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Universidad Politécnica de Madrid (UPM)
Av. de la Memoria, 4, 28040 Madrid, Spain

e-mail: j.capel@upm.es

2 ETSIAE
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Summary. This study presents a novel framework that leverages deep neural networks to opti-
mize the parameters of Reynolds-Averaged Navier-Stokes (RANS) transition models, achieving
precise alignment with experimental data. Our approach, validated using the 1-Equation γ
transition model and the comprehensive ERCOFTAC T3 flat plate experiment series, systemat-
ically identifies the optimal set of parameters to minimize errors in predicting the skin friction
coefficient evolution and the transition location along the flat plate for the T3A experiment. An
extensive database is created through systematic parameter variation, which is then used to train
a fully connected neural network to accurately predict skin friction distributions. The trained
network then addresses the inverse problem, pinpointing the parameter set that best matches
experimental measurements. This framework enhances the predictive accuracy of state-of-the-
art RANS transition models and lays the foundation for an automated tool that streamlines
parameter calibration, reducing manual effort and enabling more accurate simulations of com-
plex transitional phenomena. The proposed approach offers significant potential for improving
the reliability of simulations in aerospace and other engineering applications where transition
prediction is crucial.

1 INTRODUCTION

The transition from laminar to turbulent flow has a significant impact on the aerospace
industry, affecting various aspects of aircraft and spacecraft performance. Advances in natural
laminar flow (NLF) wing technology have demonstrated that maintaining a laminar boundary
layer can be highly beneficial, as laminar skin friction can be up to 90% lower than turbulent
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skin friction at the same Reynolds number [13]. Various studies suggest that applying laminar
flow control to large commercial aircraft can reduce aerodynamic drag by approximately 10% [6].

NLF wings are crucial not only for fixed-wing aircraft but also for rotorcraft and hypersonic
systems. In rotorcraft, boundary layer transition influences hover capabilities and the overall
performance envelope of new designs [12]. Small-scale Unmanned Aerial Systems (UASs) are
expected to operate primarily in transitional flow regimes, where accurate prediction and control
of transition can improve their efficiency and noise characteristics [1]. Additionally, the state of
the boundary layer directly affects trailing-edge noise, a critical concern for both fixed-wing and
rotary-wing aircraft.

In hypersonic systems, the transition from laminar to turbulent flow significantly affects
surface heating, a critical factor in vehicle design due to its impact on thermal protection sys-
tems [24]. Furthermore, transitional shock-boundary layer interactions (SBLI) can introduce
large unsteady loads, impacting vehicle stability and control effectiveness.

In the field of computational fluid dynamics (CFD), accurately capturing transition phe-
nomena often requires scale-resolving simulations such as Large Eddy Simulations (LES) or
Direct Numerical Simulations (DNS). However, these methods are computationally prohibitive,
particularly at high Reynolds numbers. As a more practical alternative, Reynolds-Averaged
Navier-Stokes (RANS) transition models have been developed. These models do not aim to
replicate the detailed physics of transition but rather to provide adequate and accurate predic-
tions at a significantly reduced computational cost. RANS models achieve this by incorporating
empirical correlations as additional equations in the turbulence closure problem. These correla-
tions involve numerous adjustable parameters or constants, which are typically calibrated based
on a limited set of simple test cases. Consequently, the accuracy of these models often degrades
when applied to more complex flow scenarios. The most widely used RANS transition models
include:

• The γ − Reθ transition model developed by Langtry [16]. This model is coupled with
the widely extended k − ω SST turbulence model [15], and uses two additional transport
equations for intermittency (γ) and the transition onset Reynolds number (Reθt).

• The intermittency-based transition models developed by Menter [18][19]. These models are
coupled with the k−ω SST turbulence model [15] and focus on modeling the intermittency
of the transition process using a single extra transport equation for intermittency. They are
simplified versions of the γ −Reθ transition model by Langtry [16], maintaining Galilean
invariance. The simplifications are achieved by omitting the Reθ equation, reducing the
complexity of the transition onset correlation, and even modeling the intermittency with
an algebraic form, avoiding extra transport equations [19].

Several efforts have been made to enhance RANS transition models. Barrouillet et al.[2]
focused on optimizing the parameters of the γ −Reθ turbulence model. Their study involved a
detailed adjustment of parameters to improve the accuracy of transition predictions in various
flow conditions, underscoring the necessity for precise parameter calibration. Venkatachari et
al.[30] introduced modifications to the γ−Reθ turbulence model by incorporating compressibil-
ity corrections, which significantly improved prediction accuracy, particularly for transonic flows
where compressibility stabilizes Tollmien-Schlichting (TS) waves. Other research involved cou-
pling stability analysis tools with RANS solvers, as demonstrated by Venkatachari et al. [31] with
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the NASA OVERFLOW CFD solver and the LASTRAC stability analysis tool. Their method
proved robust in capturing various transition mechanisms across different aerodynamic config-
urations, though the computational cost increased due to the iterative data exchange between
tools required to refine transition location predictions.

