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ABSTRACT 

Slope monitoring is vital for open pit mines during operations and nearing closure where pit wall instabilities are present. 

Change detection using terrestrial laser scanning (TLS) has become part of the state of practice for collecting accurate 

measurements with extensive spatial coverage. The approach can detect displacements associated with global slope 

movement, as well as surficial occurrences such as rockfalls and sloughs. However, TLS acquisition quality is vulnerable 

to atmospheric interference and reflectivity of the target materials. In this regard, the high-density surface information 

obtained from TLS could be complemented with other, less detailed, remote sensing information in order to construct a 

complete surface model. Such an approach, however, requires a systematic workflow and a means to calculate surface 

model reliability. The subject of this study is an unstable pit wall at an open pit coal mine transitioning to closure. The 

site is located in the Canadian Cordillera, in a setting with intermittent fog and cloud cover, wildfire haze, and seepage 

within the slope face and toe. Insufficient TLS data can be obtained in local areas of the slope impacted by these 

conditions, as well as in shadowed areas on the benches above the TLS base elevation. Aerial photogrammetry was 

undertaken using UAV and combined with the TLS scan to generate a representative surface model. This paper presents 

a methodology for registration improvement between the TLS and UAV photogrammetry clouds, and evaluation of the 

combined surface using concepts of Limit of Detection (LOD) adopted from change detection techniques.   
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1. Introduction 

Remote monitoring methods have become common 

practice for slope movement monitoring at open pit 

mines (Macciotta and Hendry 2021; Sharon and 

Eberhardt 2020), allowing surveyors to remain away 

from bench faces where occurrences such as rockfall and 

raveling can occur. Conventional remote monitoring 

methods include terrestrial and satellite-based 

Interferometric Synthetic Aperture Radar (InSAR), Light 

Detection and Ranging (LiDAR) methods (also referred 

to as laser scanning), photogrammetry, and traditional 

total stations paired with survey monuments (Bolkas et 

al. 2021; Stead et al. 2019; Huntley et al. 2021).  

Long range terrestrial laser scanning (TLS) is an 

accepted method for use in remote sensing of natural and 

engineered slopes (Lato, Smebye, and Kveldsvik 2017; 

Francioni et al. 2018; Macciotta and Hendry 2021). 

Notably, TLS has been successful at a number of steep 

rock slopes across the Canadian Cordillera (Stead et al. 

2019; Lato et al. 2015; Kromer et al. 2015). The method 

is characterized by dense spatial coverage and high 

resolution and precision, which makes it desirable for 

change detection applications (Abellán et al. 2014). TLS 

requires line-of-sight clarity to produce successful data 

acquisition, along with ground conditions that allow for 

strong laser reflectivity and returns (Lato 2010). 

Resultantly, the quality of the TLS can be compromised 

when less than optimal conditions, such as wet ground 

and atmospheric interference.  

The likelihood of collecting poor quality or 

insufficient data due to flawed conditions in the Canadian 

Cordillera is high; as such, a strategy to maximize good 

quality data collection is critical to produce useable data 

in a cost-effective manner. Combination of the TLS 

model with other, less accurate methods can be used to 

improve the topographic model of the site. The challenge 

is developing a systematic, repeatable, and practicable 

approach to develop reliable surface models for future 

change detection from different remote sensing 

techniques, and understanding the precision of the 

combined model. In this study, we propose a 

methodology for combining data collected from two 

acquisition methods using a procedure derived from 

change detection techniques. The procedure is applied for 

a coal mine site where the nature of the ground materials, 

combined with haze and fog, resulted in spatially 

extensive data gaps in the TLS data. Aerial 

photogrammetry was collected and combined with TLS 

data to form a complete site surface model.  

The study was conducted at an open pit coal mine 

located in the Canadian Cordillera, close to Sparwood, 

British Columbia. The mine is currently on care and 

maintenance. Deformations of the west pit slope were 

identified near the completion of mining and have since 

been monitored by the mine, using terrestrial mobile 

InSAR and total stations. The post-mining displacement 

rate for the slope has been measured at 1 mm/day, 

although displacement rates have reached a maximum of 

260 mm/day (Bidwell et al. 2022).  



 

 

 

2. Methodology 

2.1. Workflow 

The process (Figure 1) starts with planning and 

completing the data acquisition on site, followed by point 

cloud generation, registration of point clouds, merging of 

a final surface model, and estimating the error associated 

with the monitoring technologies and merging process. 

These steps are detailed in this section, illustrated with 

the specific tools deployed for the case study. Best 

practices for data acquisition are summarized in Abellán 

et al. (2014), which are outside the scope of this paper.  

