating from the same point, along a cellular structure, must be a multiple of the 

wavelength in which the forbidden passage phenomenon is desired. The path length 

mentioned above, in a cellular structure, is given by the length of a unit cell, meaning that 

such a cell must have a length equal to or multiple times greater than the desired wavelength. 
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This means that, to attenuate vibrations at low frequencies, usually relevant in structural 

engineering, very large cellular structures are required, which makes it impractical to use this 

phenomenon in small and medium-sized structures [2]. For example, to filter longitudinal 

elastic waves traveling through a steel cellular structure, with a frequency of 500 Hz, it is 

necessary for the structure to have cells with a characteristic length of approximately 1.85m, 

something completely unrealistic for most real-world applications. 

Given these limitations, Liu et al. [9] was the first to propose the use of localized 

resonators, which allowed even cellular structures that do not have the necessary 

characteristic length for the desired frequency range to act as vibration attenuators at low 

frequencies. Since then, there has been significant advancement in the field of phononic 

structures, with periodic structures that utilize the local resonator mechanism being called 

elastic metamaterials 

OBJECTIVE  

The present study aims to evaluate and demonstrate the influence of localized resonators in 

cellular structures on the reduction and attenuation of elastic wave propagation. 

METHODOLOGY  

The analysis of virtual experiments were conducted using the finite element method in a 

commercial software, SIMCENTER®. It utilizes the NASTRAN libraries for solving static and 

dynamic problems, which are widely used in academia and various branches of the industry, 

especially in aerospace. 

Arrangement of Numerical Simulations 

As shown in Figure 5, a two-dimensional cantilever beam composed of unit cells was 

selected in a 4x10 arrangement, where resonators were inserted into some of the tested 

structures. 

 

Figure 5 - Two dimentional beam composed of cellular structures. 
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As proposed by Lee [2], the resonator used consists of a small beam with a mass at the end. 

This arrangement is highly valuable because, in addition to being straightforward, it allows the 

natural frequency of the resonator, and consequently its effective frequency range, to be 

customized according to the necessity and through simple analytical formulation. Masses were 

added to the ends of all resonators to configure their natural frequency according to the natural 

frequencies defined for the study. For this purpose, CONM2 type elements were used. 

 

Figure 6 – Bidimentional beam with the local resonators in the cells. 

The dimensions, in mm, of the analyzed cells are presented below:  

 

Figure 7 – Dimensions of the cell and ressonators. 

After the formation of the cells, the thicknesses of the four ends of the resulting beam were 

increased by 2 mm so that all thicknesses of the geometry were the same. 
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Both the baseline cellular structure and the resonators added later were considered to be of 

the same material, in this case, steel. Its properties are presented in Figure 18. 

 

Figure 8 – Mechanical properties of steel.  

The structure was fixed at one of its ends, where it was also vertically excited in the frequency 

response analysis. 

 

Figure 9 – Complete beam with resonators. 

FEA Analysis Parameters 

In the FEA modeling, the following parameters and configurations were used: 

1. Second-order two-dimensional elements of type CQUAD8 

2. At least 2 elements along the thicknesses for the correct physical representation of 

deformations along the structure. 

3. In the frequency response analysis (FRF), a vertical displacement of 1 mm at the 

fixing point was input into the system, varying the frequency range from 1 Hz to 450 

Hz, depending on the analysis performed. 
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Figure 10 – Mesh used for the FEA analysis. 

The output was measured at the central part of the beam, at the end opposite to the fixed 

end, as shown below: 

 

Figure 11 – Point on the structure where the response was analysed. 

The Experiments 

To evaluate the effects of the resonators on the system's transmissibility, one case containing 

only the cellular structure was analyzed, and three cases where resonators with natural 

frequencies of 120 Hz, 125 Hz, and 130 Hz were added. Resonators with different natural 

frequencies were evaluated to understand the influence of frequency variation on the system's 

damping. 

RESULTS 

As shown in the graphs below, the insertion of localized resonators inside the cells 

significantly reduced the transmissibility in the spectrum region near the natural frequency 

defined for each resonator. The X-axis represents the excitation frequencies, and the vertical 

axis represents the transmissibility, as the displacement input in the system is unitary along the 

analyzed frequency spectrum. 
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Figure 12 – Structure FRF without resonators. 

 

Figure 13 – Structure FRF with 120 Hz resonators. 

 

Figure 14 – Structure FRF with 125 Hz resonators. 
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Figure 15 - Structure FRF with 130 Hz resonators. 

In Figure 16, the previous graphs are unified into one, showing that there is no significant 

variation in the attenuation level depending on the natural frequency of the resonator used. 

 

Figure 16 – Comparison of FRF for diferent resonators. 

Due to the insertion of masses at the ends of the resonators, in addition to the desired 

damping, changes in the natural frequencies of the complete system are observed. This change 

occurred in the natural frequency of the original structure, which is reduced to 205 Hz in one 

of the cases. However, in the same case, a natural frequency of 94 Hz is added to the structure. 

In all cases where resonators were tested, the way the structure deforms did not vary, only the 

frequencies where the response peaks occurred. Therefore, below are the structural responses 

of the geometry at the response peaks and valleys, along with the related natural modes. 
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Figure 17 – FRF of the structure with 130 Hz resonators. 

Respectively, natural mode and response shape associated with point 1: 

 

Figure 18 – Natural mode (up) and response shape (down) associated with point 1 in figure 17. 
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Respectively, natural mode and response shape associated with point 2: 

 

 

Figure 19 - Natural mode (up) and response shape (down) associated with point 2 in figure 17. 

The mode shown above is the mode closest to 130 Hz; however, 157 other modes around 

130 Hz were calculated with small frequency differences between them. Defining the natural 

frequency of the resonator at 130 Hz assumes that it is perfectly clamped at its base, which is 

not the case in reality. Along the structure, the stiffness of the cells itself can influence the 

stiffness of the resonators, explaining the large number of natural frequencies so close to each 

other. 
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Figure 20 - Natural mode (up) and response shape (down) associated with point 3 in figure 17. 

CONCLUSION 

From the numerical simulations, it was possible to show that, for a 2D structure, it is 

possible to control the dynamic response of a cellular structure at the desired frequency using 

local resonators. For this purpose, no modifications were made to the cellular structure itself, 

only to the resonators, by inserting them and modifying the masses at their ends to regulate 

the frequency to be damped. 

As shown in Figures 12, 13, 14, and 15, the insertion of the resonators brought, in addition 

to the desired damping, an amplification of the response at frequencies prior to the attenuated 

one. For structures that are excited over a wide spectrum of frequencies, such a phenomenon 

could render the use of the resonators unfeasible as presented. However, for structures 

operating at specific frequencies, such as rotating machine supports, for example, this concept 

could be explored in practical applications. 

As shown in Figures 18, 19, and 20, the resonators, in different positions, respond 

differently from each other at the same excitation frequency, even though they all have the 

same stiffness and mass properties. This opens up possibilities for methodologies to be 
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explored in subsequent studies for the distribution of both resonators and their masses along 

the structure to achieve an optimal result in terms of elastic band gaps with a wider 

bandwidth. 
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