In recent years, novel data-driven approaches have emerged for enhancing transition models,
with inverse modeling playing a crucial role. For example, Duraisamy et al.[9] and Duraisamy
and Durbin[8] propose a new method that combines inverse modeling with machine learning to
construct an intermittency transport-based model for bypass transition. Their approach utilizes
adjoint-based optimization to extract intermittency data from experimental results, which are
then converted into modeling knowledge through machine learning. This method shows promise
in addressing inconsistencies in traditional models by optimizing data extraction and applying
these insights to improve RANS transition predictions. Zafar et al. [33] introduce a recurrent
neural network (RNN) model that enhances the prediction of laminar-turbulent transition in
boundary layer flows. This model uses convolutional neural networks (CNNs) to predict the N
factor envelope and transition locations over two-dimensional airfoils.

Previous efforts to improve RANS transition models can be grouped into two main ap-
proaches: augmenting existing models and developing new ones. Augmenting models typically
involves adding or modifying terms within the existing equations, while new models are often
tailored to address specific problems. Although augmenting approaches benefit from the gen-
eral applicability of the original model, they often fail to fully exploit its potential due to the
challenges associated with parameter calibration.

This work seeks to improve the prediction accuracy of RANS transition models by using a
data-driven approach that leverages deep neural networks to fine-tune state-of-the-art transition
models. By utilizing data generated from commercial CFD software, the proposed tool is trained
to accurately reproduce skin friction coefficients for various two-dimensional flat plate transi-
tional flows, using the tunable parameters of a specific RANS transition model as input features.
Once trained, the model solves an inverse problem to identify the optimal set of parameters that
best match the reference data. To the best of the authors’ knowledge, this deep learning-based
tool is the first to automate and enhance the parameter calibration of RANS transition models
without altering their foundational structure or adding new terms, significantly reducing the
need for manual adjustments and improving model accuracy for specific real-world applications.

2 METHODOLOGY

2.1 RANS transition model

The proposed framework is applicable to all RANS transition models and even standard
RANS turbulence models. For this study, the one-equation γ model developed by Menter in
2015 [18] was chosen due to its simplicity and availability in the commercial software Star-
CCM+, which was used for data generation.

2.1.1 1-Equation Gamma Transition Model

The 1-Equation γ transition model [18] was calibrated using a broad range of Falkner-Skan
flows and then applied to various test cases. The goal was not to achieve perfect agreement with
experimental data across all scenarios, as that would result in a highly complex set of correlations,
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akin to those found in the γ−Reθ model. Instead, the approach focused on carefully calibrating
the model for self-similar flows (the Falkner-Skan family) and then extending this calibration
with minimal added complexity to handle non-equilibrium flows, particularly those involving
separation.

The transport equation for intermittency, γ, is similar to that in the γ −Reθ model:

∂(ργ)

∂t
+

∂(ρujγ)

∂xj
=

∂

∂xj

[(
µ+

µt

σγ

)
∂γ

∂xj

]
+ Pγ − Eγ , (1)

where ρ is the density, t is the time, xj represents a coordinate, uj is the velocity in the direction
of xj , µ is the dynamic viscosity of the fluid, µt is the turbulent viscosity, σγ is a parameter of the
model, and Pγ and Eγ are the production and destruction terms, respectively. The destruction
term is identical to that in the γ −Reθ model:

Eγ = ca2ρWγFturb(ce2γ − 1), (2)

where ca2 and ce2 are parameters of the model, W is the modulus of the mean vorticity tensor,
and Fturb is

Fturb = exp
[
−(ReT /2)

4
]
, (3)

where Ret is the turbulent Reynolds number given by

ReT =
k

νω
, (4)

being k the turbulent intensity and nu the kinematic viscosity. The transition source term is
simplified to:

Pγ = FlengthρSγ(1− γ)Fonset, (5)

where S is the strain rate magnitude, the transition length function, Flength, is no longer a
correlation but a constant

Flength = 100, (6)

and Fonset is a function defined next. The intermittency production term is designed to be zero
in the laminar boundary layer upstream of the transition and activates once the local transition
onset criteria are met.

