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Abstract

Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted,
large amplitude peristaltic body deformations. This remarkable behavior has been known for
centuries. Yet, its function remains controversial, and is even viewed as a functionless ances-
tral vestige. Here, by examining swimming Euglena gracilis in environments of controlled
crowding and geometry, we show that this behavior is triggered by confinement. Under these
conditions, it allows cells to switch from unviable flagellar swimming to a new and highly
robust mode of fast crawling, which can deal with extreme geometric confinement and turn
both frictional and hydraulic resistance into propulsive forces. To understand how a single cell
can control such an adaptable and robust mode of locomotion, we developed a computational
model of the motile apparatus of Euglena cells consisting of an active striated cell envelope.
Our modeling shows that gait adaptability does not require specific mechanosensitive feedback
but instead can be explained by the mechanical self-regulation of an elastic and extended mo-
tor system. Our study thus identifies a locomotory function and the operating principles of the
adaptable peristaltic body deformation of Euglena cells.
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Euglenids are a diversified family of unicellular flagellated protists abundant in a variety of aquatic ecosys-1

tems. Many species of euglenids are capable of performing large amplitude, elegantly coordinated cell body2

deformations. This behavior is referred to as the euglenoid movement or metaboly.1,2,3 Depending on the3

species and within a species, metaboly can range from rounding and gentle bending or twisting to periodic4

highly concerted peristaltic waves traveling along the cell body. Observations of metaboly date back to the5

first microscopists,4 and have fascinated researchers across disciplines ever since. It is known that an active6

striated cell envelope, called pellicle, controls cell shape.1,5,6,7 However, the precise mechanism by which7

this cortical complex performs metaboly, including the molecular motors involved, is not known. More8

strikingly, the function of this behavior remains elusive.9

Metaboly has been interpreted as a mode of locomotion in a fluid environment.8 In fact, the peristaltic10

version of metaboly has inspired prototypical models for low Reynolds number swimming,9 and theoretical11

studies have shown that, thanks to its non-reciprocal nature, it is a competent swimming strategy.7 Yet, since12

euglenids exhibiting metaboly are also capable of flagellar locomotion,10 which allows them to move in a13

fluid about 50 times faster, swimming is not a compelling function justifying metaboly, a behavior requiring14

an extended and intricate cellular machinery.1,2,3 In euglenids feeding on large eukaryotic cells, it is accepted15

that metaboly enables the large cell deformations required for phagocytosis. Since eukaryovorous ancestors16

have evolved into osmotrophic and autotrophic euglenids, which do not engulf large particles but still exhibit17

metaboly, it has been argued that metaboly in these species may be an ancestral vestige without a specific18

function.11,12,13 It has also been speculated that metaboly may be useful to break the protective cyst that19

some species can secrete and exit from it, to move in confined environments when some species penetrate20

dead animals or eggs to feed, or when other species lacking emergent flagella crawl in granular media.1,14
21

These hypotheses, however, have not been systematically examined.22

Confinement triggers metaboly23

To investigate the role of confinement in the behavior of euglenids and their motility, we examined cultures24

of Euglena gracilis, a prototypical photosynthetic species exhibiting metaboly, at various degrees of crowd-25

ing (Fig. 1a and Supplementary Movie S1). In dilute cultures, cells exhibited fast swimming in the posterior-26

to-anterior direction powered by an anterior flagellum, cruising at ∼ 68µm/s. During flagellar swimming,27

cells maintained a fixed cigar shape ∼ 50µm long and with a maximum diameter of ∼ 9µm. Cells performed28

sharp turns as previously described.15 In crowded cultures, presumably triggered by mechanosensation at29

the cell envelope and/or at the flagella,1 cells exhibited a variety of behaviors in addition to fast swimming,30

including rounding, bulging, and large amplitude periodic cell deformations. Rounding was often associated31

with cell spinning, whereas metaboly did not seem to have a significant effect in locomotion.32

We also triggered metaboly by confining cells between two glass plates separated along one side by a33

spacer to produce a wedge-shaped fluid chamber. Cells in the narrower regions of the chamber (with a typical34

gap of ∼ 5µm) systematically developed large amplitude periodic shape changes. Using brightfield reflected35

light microscopy (Supplementary Methods), we were able to record simultaneously and continuously in time36

the shape changes and the reconfigurations of the pellicle envelope in the plane of the glass plate (Fig. 1b and37