In the case study that illustrates the proposed 

methodology, monitoring data was collected with an 

Optech ILRIS-LR Lidar system for TLS and with a DJI 

Phantom 4 Pro UAV for aerial photogrammetry. The 

acquisitions to be merged must be acquired concurrently 

to neutralize any 4D (time-dependent) changes to the 

slope face. This allows the user to assume that any 

detected difference between the two scans is a result of 

different acquisition technologies and compounded error. 

Once collected, the raw TLS data is parsed using 

Optech's proprietary software, ILRIS Parser. Similarly, 

the UAV photographs are processed to generate a point 

cloud using the ADAM Technologies 3DM Mine 

Mapping suite (ADAM Technologies n.d.). The clouds 

are then imported to the point cloud processing software, 

CloudCompare (2023). During the cloud registration and 

error assessment stages, images collected using a 

GigaPan PanTilt terrestrial photography unit  (GigaPan 

2012) are used to visually assess the sources of error in 

each region of the slope. Using CloudCompare, the TLS 

and UAV photogrammetry clouds are registered in an 

iterative process of manual and automated fine alignment 

to minimize the offset between two clouds. The quality 

of the registration of the two point clouds is assessed 

using multi-scale model-to-model cloud comparison 

(M3C2) distance computations.  

Once optimal registration is achieved, the model is 

assessed using an approach analogous to that of 

determination of the Limit of Detection (LOD) for 

change detection, which is derived from the compounded 

TLS error (Fey and Wichmann 2017; Deane et al. 2020) 

(further described in Section 3), using a M3C2 

computation to assess the magnitude and distribution of 

error between the two clouds.  

The aim of the error assessment is to inform the LOD 

calculation for future application of change detection 

against subsequent data sets and interpretation of change 

detection results by practitioners.  

2.2. Data Collection 

2.2.1. Site conditions 

The base station for the TLS scan was situated at the 

south end of the opposite (east) pit wall, resulting in an 

oblique line of sight and excess shadows being produced 

in the resultant TLS point cloud. Additionally, the east 

side of the pit was lower in elevation than the west side, 

meaning that the bench surfaces could only be captured 

by the TLS for benches situated below the base location. 

For benches higher than the TLS base location, generally 

only the bench faces were able to be captured.  

Given the availability of only one TLS scan location 

and the low vantage point, the decision to utilize the UAV 

to generate a photogrammetric point cloud was made. 

This would allow acquisition of data on the upper 

benches, as well as reduce shadows in the TLS data.  

The scans were acquired on August 31, 2023. The 

visibility (Figure 2) was moderately clear, although there 

was a slight visible haze associated with wildfires in the 

region, as well as intermittent low clouds. No significant 

rainfall occurred during scanning, but heavy rainfall had 

occurred earlier in the day and the days prior, resulting in 

wet ground conditions and slope seepage. 

 

 
Figure 1. Study Workflow and Methodology 



 

 
Figure 2. LTS Base Station Setup with the study area in the 

backdrop, looking northwest. 

2.2.2. Terrestrial Laser Scan 

The TLS was acquired using Optech's ILRIS-LR 

Laser Scanner (Optech) using the Enhanced Range mode, 

which is rated for a 3000 m range under optimal 

conditions, although this can be significantly reduced in 

suboptimal settings.  

Given the proximity of the scan location to the slope 

and the 40° field of view, the scan was completed in two 

frames, splitting the scan into a north half and a south 

half. Each half was scanned in approximately 45-60 

minutes, starting with the south frame and then rotating 

manually to the north frame. The south scan was further 

delineated into two regions of interest (ROIs) to account 

for slope/sightline geometry and varying range; the north 

scan was delineated into three ROIs. This is meant to 

keep a similar point cloud density for the entire slope 

surface model. The ROI locations are shown in Figure 3.  

 

 
Figure 3. Study area with TLS ROIs, counterclockwise from 

top left corner: 101 (Blue), 102 (Dark Green), 129 (Red), 130 

(Light Green), and 131 (Yellow). Untrimmed and projected 

atop UAV surface model (White).  

2.2.3. UAV Aerial Photogrammetry 

Aerial photogrammetry was obtained with a remotely 

piloted UAV. A DJI Phantom 4 was used to acquire the 

aerial photos with oblique image capturing and a manual 

flight path to maintain the distance between the slope and 

the camera as constant as possible. The angle of the 

photos was kept at 30 degrees from horizontal. 

Photogrammetry requires a set of pictures with enough 

overlap to reconstruct the terrain surface with a resolution 

that captures the slope features of interest. This can be 

achieved by allowing a minimum overlap of 60% 

between images, collecting at least three photos per 

feature, and using high-resolution cameras (Rodriguez et 

al. 2020). The UAV used in the surveys had a 12-MP 

camera with a sensor 1/2.3″ CMOS (6.3 mm width and 

4.7 mm height), a 94° field of view, a 20 mm focal length, 

and an aperture of f/2.8. The internal GPS has a hovering 

accuracy of ± 1.5 m. 