The transition onset is controlled by the following functions:

Fonset = max(Fonset2 − Fonset3, 0), (7)

Fonset2 = min(Fonset1, 2), (8)

Fonset1 =
Rev

Conset1Reθc
, (9)

Fonset3 = max

[
1−

(
ReT
3.5

)3

, 0

]
, (10)

where Conset1 is a parameter of the model, Rev is the strain rate Reynolds number given by

Rev =
ρd2ωS

µ
, (11)
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where dω is the wall distance, ω is the specific dissipation rate. And Reθc is the critical momen-
tum thickness Reynolds number, defined as a function of turbulence intensity (TuL) and other
variables, contained inside the pressure gradient parameter λθL , i.e.,

Reθc = f(TuL, λθL). (12)

The main change from the γ − Reθ model is that the arguments TuL and λθL , used in the
correlation for Reθc , are now approximated locally, eliminating the need for a second transport
equation for Reθ and ensuring Galilean invariance. The turbulence intensity is formulated as

TuL = min

(
100

√
2k/3

ωdw
, 100

)
, (13)

where ωdw provides a velocity scale inside the boundary layer, replacing the free stream velocity
used in the γ −Reθ model,

U ∼ Sdw ∼ ωdw. (14)

The pressure gradient parameter typically used in empirical correlations is defined as

λθ = −θ2

µ

1

U

dP

ds
=

ρθ2

µ

dU

ds
, (15)

where
dU

ds
is the acceleration/deceleration in the streamwise direction at the edge of the bound-

ary layer. The final formula for a flat plate, considering some relations, is:

λθL = −7.57 · 10−3dV

dy

d2w
ν

+ 0.0128. (16)

For numerical robustness, λθL is bounded as:

λθL = min(max(λθL ,−1.0), 1.0). (17)

The critical momentum thickness Reynolds number, Reθc , is computed algebraically using
local variables:

Reθc(TuL, λθL) = CTU1 + CTU2 exp [−CTU3 TuL FPG(λθL)], (18)

where CTU1, CTU2, and CTU3 are parameters of the model whose effect is stated in Table 2.
The function FPG(λθL) adjusts the sensitivity of transition onset to the stream-wise pressure
gradient, calibrated using the Falkner-Skan profiles.

FPG(λθL) =

{
min(1 + CPG1λθL , C

lim
PG1) if λθL ≥ 0

min(1 + CPG2λθL + CPG3min[λθL + 0.0681, 0], C lim
PG2) if λθL < 0.

(19)

A limiter is applied to FPG to avoid negative values:

FPG = max(FPG, 0). (20)

The pressure gradient correction constants are presented in Table 1.
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CPG1 CPG2 CPG3 C lim
PG1 C lim

PG2

14.68 −7.34 0.0 1.5 3.0

Table 1: Pressure gradient correction constants.

The coupling mechanism is similar to the γ −Reθ model:

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
+ P̃k + P lim

k − D̃k + Sk, (21)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) = α

Pk

νt
−Dω + Cdω +

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
, (22)

P̃k = γPk, (23)

D̃k = max(γ, 0.1) ·Dk, (24)

µt = ρ
a1 · k

max(a1 · ω, F2 · S)
, (25)

where Pk and Dk are the production and destruction terms from the turbulent kinetic energy
equation in the original k − ω SST turbulence model, Sk is a source term, and Cdω is the
cross-diffusion term. The Pk term is computed using the Kato-Launder formulation.

An additional production term, P lim
k , is introduced into the k-equation to ensure proper

generation of k at transition points for very low (down to zero) turbulence intensity levels. This
term activates when the transition model triggers an increase in γ beyond 0.2 and deactivates
in fully turbulent regions where µt > 3CSEPµ:

P lim
k = 5Ck max(γ − 0.2, 0)(1− γ)F lim

on max(3CSEPµ− µt, 0)SΩ, (26)

F lim
on = min

[
max

(
Rev

Conset1 ·Relimθc
− 1, 0), 3

)]
, (27)

Relimθc = 1100, (28)

Ck = 1.0, (29)

CSEP = 1.0. (30)

The boundary conditions for the intermittency equation are:

γinlet = 1, (31)

∂γ

∂n

∣∣∣∣
wall

= 0. (32)

Note that γwall = 1/Ce2, similar to the γ −Reθ model.
The key parameters of the one-equation gamma model by Menter [18] and their computational

effects are summarized in Table 2.

6
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Constants Original Value Effect

σf 1.0
Increases the influence of the second derivative
of the intermittency.

Ca2 0.06 Increases the influence of the destruction of intermittency.

Ce2 50.0
Increases the influence of the destruction of intermittency
when the intermittency increases.

CTU1 100.0
Defines the minimal value of the critical Reθc number
(for very high TuL levels, the exponential approaches zero).

CTU2 1000.0
Defines the maximal value of the critical Reθc number
(for very low TuL levels, the exponential approaches one).

CTU3 1.0
Controls how fast Reθc decreases as the turbulence
intensity Tu increases.