Supplementary Movies S2 and S3). The pellicle is composed of interlocking narrow and long proteinaceous38

strips, often arranged helically and spanning from the anterior to the posterior ends of the cell. These strips39

lie beneath the plasma membrane and are subtended by systems of microtubules.2 Previous observations40

in another species (Euglena fusca) showed that cell deformations were accompanied by sliding between41

adjacent pellicular strips, which kept constant their length and width,1,5,16 similarly to how flagellar shape42

depends on microtubule sliding in the axoneme.17 Inter-strip active sliding results in local deformation of43

the cell envelope, a simple shear along the direction of the strips (Fig. 1c), which when coordinated in space44

and time can explain the shape dynamics during metaboly.7,18
45

Our continuous observations were consistent with this sliding model; strip width remained nearly con-46

stant (∼ 560 nm), and in agreement with a simple shear local deformation of the pellicle, the total cell area47

remained nearly constant during shape transformations (Supplementary Methods). To further examine the48
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shape-morphing mechanism, we developed a theoretical model linking strip curvature on a planar surface,49

as in Fig. 1(b), and differential sliding along this strip, Fig. 1(d) and Supplementary Note 1. It allowed us to50

quantify over time the sliding displacement along selected strips, Fig. 1(e), finding net sliding inter-strip dis-51

placements of about one micron during the shape excursion in Fig. 1(b). By comparing sliding displacements52

at different instants, we estimated sliding velocities of up to ∼ 1µm/s, compatible with those of molecular53

motors along microtubules.19 Besides confirming the pellicle strip sliding model, these observations showed54

that cell volume was nearly constant during metaboly (Supplementary Methods). Interestingly, cells per-55

forming metaboly confined between two parallel plates exhibited directed motion in the anterior-to-posterior56

direction at speeds ranging between 0.08 and 0.2 body lengths per cycle (Supplementary Movies S2 and S3).57

To mimic the more realistic situation of multidimensional confinement while having a high degree of58

experimental control, we drove swimming cells towards tapered glass capillaries with diameter ranging59

between 300µm and 6µm with slopes always smaller than 0.006 in the region of interest, Fig. 1(f) and60

Supplementary Fig. 2. When the diameter of the capillary was significantly larger than the cell diameter,61

cells exhibited fast swimming. As cells moved towards the narrow end of the capillary, they collided with the62

wall and started developing the behaviors described in the crowded cultures, including bulging and rounding,63

Supplementary Movie S4. By rounding, some cells were able to switch their orientation in the capillary,64

Supplementary Movies S4 and S5. Most cells eventually developed characteristic highly coordinated and65

periodic peristaltic body deformations consisting of a bulge moving in the posterior-to-anterior direction66

followed by a recovery phase during which the bulge at the posterior end reappears at the expense of that at67

the anterior end, Fig. 1(f)iv and Supplementary Movie S4. Thus, similarly to culture crowding, confinement68

provided by the capillary triggered changes in cell behavior, which now seemed to acquire a function: cell69

rounding to turn and metaboly to crawl.70

Metaboly is an effective crawling strategy71

Close examination of cells performing metaboly in the capillary showed that during their gait, the bulge72

moving in the posterior-to-anterior direction transiently contacted the capillary wall propelling the cell in73

the anterior-to-posterior direction, opposite to that of flagellar swimming, Fig. 2(a)i and Supplementary74

Movie S6. The kinematics of the gait were highly non-reciprocal, and thus in principle compatible with self-75

propulsion in the non-inertial limit of our experiments.20 Since cells could switch direction in the capillary,76

we observed cells crawling by metaboly away from and towards its narrower end. As a result, we were able77

to examine the features of this mode of locomotion at varying degrees of confinement. To ease understanding78

of pellicle kinematics, we arranged images in the figures and movies so that cells crawl from left to right. At79

higher confinement, cells adapted their gait by developing a broader bulge, which remained in contact with80

the wall during a larger fraction of the gait, Fig. 2(a)ii and Supplementary Movie S6. However, the essential81

features of the crawling mechanism remained the same.82

Kymographs of cells crawling showed the high regularity of the gait and its adaptation to increasing83

confinement, Fig. 2(b). They also revealed that the net cell displacement was the result of a power phase,84

when the bulge travels towards the anterior end, and a recovery phase with backward cell motion. Remark-85

ably, cells were able to crawl up to very high degrees of confinement, despite the little space available for86

shape transformations. Cells crawled fastest, at about 2.5µm/s (0.4 body lengths per cycle), at intermediate87

degrees of confinement, where the bulge established sustained contact with the capillary walls and there was88

sufficient space for significant shape excursions, Fig. 2(c). The period of the gait, however, was largely inde-89

pendent of confinement, Fig. 2(d). Interestingly, the very small crawling velocities we recorded for weakly90

confined cells (Fig. 2(a) and largest diameter in Fig. 2(c)), which represent a transition between crawling and91

swimming, are in agreement with a theoretical study examining the complementary situation of swimmers92

undergoing large shape changes near walls under weaker capillary confinement.21
93

We then wondered if flagellar locomotion of fixed-shape cells would be effective in this situation. Con-94

fined cells propelled by flagella would have to overcome a frictional force against the capillary walls and a95

hydraulic resistance. We theoretically estimated that such cells would move 10 to 20 times slower than those96
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crawling by metaboly, Supplementary Note 3. These estimations were consistent with observations of stuck97

cells beating their flagella, Supplementary Movie S8. Thus, by developing metaboly under confinement,98

cells switched from ineffective flagellar propulsion to a highly robust crawling mode of locomotion.99