This acquisition method relies on optical imagery and 

line-of-sight clarity, so good lighting is required 

(Wollenberg-Barron et al. 2023). However, the 

advantage of this system is that the unit can be flown 

close to the slope and bypass most of the atmospheric 

disturbances that impede terrestrial methods (such as the 

TLS scan conducted concurrently). The accuracy of the 

aerial photogrammetry is a function of distance to the 

slope and pixel resolution (Küng et al. 2012; Martínez-

Carricondo et al. 2018).  

2.2.4. GigaPan Terrestrial Photography 

Terrestrial photographs were captured using a 

36.2 megapixel Nikon D800 DSLR camera fitted with a 

200 mm, fixed focal length lens. The camera was 

mounted on a GigaPan EPIC Pro pan-tilt unit, which 

generates high-resolution panoramas from a grid of 

photographs (GigaPan 2012). The GigaPan shot ranged 

approximately 500 m to 750 m distance from the pit wall 

face. 

The GigaPan is a useful photogrammetric technique 

which provides rapid visualization of the slope for 

confirmation of features identified in a point cloud 

model. This tool is often used to support the assessment 

of failure mechanisms in rock slopes along with other 

techniques (e.g., TLS). The GigaPan can also provide 

evidence of other aspects of rockfall events, such as 

discolouration of the slope or slickensides/scar textures 

which would not be visible in a point cloud model. 

Combining this technique with other instrumentation can 

provide a better understanding of the pre- and post-

deformation of displacement mechanisms. 

2.3. Data Processing 

2.3.1. TLS Parsing & Data Cleaning 

The TLS raw scan data was converted into an 8-bit 

xyz format (binary files) using Optech's ILRIS Parser 

software. Once the TLS data was parsed, the .bin files 

were uploaded into CloudCompare (Version 2.12.4) 

Open Source Software (CloudCompare 2023) for 

registration and analysis. Due to the erratic point density 

distribution of the cloud, no automated filtering of the 

data was used to remove outlier points or noise (which is 

typically done in processing TLS data), so as to avoid 

losing any additional data in the low-density areas. 

Cleaning was limited to manual trimming of the data to 

the extent of the study area. This was facilitated by the 

lack of vegetation, with the point cloud representing bare 

ground. 

2.3.2. UAV Photogrammetry  

Photographs were processed using ADAM 

Technology's Mine Mapping software suite. This 

software package builds a digital surface model based on 

overlapping sets of photos using photogrammetric 

principles on digital or scanned photographs. The 

software can then export the digital surfaces as raster, 

TINs, point clouds, etc. The process requires selecting 

the photographs with adequate overlap (over 60% is 



 

 

 

recommended), removing blurry photos, and assuring 

full coverage of the area of interest (Rodriguez et al. 

2020). With the photos selected, the software identifies 

common pixels for overlapping photos (manual entry is 

also possible). Then, the software utilizes 

photogrammetric principles (geometry and perspectives 

based on common pixel relative locations, UAV GPS 

stations and known ground points) to statistically 

calculate the location of the camera for each photo and 

then reconstruct the surface. The resulting point cloud 

had a point density of about 3.2 points per square meter 

(points/m2).  

2.3.3. Point Cloud Registration & Sectioning 

Registration of the UAV and TLS clouds should be 

undertaken in a multi-stage, iterative approach.  

Using the higher accuracy sourced acquisition (TLS) 

as a base, the photogrammetry cloud can be first scaled 

and aligned as a whole. Manual alignment should be used 

to pre-orient the clouds to reduce the number of 

computations required by the ICP; this requires the user 

to select discrete corresponding points on the base and 

aligned clouds, requiring visual identification of common 

features between the clouds. Depending on the size of the 

site, a minimum of 10 alignment points should be used.  

Once roughly aligned, fine registration can be 

undertaken in CloudCompare, utilizing the automated 

Iterative Closest Point (ICP) algorithm developed by 

Chen and Medioni (1992) and Besl and McKay (1992). 

Depending on the distribution of error in the fine 

registration, it may be necessary to section the aligned 

cloud to address any distortion in the surface scene 

induced by the hardware of different acquisition systems. 

2.3.4. M3C2 Processing  

Once the cloud registration is optimized, an M3C2 

computation is performed to assess the distribution of 

errors in the registration of the two clouds. M3C2 is the 

preferred method for cloud distance computations as it 

considers the normal distance between compared cloud 

surfaces rather than an absolute distance between 

adjacent points, which conventional cloud-to-cloud 

computations provide.  