Conset1 2.2 Affects the production of intermittency.

Flength 100 Increases proportionally the production of intermittency.

Table 2: Constants of the One-Equation Gamma Model by Menter [18] with their original values
and computational effects.

2.2 Transition onset important variables

The accurate prediction of the onset of the transition in the boundary layers is critically
influenced by several key variables, namely the intensity of the turbulence, the velocity of the
free stream and the turbulent viscosity ratio. These variables play a pivotal role in determining
the flow characteristics and the point at which the transition from laminar to turbulent flow
occurs.

2.2.1 Free stream velocity

The free stream velocity, U∞, is a crucial factor influencing the onset of the transition.
Higher free stream velocities generally increase the Reynolds number, which can lead to an
earlier transition due to the greater shear forces acting on the boundary layer. This relationship
underscores the importance of accurately measuring and incorporating the velocity of the free
stream in transition models to accurately predict the location of the onset. This variable is
included in the model by means of the Reynolds number based on the characteristic length, L,
i.e.,

ReL =
ρU∞L

µ
. (33)

2.2.2 Turbulence intensity

Turbulence intensity, Tu, is a measure of the fluctuations in the velocity field relative to the
mean flow, i.e.,

Tu =
u′

U∞
. (34)

It significantly impacts the onset of transition by affecting the stability of the laminar bound-
ary layer. High turbulence intensity can induce an earlier transition by affecting disturbances
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within the boundary layer, leading to an earlier breakdown to turbulence. In contrast, a lower
turbulence intensity tends to delay the onset of the transition, maintaining laminar flow over a
longer distance. In this work, isotropic turbulence is assumed so that the inlet turbulence kinetic
energy can be obtained from the experimental inlet free stream turbulence level, and thus,

k =
3

2
Tu2U2

∞, (35)

where k is the turbulence kinetic energy, and U∞ is the free stream or inlet velocity magnitude.

2.2.3 Turbulence viscosity ratio

The turbulent viscosity ratio, defined as the ratio of turbulent viscosity to molecular viscosity,
i.e.,

TV R =
µt

µ
, (36)

is essential in characterizing the mixing and momentum transfer within the turbulent boundary
layer. A higher turbulent viscosity ratio indicates a more vigorous turbulent mixing process,
which can facilitate an earlier transition by promoting instability within the laminar boundary
layer. Therefore, the turbulent viscosity ratio helps to capture the complex interplay between
the laminar and turbulent-flow regions.

2.3 Transition modeling problem

2.3.1 ERCOFTAC T3 flat plate

The ERCOFTAC T3 Flat Plate transitional boundary layer experiments [5] are a crucial
resource for studying transitional flow phenomena. Conducted by the European Research Com-
munity on Flow, Turbulence, and Combustion (ERCOFTAC), these experiments provide a
meticulously curated dataset on the behavior of boundary layers over a flat plate under various
controlled conditions. The primary objective of the T3 series is to offer high-fidelity data that
capture the complexities of the laminar-to-turbulent transition, a phenomenon that significantly
impacts aerodynamic performance and efficiency in fluid dynamics.

In these experiments, the flat plate boundary layer is subjected to a range of free stream
conditions, including variations in velocity, turbulence intensity, and pressure gradients. The
dataset comprises three zero-pressure gradient (ZPG) cases (T3A, T3B, and T3A-) and five
non-zero-pressure gradient (NZPG) cases (T3C1, T3C2, T3C3, T3C4, and T3C5). It includes
comprehensive measurements of velocity profiles, wall shear stress, and turbulence characteris-
tics, which are vital for understanding the mechanisms driving the transition phenomenon. This
detailed data is crucial for validating and calibrating transition models within computational
fluid dynamics (CFD) frameworks.

The computational domain for the T3 cases (see Figure 1) consists of a 2 meter long bottom
wall and a variable height upper wall, which at the entrance has a height of 0.22 m. Following
the methodology adopted Suluksna et al. [26], the computational domain extends 0.15 m up-
stream of the plate leading edge to eliminate interferences between the inlet and the plate. For
reproducibility, the upper wall contours, h, for the NZPG cases are chosen to be the same as
those provided by Suluksna et al. [26], defined as

h/D = min [1.356x6 − 7.591x5 + 16.513x4 − 17.510x3 + 9.486x2 − 2.657x+ 0.991; 1] (37)
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for the T3C4 case, and

h/D = min [1.231x6 − 6.705x5 + 14.061x4 − 14.113x3 + 7.109x2 − 1.900x+ 0.950; 1] (38)

for the rest of T3C cases, where D = 0.22 m. These expressions reproduce the same pressure

Figure 1: T3 NZPG computational domain with boundary conditions.

gradient as in the experiments by imposing the local free stream velocity according to the
continuity equation. The wall contour distributions and local free stream velocity values are
presented in Figure 2. For the Zero-Pressure Gradient (ZPG) cases, the domain has the same
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Figure 2: Wall contours and exterior velocity distributions for the NZPG transitional flat plate
cases.

dimensions and boundary conditions, but the upper wall now forms a rectangular domain with
a height of D = 0.22 m.