The M3C2 starts by designating "core" points – or 

query points – from the base cloud. These core points are 

locations where the M3C2 distances are computed. To 

generate the core points, the points surrounding each base 

cloud point are sampled and used to generate a 

representative plane in space, with the core point being at 

the center of that plane. A normal vector is centered at 

each core point (CloudCompare). In this way, surface 

roughness, which may be present in the model, is 

neutralized, giving a more realistic representation of the 

distance between clouds. Once the normal vector is 

established at each core point, a cylinder of customizable 

diameter is projected in both directions from the core 

point along the axis of the normal vector. The distance to 

the adjacent cloud is computed based on the average 

distance of the points present within the cylinder relative 

to the core point location. The result is reported as the 

M3C2 distance, generally expressed using the mean 

distance (μ) for all core points assessed and the standard 

deviation of the distances (σ).  

The M3C2 computation requires a base cloud with 

relatively dense and uniform point cloud density for the 

computation of the normal vector. The UAV 

photogrammetry point cloud was used as the base cloud 

for this assessment, given the regular point distribution 

across the site as compared with the TLS point cloud, 

which contains numerous voids.  

For the generation of the normal vector, all 

neighboring points within a selected radius of each core 

point are used. The radius is a function of the point 

density and surface roughness; insufficient point cloud 

density would require a larger radius for normal 

computation to ensure a sufficient sample size, however 

excessive radius will introduce error into the calculation 

by smoothing features out of the surface expression. Too 

small of a radius, conversely, prohibits determination of 

a normal direction due to an insufficient number of points 

to sample (CloudCompare). Given the point cloud 

characteristics, a minimum radius of 1.5 m was necessary 

to minimize invalid normal computations at most core 

points. 

The cylindrical normal projection centered on the 

core points is used to delineate the points in the compared 

cloud which are used to compute the cloud-to-cloud 

distances. The diameter of the projection needs to be 

adequately sized such that the computation can detect a 

sufficient number of points from the compared cloud to 

generate a reliable M3C2 distance (CloudCompare). A 

projection diameter of 1.5 m was used in consideration of 

the cloud properties.  

2.3.5. GigaPan Panorama 

The terrestrial photos were merged into a high-

resolution panorama using GigaPan's proprietary 

software, Stitch (2013). Striving for a typical 30% 

overlap between adjacent photos ensures any distortion 

between input images is minimized (Lato, Smebye, and 

Kveldsvik 2017). The resultant image was composed of 

132 photos with a total size of 1328 megapixels.  

3. Results & Discussion 

3.1 TLS Cloud Density  

Point cloud densities were calculated as the number 

of points in the trimmed cloud, divided by the surface 

area of the ROI. The surface area was generated from the 

TLS point cloud using the Poisson Surface 

Reconstruction plug-in in CloudCompare. The plug-in 

applies a triangular mesh generation algorithm by Misha 

Kazhdan of Johns Hopkins University (2006).  

A summary of the point cloud densities by ROI is 

provided in Table 1, and the overall point cloud density 

distribution is illustrated in Figure 4a. No clear 

correlation is evident between the range of the scan and 

the point cloud density, except for a division between 

north and south ROIs. This suggests that the variation of 

point densities between ROI scans is influenced more 

heavily by other factors, such as atmospheric or 

reflectivity conditions than it is by range. There is a 

substantial reduction in the number of points between the 

raw data and the trimmed data for each ROI – especially 

for ROI 130, where almost   92% of  the total data points  



 

 

 

 
Figure 4. Local absence of laser reflectivity evident in raveled 

coal-rich material at a daylighting section of the coal seam. a) 

Coal seam location within slope area, b) TLS point cloud at 

coal seam location., c) GigaPan image of coal seam location 

(scaled approximately with image b) 

collected were localized in midair between the slope 

surface and the equipment. This represents laser 

reflections caused by atmospheric issues, which is 

exacerbated in the long-range mode of the system (e.g. 

excessive moisture, suspended particles).  

Slope areas void of points or with locally low point  

cloud density were identified and compared with the 

GigaPan images to qualitatively assess any trends 

between point density and surface material. In general, it 

was observed that coal-rich areas correlated with lower 

laser returns. Several areas of the slope characterized by 

sloughed or talus/ravelled coal on the benches were noted 

to have produced no reflections (Figure 4). 

3.2 Assessment of Registration Methods 

The results of the cloud registration were assessed using 

the M3C2 plug-in in CloudCompare. Methods assessed 

included 1) automated (ICP) fine registration, 2) manual 

registration, and 3) ICP applied to a sectioned cloud. The 

registration results by method are provided in Figure 5. 

For convention, positive values represent the TLS cloud 

positioned on top of the UAV points; negative values 

indicate the UAV cloud positioned on top.  

Fine registration using the ICP method (Method 1) 

yielded a mean M3C2 distance of 55 mm and a standard 

deviation of 294 mm. Due to the inequality in point 

densities across the TLS cloud, this registration method 

introduced a registration bias. The denser half of the site 

was well aligned as it had a higher component of the point 

population, while the lower density areas exhibited large 

offsets between point clouds (Figure 5a).  

To counter the effect of the density bias described 

above, manual cloud registration was used (Method 2). 

This approach mitigates the point density bias apparent 

in Method 1 as the user can evenly distribute the selection 

of corresponding points throughout the surface, thereby 

applying even weighting across the entire slope. Using 

manual registration achieved an M3C2 mean distance of 

4 mm and a standard deviation of 191 mm (Figure 5b).  

The third approach (Method 3) which was undertaken 

involves sectioning the point cloud into quadrants and 

individually registering each quadrant using ICP. This 

method addressed the issue of bias in the point cloud 

while being able to capitalize on the rapid computations 

available with automated ICP registration. The execution 

of this method took into account the transition between 

high- and low-density cloud areas, with each partition 

having relatively consistent or evenly distributed point 

density to avoid density bias. The resultant registration 

(Figure 5c) was improved to a mean M3C2 distance of -

5 mm and a standard deviation of 136 mm. The final 

surface model was assessed based on registration 

Method 3 (Figure 5c). 

As shown in Table 2, the overall model is generally 

well registered, however several areas demonstrate 

excess misalignment (i.e. standard deviations in excess of 

about 200 mm), notably the south flank and the upper 

north quadrant. The well-aligned areas have a mean 

distance of -1 mm, and a standard deviation of 117 mm.  

 

Table 1. Summary of Point Cloud Densities for TLS ROIs 

ROI ID 
Range* 

(meters) 

Number of Raw 

Points 

Number of Points 

after Trimming 

Approx. Surface 

Area (m2) 

Overall Density 

(points/m2) 

101 479 – 645 8 858 565 5 607 913 129 000 43.5 

102 406 – 476 2 832 468 886 094   32 000 27.7 

129 436 – 720 2 936 640 686 920 146 000 4.7 

130 694 – 918 1 244 800 77 943 110 000 0.71 

131 555 – 713 1 477 567 385 124   80 000 4.8 

* Distance from the TLS base station to the slope face.  



 

  
Figure 5. M3C2 Distances based on Method 1 (a), 

Method 2 (b), and Method 3 (c). 

Table 2. Variation in Registration by Slope Area 

Location 
M3C2 Distance (mm) 

Mean Standard Deviation 

South Flank 0 243 

North Flank -71 161 

Upper North Quadrant -36 202 

Well Aligned Areas 1 117 

Overall -5 136 

 

On the south flank, the GigaPan panorama shows the 

surface to have a highly notched and serrated structure 

(Figure 6). Given the angle of the TLS shot, depressions 

and notches on the slope face were poorly captured by 

the TLS. This is paired with the resolution of the UAV 

scan failing to capture the detail of the sharp protrusions 

and depressions of the rock, and resulting in excessive 

smoothing of the surface. The result is a mean M3C2 

distance of zero, and a high standard deviation of 

243 mm. 

The upper north quadrant (central part of ROI 130) 

and north flank had mean M3C2 distances of -36 mm and 

-71 mm, respectively. Reviewing the TLS input cloud, 

point acquisition in these areas was poor. With 

insufficient TLS points, the M3C2 computation in this 

area becomes unreliable due to low sample size. In these 

areas, the merged point cloud is based primarily on the 

UAV photogrammetry cloud. 

3.3 Core Point Positions 

The performance of the merged point clouds as a 

complete acquisition is based on the position of the core 

points relative to the original input data. To assess which 

 
Figure 6. Sample of registration error between the point 

clouds. (a) Slope area, adapted from Figure 5. (b) Cloud model 

as viewed in CloudCompare (UAV blue, TLS white). (c) 

GigaPan image of slope (scaled with figure b). Red arrows 

indicate corresponding points between (a) and (b). 

input cloud is dominant in the selection of core points in 

the merged model, the core points were exported as a new 

point cloud and compared with the input TLS and the 

UAV point clouds individually using M3C2. 

The core points generated by the merged clouds are 

positioned at the weighted average point between the 

input cloud surfaces, noting that where only one input 

cloud is present, the core points represent the average 

surface of the singular cloud. As such, the location of the 

core points is dependent on the density of each cloud and 

the separation between them (Figure 7).  

Where the TLS cloud is significantly denser than the 

UAV photogrammetry cloud (TLS cloud density >> 

3.2 points/m2), the core points are generated based 

primarily on the TLS cloud, and the error in the merged 

cloud is based on the accuracy of the TLS acquisition. 

Where the TLS cloud is absent or sparse (e.g. less than 

3.2 points/m2), the error is dependent on the UAV 

acquisition and/or registration.  