The T3 series of experiments is summarized in Table 3, alongside the Schubauer-Klebanoff [25]
(TSK) case, where U∞, Tu∞, and TV R∞ represent the inlet, velocity, turbulence intensity, and
turbulent viscosity ratio, respectively. These are the boundary conditions of the CFD simulation.
The turbulence intensity at the leading edge of the plate, TuLE , is also listed. The appropriate
free stream turbulence values are obtained by least-square curve fits based on the analytical
decay laws derived from the k − ω SST turbulence model for the ZPG cases and numerically
for the NZPG cases. As an example, Figure 3 shows the free stream turbulence decay for the
T3A case.
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Case U∞ [m/s] Tu∞ [%] TuLE [%] TV R∞ Pressure Gradient

T3A 5.4 5.70 3.36 13.25 ZPG
T3B 9.4 8.46 6.09 100.53 ZPG
T3A- 19.8 1.12 0.94 8.0 ZPG
TSK 50.1 0.03 0.03 1.0 ZPG
T3C1 5.9 7.78 6.6 44.0 NZPG
T3C2 5.0 3.10 3.0 9.0 NZPG
T3C3 3.7 3.10 3.0 6.0 NZPG
T3C4 1.2 3.10 3.0 2.5 NZPG
T3C5 8.4 3.70 3.0 15.0 NZPG

Table 3: T3 Transitional Flat Plate Series of experiments and TSK case.
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0.010
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T3A Freestream turbulence decay

Figure 3: Free stream turbulence intensity decay from the leading edge of the plate for the T3A
case.

The simulation considers incompressible flow with a density ρ = 1.2 kg/m3 and dynamic
viscosity µ = 1.8 × 10−5 Pa s. Second-order schemes, along with a low-y+ treatment requiring
near-wall cells to be in the viscous sublayer, are employed in this work.

2.4 Machine learning

Machine learning is a powerful tool for solving optimization problems, especially because neu-
ral networks are inherently differentiable and, once trained, can substantially reduce simulation
run-times. In this work, we propose utilizing a deep neural network (DNN) that leverages local
variables to address the coefficient optimization problem in transition models. The framework
employed in this study is depicted in Figure 4.

The input feature vector from Figure 4, denoted as ξ = (ai, . . . , aM ), consists of the coefficients
of the RANS transition model.

This vector, ξ, is fed into a deep neural network, DNNθ, where θ represents the parameters
of the network. The model is trained to predict the distribution of the skin friction coefficient
along the wall. However, since the input vector lacks variables that distinguish between differ-
ent flat plate cases—such as free stream velocity, free stream turbulence intensity, free stream
turbulent viscosity ratio, and imposed pressure gradient—an individual model must be trained
and evaluated for each flat plate case.
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Figure 4: Direct problem framework.

As depicted in Figure 4, the neural network, which maps the transition model parameters
to the skin friction coefficient, is trained using a mean squared error (MSE) function. This
approach allows the network to learn from the CFD data effectively.

2.4.1 Neural network

The neural network employed in this work is a simple multilayer perceptron (MLP). Figure 5
shows schematically the structure of an MLP with the input vector ξ, two hidden layers with 4
neurons per layer, and the discretized vector Cf as the output.

Figure 5: Multi-Layer Perceptron illustration with N input features, ξ, two hidden layers with
4 neurons per layer, and M outputs, τw.

After conducting hyperparameter optimization with the Ray Tune package [23] across 50
sample experiments, the optimal neural network architecture was determined to consist of 8
hidden layers, each containing 128 neurons, with an initial learning rate set to 0.0008. A sched-
uler was implemented to reduce the learning rate by a factor of 0.5862 every 7,900 epochs. The
data was fed to the neural network in batches of 256 simulations.

All features and outputs were normalized using Z-score normalization based on the statistics
of the training dataset, meaning the data was standardized by subtracting the mean and dividing
by the standard deviation to achieve a normalized distribution with a mean of zero and a
standard deviation of one. The training process utilized the mean squared error as the loss
function and employed the ADAM optimizer [7]. The neural network used tanh activation
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functions for the hidden layers. The loss function did not include any regularization terms and
was initialized using the Xavier method [11].