The mean M3C2 distance calculated against the TLS 

input cloud is -1 mm with a standard deviation of 46 mm. 

In comparison, the mean distance calculated against the 

UAV photogrammetry cloud is 8 mm with a standard 

deviation of 142 mm. This corroborates that the 

generation of core points is primarily based on the TLS 

input cloud, and that the estimated registration error in 

the merged cloud is mostly attributable to the UAV data. 

This also allows us to recognize that where the TLS cloud 

is dense, any separation between TLS and UAV clouds 

has little impact on the error present in the merged model.  

 



 

 

 

 
Figure 7. Examples of core point positions (red) based on 

input cloud (blue – UAV; white – TLS) characteristics. 

3.4 Error Assessment  

The goal of this study was to estimate the error 

compounded as a result of merging the point clouds, and 

to inform LOD determination for future change detection 

assessments of the subject slope. 

 The error in the final merged point cloud was 

evaluated using M3C2 to evaluate the separation between 

the two input clouds. By determining the distance 

between point clouds where both clouds are present, the 

results can be used as a calibration tool for the 

registration error, which can be extrapolated to estimate 

the error in areas where only one cloud is present.  

The process used is analogous to LOD assessment for 

change detection using M3C2 (Deane et al. 2020; Fey 

and Wichmann 2017); Deane et al. (2020) considers any 

change calculated below two standard deviations as 

measurement randomness. In the context of this study, 

we define two standard deviations of the M3C2 distance 

as the error present in the merged point cloud. Pursuing 

this approach, the registration error for the optimized 

merged cloud is estimated to be a maximum of two times 

the standard deviation of 136 mm (Figure 5), equaling 

272 mm. Extrapolating this error estimate to areas where 

the TLS point cloud is absent, it is expected that the 

inferred TLS surface would generally be within 272 mm 

of the UAV surface.  

3.4.1. Spatial Distribution of Error 

With consideration for the performance of the merged 

cloud outlined in Section 3.2 and the relative cloud 

densities outlined in Section 3.1, we consider the 

calculated error margin is localized to areas of the merged 

point cloud where the TLS point cloud density is less than 

or similar to that of the UAV point cloud density.  

To illustrate this, the M3C2 distance results in Figure 

5 are provided with distances greater than 272 mm being 

colourized, highlighting areas of the slope where the 

separation between the clouds is larger than the expected 

error. This condition is most prominent on the south 

flank, where the maximum M3C2 distance is about 

1.0 m. However, given the TLS density in this area is 

high, the resultant core points are generated close to the 

TLS cloud, nullifying the fact that the separation between 

clouds is high.  

Additional locations of excess M3C2 distance are 

present in the vicinity of ROI 130, where the TLS point 

cloud is most sparse and unable to detect local features 

such as boulders atop benches or the concrete bases for 

the monitoring prisms. These occurrences are highly 

localized and could be manually assessed for changes at 

the time of future change detection processing. 

Alternatively, if a higher error could be tolerated for the 

project applications, it may be possible to use an LOD of 

500 mm in the change detection analysis to further 

reduces the number of highlighted areas within the slope, 

therefore reducing the effort in the manual assessment of 

those locations.  

Figure 8 demonstrates the adjustments to the error 

estimate considering the removal of M3C2 comparison 

for areas with high TLS point density (namely, the south 

ROI areas which have point densities greater of 25 

points/m2, significantly higher than the average UAV 

point cloud density of about 3.2 points/m2), and increase 

to the colourized limit to 500 mm.  

Based on Figure 8, a change detection executed with 

the final merged point cloud would have an associated 

registration error of 0.5 m, and in turn would be capable 

of reliably detecting displacements greater than 0.5 m. 

The error is attributable primarily to the lower accuracy 

acquisition method (the UAV photogrammetry) and 

localized only to areas where the cloud composition 

consists primarily of the lower accuracy point cloud.  
 

 
Figure 8. M3C2 results for merged clouds with significant 

error being shown for cloud distances in excess of 500 mm in 

the North ROI areas. M3C2 results nullified for the South 

ROIs where TLS point density >> UAV density.  

4. Conclusions 

TLS is an established method for site characterization 

which can be used effectively for change detection 

applications, but can be highly sensitive to adverse site 

conditions. In suboptimal conditions, other less accurate 

acquisition methods may be used to fill in local gaps in 

the TLS and generate a complete surface model. The 

registration of the merged clouds can be assessed using 

an M3C2 computation. 

The methodology was applied in a case study of an 

open pit mine site using UAV and TLS acquisitions. The 

merging of the UAV to the TLS cloud introduced an 

estimated registration error of 272 mm in the regions 

where TLS data was poor or absent. By supplementing it 

with the UAV data, the TLS cloud (which was originally 

considered unsuitable for use) can be applied to change 

detection analyses for identification of instability events 

with a minimum thickness of 272 mm, such as rockfalls 

and sloughs.  



 

 

 

Acknowledgements 

The authors wish to acknowledge the mine personnel 

for their contributions to the work presented in this paper 

and for facilitating access to the subject site, as well as 

for providing slope monitoring data for comparison with 

our acquisitions. Funding for this study was provided by 

the Natural Sciences and Engineering Research Council 

of Canada (NSERC ALLRP 587029-23).   

References 

ADAM Technology "3DM Analyst", Available at: 

www.adamtech.com.au. 

Abellán, Antonio, Thierry Oppikofer, Michel Jaboyedoff, 

Nicholas J. Rosser, Michael Lim, and Matthew J. Lato. 2014. 

"Terrestrial laser scanning of rock slope instabilities."  Earth 

Surface Processes and Landforms 39 (1):80-97. 

https://doi.org/10.1002/esp.3493. 

Besl, Paul J., and Neil D. McKay. 1992. "Method for 

registration of 3-D shapes." Proc.SPIE, 1992/4//. 

Bidwell, Andrew, Olivia Wojcieszynski, James Russell, 

and Kate Burnham. 2022. "Considerations for GNSS 

Monitoring of Pit Slope Displacements." International Slope 

Stability 2022 Symposium, Tucson, Arizona, 2022. 

Bolkas, Dimitrios, Gabriel Walton, Ryan Kromer, and 

Timothy Sichler. 2021. "Registration of multi-platform point 

clouds using edge detection for rockfall monitoring."  ISPRS 

Journal of Photogrammetry & Remote Sensing 175:366-385. 

https://doi.org/10.1016/j.isprsjprs.2021.03.017. 

Chen, Yang, and Gérard Medioni. 1992. "Object modelling 

by registration of multiple range images."  Image and Vision 

Computing 10 (3):145-155. https://doi.org/10.1016/0262-

8856(92)90066-C. 

CloudCompare. "CloudCompareWiki.", [online] Available 

at: http://www.cloudcompare.org/doc/wiki/ 

"CloudCompare (version 2.12.4)", 2023. Available at: 

www.cloudcompare.org/ 

Deane, Evan, Renato Macciotta, Michael T. Hendry, Chris 

Gräpel, and Roger Skirrow. 2020. "Leveraging historical aerial 

photographs and digital photogrammetry techniques for 

landslide investigation-a practical perspective."  Landslides 17 

(8):1989-1996. https://doi.org/10.1007/s10346-020-01437-z. 

Fey, Christine, and Volker Wichmann. 2017. "Long-range 

terrestrial laser scanning for geomorphological change 

detection in alpine terrain - handling uncertainties."  EARTH 

SURFACE PROCESSES AND LANDFORMS 42 (5):789-802. 

https://doi.org/10.1002/esp.4022. 

Francioni, Mirko, Riccardo Salvini, Doug Stead, and John 

Coggan. 2018. "Improvements in the integration of remote 

sensing and rock slope modelling."  Natural Hazards 90 

(2):975-1004. https://doi.org/10.1007/s11069-017-3116-8. 

GigaPan. 2012. GigaPan EPIC Pro User Guide. GigaPan 

Systems. Available at: 

www.gigapan.com/cms/manual/pdf/epicpro-manual.pdf 

GigaPan "Stitch, Version 2.1", Available at: 

www.gigapan.com/cms/support/download-gigapan-stitch 

Huntley, David, Peter Bobrowsky, Drew Rotheram-Clarke, 

Roger Macleod, Robert Cocking, Jamel Joseph, Jessica 

Holmes, Shane Donohue, Jonathan Chambers, Phil Meldrum, 

Paul Wilkinson, Michael Hendry, and Renato Macciotta. 2021. 

"Protecting Canada's Railway Network Using Remote Sensing 

Technologies." In: Singhroy, V. (eds) Advances in Remote 

Sensing for Infrastructure Monitoring. Springer Remote 

Sensing/Photogrammetry. Springer, Cham., 81-109. 

https://doi.org/10.1007/978-3-030-59109-0_4 

Kazhdan, Misha. “Poisson Surface Reconstruction”, 

[CloudCompare plugin]. Available at: 

www.cloudcompare.org/doc/wiki/index.php/Poisson_Surface_

Reconstruction_(plugin) 

Kromer, Ryan A., D. Jean Hutchinson, Matt J. Lato, Dave 

Gauthier, and Thomas Edwards. 2015. "Identifying rock slope 

failure precursors using LiDAR for transportation corridor 

hazard management."  Engineering Geology 195:93-103. 

https://doi.org/10.1016/j.enggeo.2015.05.012. 

Küng, O., C. Strecha, A. Beyeler, J. C. Zufferey, D. 