2.5 Inverse modeling

Inverse modeling, or inverse problem-solving, is a mathematical and computational technique
used to deduce the underlying parameters or causes of a system based on observed data. Unlike
forward modeling, where outcomes are predicted based on a given set of parameters, inverse
modeling works in reverse, aiming to identify the parameters that lead to the observed outcomes.

In this context, once the direct problem has been addressed using a deep neural network
as described in Section 2.4, and the neural network is capable of mapping the input vector
composed of variables influencing the transition, the inverse problem can be approached. This
involves identifying the transition model parameters that cause the CFD output to align with
the observed skin friction distribution.

2.5.1 Optimization procedure

Solving the inverse problem becomes an optimization task that can be addressed using the
same backpropagation algorithm employed in training the neural network. The workflow is
shown in Figure 6. Starting with an initial guess of the parameters, using the default set

Figure 6: Inverse problem framework.

suggested by Menter [18], the deep neural network generates a prediction for the skin friction
coefficient. This prediction is then evaluated using a loss function that incorporates experimental
data. The gradient of the loss function with respect to the transition model coefficients is
calculated, and the coefficients are iteratively updated until the optimal set is obtained.

3 RESULTS

3.1 Data generation

The dataset was generated using a Latin-Hypercube Sampling [14] (LHS) technique by speci-
fying the number of simulations and the variation range for each RANS transition model param-
eter relative to their original values as defined by Menter [18]. The setups defined by the LHS
were then implemented in the commercial software Star-CCM+ using Java macros, and simula-
tions were run until asymptotic convergence of the drag coefficient was achieved. The criterion
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for assessing asymptotic convergence was that the absolute difference between the maximum
and minimum drag coefficient monitor values over the last 200 iterations must not exceed 10−6,
i.e.,

|max(CD)−min(CD)| < 10−6, (39)

where CD represents the drag coefficient monitor over the last 200 iterations. Any simulation
that failed to meet this criterion was excluded from the dataset. In this case, all simulations
successfully achieved asymptotic convergence.

3.1.1 Mesh convergence study

The neural network requires discrete outputs, which can be reliably achieved when the simu-
lation has reached mesh convergence. As noted by Menter et al. [17], mesh requirements depend
not only on the specifics of the problem but also on the transition model used. The impact of
simultaneously varying the streamwise grid resolution and the boundary layer resolution, while
maintaining the same first-cell height constant for all the meshes. Furthermore, the effect of
increasing the boundary layer resolution by reducing the height of the first cell is evaluated in
the one-equation model γ. These effects on mesh convergence are illustrated for the T3A case
in Figure 7 using the meshes detailed in Tables 4 and 5.
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(a) T3A: Streamwise resolution effect.
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(b) T3A: Wall-normal resolution effect.

Figure 7: Effect of streamwise and wall-normal resolution on transition prediction for the T3A
flat plate boundary layer using the one-equation γ transition model.

To ensure consistency and accuracy across all T3 cases, the same wall resolution is maintained,
allowing the neural network to eventually learn from all cases simultaneously. This approach
leads to an exceptionally well-resolved boundary layer flow in all simulations, ensuring the
correct application of the low-y+ treatment and achieving convergence with sufficient numerical
precision. For the subsequent results, the mesh h2 from Table 4 (identical to the mesh h2 3
from Table 5) demonstrates clear convergence and is therefore selected to generate the dataset.

3.1.2 Dataset description

The parameters of the transition model were varied within a range of ±50% relative to their
original values listed in Table 2, resulting in a dataset comprising 2,048 simulations. Table 6
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Grid h0 h1 h2 h3 h4

Target Surface Size (·103) 2.93Lref 1.55Lref 1.01Lref 0.51Lref 0.31Lref

Wall Surface Elements 268 534 1,068 2,134 4,268
Volume Elements 18,472 48,848 123,329 410,035 1,186,779
Prism Layers 40 70 100 175 260
Near-Wall Thickness (·106) 5.62Lref 5.62Lref 5.62Lref 5.62Lref 5.62Lref

Prism Layer Height (·103) 19.35Lref 19.35Lref 19.35Lref 19.35Lref 19.35Lref

Table 4: Grid convergence study for transitional flat plate case T3A, varying the streamwise
mesh resolution.

Grid h2 0 h2 1 h2 2 h2 3 h2 4

Target Surface Size (·103) 1.01Lref 1.01Lref 1.01Lref 1.01Lref 1.01Lref

Wall Surface Elements 1,068 1,068 1,068 1,068 1,068
Volume Elements 71,338 79,320 100,490 124,981 147,258
Prism Layers 51 59 78 100 120
Near-Wall Thickness (·106) 93.74Lref 56.24Lref 18.75Lref 5.62Lref 1.87Lref

Prism Layer Height (·103) 19.35Lref 19.35Lref 19.35Lref 19.35Lref 19.35Lref

Table 5: Grid convergence study for transitional flat plate case T3A, varying the wall-normal
resolution (meshes with different y+max).

provides various statistical measures for each parameter of the 1-Equation γ transition model
within this generated dataset.

σf Ca2 Ce2 CTU1 CTU2 CTU3 Conset1

Default Value 1 0.06 50 100 1000 1 2.2

Mean 1.00 0.06 49.65 100.62 1002.26 1.00 2.19

Standard Deviation 0.29 0.017 14.40 28.63 289.88 0.29 0.64

Skewness -1.33e-04 1.25e-05 6.50e-05 1.61e-04 -1.34e-04 -1.35e-04 -1.36e-05

Kurtosis -1.20 -1.20 -1.20 -1.20 -1.20 -1.20 -1.20

Table 6: Dataset Generation statistics for each of the parameters of the 1-Equation Gamma
transition model.

3.1.3 Dataset split

The dataset was randomly split into training (80%), validation (10%), and test (10%) subsets.
The training dataset is used to determine the network’s parameters, specifically the weights and
biases. The validation dataset helps prevent overfitting and assists in tuning the network’s
hyperparameters. Finally, the test dataset evaluates the model’s accuracy on unseen data. It is
crucial that the distributions of these three subsets are statistically similar and have comparable
point concentrations. Figure 8 compares the violin plots for each input feature of the neural
network, confirming that the datasets are sufficiently similar in their distributions.
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Figure 8: Violin plots comparing the distribution of input features for the selected random split.

3.2 Training and validation

To enhance the efficiency of both training and subsequent optimization, discretized skin
friction coefficient points with a standard deviation across the training dataset lower than a
threshold of 0.0001 were removed from the data. This step ensures that the model focuses on
learning data that is meaningfully correlated with the input features. When the variation in the
outputs is minimal, it indicates that these outputs are not strongly dependent on the inputs and
thus provide little value for the network.

The training and validation phases used 1,536 and 256 simulations of the T3A case, respec-
tively. The entire process took approximately 30 minutes on a machine with 4 CPUs and no
GPUs. Training and validation losses are depicted in Figure 9. The spikes in the loss curves are
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Figure 9: Training and validation loss curves behavior for T3A case.

intrinsic to the ADAM optimizer [34], and the training is “early stopped” when the validation

15
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loss starts to increase.

3.3 Test

Once the model is trained, its accuracy can be evaluated using a test dataset consisting of 256
simulations. Figure 10 illustrates a comparison between randomly selected setups from the test
dataset and the corresponding model predictions. It is important to note the point at which the
model begins to accurately predict the skin friction coefficient; earlier points were excluded from
consideration due to their very low standard deviation across the simulations (see Section 3.2).
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Figure 10: Comparison of skin friction distributions for randomly sampled setups within the
test dataset.

Figure 11 presents a scatter plot of the true values versus the predicted values, with a color
legend representing the relative error. The model’s coefficient of determination (R2), which
quantifies the proportion of variability in the dependent variable, Cf , explained by the inde-
pendent variables (the transition model parameters), is 0.997. This high R2 value indicates an
excellent fit of the model to the data.

3.4 Optimization

The optimization process converges quickly, taking about 5,000 iterations and only 5 minutes
to complete, using the same machine as was used for training.

Figure 12 shows the skin friction coefficient distribution obtained with the default and op-
timized set of parameters found by the model. The DNN result captures a more accurate
transition onset compared to the original set of parameters of the transition model. However,
the initial and final tails of the skin friction distribution are not matched because they are not a
function of the transition model parameters, but of other variables such as the parameters of the
underlying k − ω SST turbulence model. The optimized set of parameters for the 1-Equation
γ transition model is compared to the default set in Table 7. As anticipated for the T3A case,
the parameter Conset1 proves to be the most influential. A slight reduction of 1.81% from its
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Figure 11: Scatter plot of ground truth (test) skin friction coefficients versus the predicted skin
friction coefficients. The legend indicates the relative error in percentage. R2 = 0.997.

σf Ca2 Ce2 γmin CTU1 CTU2 CTU3 Conset1

Default Set 1 0.06 50 1e-10 100 1000 1 2.2

Optimized Set 0.9952 0.0596 49.7518 1e-10 101.0107 1007.6765 0.9758 2.2398

Difference 0.48 % 0.65 % 0.50 % 0 % -1.01 % -0.77 % 2.42 % -1.81 %

Table 7: Optimized set of parameters for the T3A case and the 1-Equation Gamma transition
model.

original value results in the onset of the transition moving downstream. In particular, the model
also identified the significance of the parameter CTU3, which underscores the importance of the
algorithm presented in this study. This algorithm shows its practicality, as manually determin-
ing the optimal tuning configurations for each specific experiment would be an impractical and
labor-intensive task.