Floreano, P. Fua, and F. Gervaix. 2012. "The Accuracy of 

Automatic Photogrammetric Techniques on Ultra-light UAV 

Imagery."  Int. Arch. Photogramm. Remote Sens. Spatial Inf. 

Sci. XXXVIII-1/C22:125-130. 

https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-125-

2011. 

Lato, M., H. Smebye, and V. Kveldsvik. 2017. "Mapping 

the Inaccessible with LiDAR and Gigapixel Photography: A 

Case Study from Norway." 

Lato, Matthew. 2010. "Geotechnical applications of 

LiDAR pertaining to geomechanical evaluation and hazard 

identification." 

Lato, Matthew J., D. Jean Hutchinson, Dave Gauthier, 

Thomas Edwards, and Matthew Ondercin. 2015. "Comparison 

of airborne laser scanning, terrestrial laser scanning, and 

terrestrial photogrammetry for mapping differential slope 

change in mountainous terrain."  Canadian Geotechnical 

Journal 52 (2):129-140. https://doi.org/10.1139/cgj-2014-

0051. 

Macciotta, Renato, and Michael T. Hendry. 2021. "Remote 

Sensing Applications for Landslide Monitoring and 

Investigation in Western Canada."  Remote Sensing 13 (3). 

https://doi.org/10.3390/rs13030366. 

Martínez-Carricondo, Patricio, Francisco Agüera-Vega, 

Fernando Carvajal-Ramírez, Francisco-Javier Mesas-

Carrascosa, Alfonso García-Ferrer, and Fernando-Juan Pérez-

Porras. 2018. "Assessment of UAV-photogrammetric mapping 

accuracy based on variation of ground control points."  

International Journal of Applied Earth Observation and 

Geoinformation 72:1-10. 

https://doi.org/10.1016/j.jag.2018.05.015. 

Optech. ILRIS-LR Summary Specification Sheet. 

Available at: 

www.ticgroup.com.tw/menu/products/sur/products/3D_Laser/

ILRIS%20LR.pdf 

Rodriguez, J., R. Macciotta, M. T. Hendry, M. Roustaei, C. 

Gräpel, and R. Skirrow. 2020. "UAVs for monitoring, 

investigation, and mitigation design of a rock slope with 

multiple failure mechanisms—a case study."  Landslides 17 

(9):2027-2040. https://doi.org/10.1007/s10346-020-01416-4. 

Sharon, Robert, and Erik Eberhardt. 2020. Guidelines for 

Slope Performance Monitoring: CSIRO PUBLISHING. 

Stead, Doug, Davide Donati, Andrea Wolter, and Matthieu 

Sturzenegger. 2019. "Application of Remote Sensing to the 

Investigation of Rock Slopes: Experience Gained and Lessons 

Learned."  ISPRS International Journal of Geo-Information 

8:296-296. https://doi.org/10.3390/ijgi8070296. 

Wollenberg-Barron, Taylor Del Gerhard, Renato Macciotta 

Pulisci, Chris Gräpel, Kristen Tappenden, and Roger Skirrow. 

2023. "Comparison of Rating Systems for Alberta Rock Slopes, 

and Assessment of Applicability for Geotechnical Asset 

Management."  Geosciences 13 (11):348. 

https://doi.org/10.3390/geosciences13110348 

 

 

http://www.adamtech.com.au/
https://doi.org/10.1002/esp.3493
https://doi.org/10.1016/j.isprsjprs.2021.03.017
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/0262-8856(92)90066-C
http://www.cloudcompare.org/doc/wiki/
http://www.cloudcompare.org/
https://doi.org/10.1007/s10346-020-01437-z
https://doi.org/10.1002/esp.4022
https://doi.org/10.1007/s11069-017-3116-8
https://www.gigapan.com/cms/manual/pdf/epicpro-manual.pdf
https://www.gigapan.com/cms/support/download-gigapan-stitch
https://doi.org/10.1007/978-3-030-59109-0_4
https://www.cloudcompare.org/doc/wiki/index.php/Poisson_Surface_Reconstruction_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php/Poisson_Surface_Reconstruction_(plugin)
https://doi.org/10.1016/j.enggeo.2015.05.012
https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-125-2011
https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-125-2011
https://doi.org/10.1139/cgj-2014-0051
https://doi.org/10.1139/cgj-2014-0051
https://doi.org/10.3390/rs13030366
https://doi.org/10.1016/j.jag.2018.05.015
http://www.ticgroup.com.tw/menu/products/sur/products/3D_Laser/ILRIS%20LR.pdf
http://www.ticgroup.com.tw/menu/products/sur/products/3D_Laser/ILRIS%20LR.pdf
https://doi.org/10.1007/s10346-020-01416-4
https://doi.org/10.3390/ijgi8070296
https://doi.org/10.3390/geosciences13110348