4 CONCLUSION

In this study a deep neural network framework was developed to optimize the parameters
of RANS transition models, achieving an R2 of 0.997 in predicting skin friction coefficients for
the T3A case. The optimized parameters improved model accuracy by shifting the onset of
transition downstream without altering the model’s foundational structure, demonstrating a
novel approach to automated calibration. The model’s ability to closely match experimental
data highlights its potential to enhance the predictive accuracy of RANS transition models and
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Figure 12: Comparison of skin friction distribution for the T3A case with the default and
optimized set of parameters of the 1-Equation γ model.

suggests that similar deep learning-based methods could be applied to more complex geometries
and flow conditions.

However, achieving a perfect match for the entire skin friction distribution was not possible,
as the optimization considered only the transition model parameters. This limitation is partly
due to factors such as the parameters of the underlying turbulence model, specifically the k−ω
SST model.

The proposed framework is versatile and can be adapted to various models. Future work will
focus on fine-tuning parameters for each flat plate experiment and extending the framework to
other geometries, such as airfoils. Additionally, the inclusion of imposed pressure gradients and
non-flat geometries as neural network inputs is planned, with the goal of training a model capable
of predicting a global optimum across all available transitional boundary layer experiments.

This approach offers significant potential for enhancing both transition and standard tur-
bulence models. For instance, it could enable the introduction of new terms proportional to
specific parameters, which, once trained, can be fine-tuned by the neural network to enhance
model capabilities.

Overall, our results demonstrate the potential of this framework to serve as a powerful tool for
researchers and industry professionals, streamlining the use of RANS transition models across
various applications—–from aircraft design to environmental flow studies–—while improving
both efficiency and accuracy.
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Strömungsmaschinen und Maschinenlaboratorium Universität Stuttgart.

[17] Menter, F. R., R. Sechner, and A. Matyushenko. 2024. “Best Practice: RANS Turbulence
Modeling in Ansys CFD.” RANS Turbulence Modeling in Ansys CFD 95: 62–63.

[18] Menter, F. R., P. E. Smirnov, T. Liu, and R. Avancha. 2015. “A One-Equation
Local Correlation-Based Transition Model.” Flow Turbulence Combust 95: 583–619.
http://doi.org/10.1007/s10494-015-9622-4

[19] Menter, F. R., A. Matyushenko, R. Lechner, A. Stabnikov, and A. Garbaruk. 2022. “An
Algebraic LCTM Model for Laminar–Turbulent Transition Prediction.” Flow, Turbulence
and Combustion 109: 841–869. http://doi.org/10.1007/s10494-022-00336-8

[20] Oates, Gordon C., ed. 1984. “Aerothermodynamics of Gas Turbine and Rocket Propulsion.”
AIAA Education Series. New York: AIAA.

[21] Peyret, Roger, and Thomas D. Taylor. 1983. “Computational Methods for Fluid Flow.”
2nd ed. New York: Springer-Verlag.

[22] Piotrowski, M. G. H., and D. W. Zingg. 2020. “Smooth Local Correlation-Based
Transition Model for the Spalart–Allmaras Turbulence Model.” AIAA Journal 59.
http://doi.org/10.2514/1.J059784

[23] Liaw, R., E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. 2018. “Tune: A
Research Platform for Distributed Model Selection and Training.” CoRR, abs/1807.05118.
http://arxiv.org/abs/1807.05118.

[24] Schneider, Steven P. 2004. “Hypersonic Laminar–Turbulent Transition on Circular
Cones and Scramjet Forebodies.” Progress in Aerospace Sciences 40, no. 1: 1–50.
http://doi.org/10.1016/j.paerosci.2003.11.001

[25] Schubauer, G. B. and Klebanoff, P. S. “Contribution on the Mechanics of Boundary Layer
Transition”. NACA TN 3489 (1955).

[26] Suluksna, K., P. Dechaumphai, and E. Juntasaro. 2008. “Correlations for Model-
ing Transitional Boundary Layers under Influences of Freestream Turbulence and
Pressure Gradient.” International Journal of Heat and Fluid Flow 30: 66–75.
http://doi.org/10.1016/j.ijheatfluidflow.2008.09.004

[27] Terster, W. 1997. “NASA Considers Switch to Delta 2.” Space News 8, no. 2: 13–19.

[28] Thompson, C. M. 1989. “Spacecraft Thermal Control, Design, and Operation.” In AIAA
Guidance, Navigation, and Control Conference, CP849, 1: 103–115. Washington, DC:
AIAA.

20
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