Mechanism for locomotion during metaboly100

To propel their body forward during migration in a low Reynolds number limit, Euglena cells must exert self-101

equilibrated forces on their environment, here, the walls and the fluid within the capillary. To experimentally102

characterize the physical interaction between cells and their environment, we drove cells not exhibiting103

deformations into narrow sections of capillaries by applying a known pressure difference while recording104

cell velocity, contact area, and motion of suspended beads, Supplementary Movie S7. These observations105

established that confined cells acted as hydraulic plugs and characterized the friction between cells and the106

wall as viscous and confinement-dependent, Supplementary Note 2.107

We attempted to understand force transmission during crawling by metaboly in the light of a prevalent108

model of animal cells crawling in narrow spaces. According to this model, non-adherent confined cells109

generate propulsive forces through retrograde actin flows and unspecific friction with the confining wall.110

This propulsive force is balanced by a resistive hydrodynamic force required to displace the water column111

in the capillary,22,23,24,25,26 unless water transport is sufficiently fast across the cell.27 This framework has112

explained why a large hydraulic resistance relative to the wall friction stalls cell motion and results in113

fast retrograde flow, whereas vanishing hydraulic resistance leads to fast cell motion and minimal sliding114

between the polarized actin cytoskeleton relative to the wall. Transposing this model to Euglena cells115

crawling by metaboly, the backward motion of the pellicle bulge would be the analog of retrograde actin116

flow of animal cells, Fig. 3(a).117

To test this analogy, we developed an idealized theoretical model of the power phase of the gait con-118

sistent with the shape-morphing principle of the pellicle of euglenids,7,18 Fig. 3(b). In this model, a bulge119

establishes contact with a capillary of radius r over a length `c, and moves backwards at speed c < 0 in120

the reference frame of the cell, which otherwise is a cylinder of radius r0. The strips in the contact region121

form an angle θ∗ with the cell axis satisfying cos θ∗ = r0/r. To weigh the relative importance of hydraulic122

and frictional resistance, we introduced the non-dimensional quantity ξ = µwall`c/(αr), where µwall is the123

wall-cell friction coefficient and α is a hydraulic resistance coefficient, Supplementary Note 4.124

We first considered the limit of vanishing hydrodynamic resistance relative to wall friction, expressed125

as ξ → +∞. In this situation, the cell velocity v = −(1 − cos θ∗) c was obtained from the kinematics of the126

propagating bulge by requiring no slippage between the pellicle and the wall, Fig. 3(c)i and Supplementary127

Movie S9. This expression is consistent with the very small cell velocities at extreme confinement, where128

r ≈ r0 or cos θ∗ ≈ 1, Fig. 2(c). To examine the effect of cell motion on the fluid inside the capillary in129

this no-slip scenario, we evaluated with our model the induced water flow rate Q in either side of the bulge,130

which we assumed to act as a hydraulic plug. Strikingly, we found that as cells crawl without sliding in a131

given direction, they pump water in the opposite direction at a flow rate given by Q = πr2(1−cos θ∗) cos θ∗c.132

This counterintuitive hydraulic behavior results from the peristaltic shape changes of metaboly, and funda-133

mentally differs from that of non-adherent polarized animal cells, which move like piston-like fixed-shape134

squirmers.24,28 We then reasoned that, if crawling Euglena cells in this limit were pumping fluid backwards,135

then hydraulic resistance could in fact act as a propulsive force.136

To test theoretically this idea, we placed ourselves in the opposite limit of vanishing wall friction relative137

to hydraulic resistance, ξ → 0, and computed cell velocity by requiring zero induced flow rate as the bulge138

moves backwards. We found that in this scenario the pellicle slides relative to the wall. Furthermore,139

instead of stalling under high hydraulic resistance like polarized animal cells,24 peristaltic Euglena cells140

actually move at a faster speed v = −
(
1 − cos2 θ∗

)
c, Fig. 3(c)iii and Supplementary Movie S9. In an141

intermediate regime, in which propulsion is governed by the balance of finite wall friction and hydrodynamic142

resistance, our model predicted that cells are propelled by hydraulic resistance and dragged by wall friction,143

opposite to polarized animal cells, Supplementary Note 4. In summary, despite seeming similarities between144
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the crawling modes of Euglena cells and of non-adherent polarized animal cells, our model highlighted145

fundamental differences associated with the large shape modulations of the former, and portrayed metaboly146

as a highly robust and adaptable mode of locomotion capable of using both frictional and hydraulic forces147

for propulsion depending on the mechanical nature of confinement. Furthermore, the fastest crawling cells148

in our experiments moved about 20 times faster than the fastest reported non-adherent polarized animal149

cells.26
150

One of the most striking predictions of this model is that confined Euglena cells, which act as hydraulic151

plugs, can move in a capillary without inducing any flow rate thanks to the shape deformations of metaboly.152

Supporting this prediction, we observed crawling cells accomplishing significant displacements next to stuck153

immobile cells, Fig. 3(d) and Supplementary Movie S10. In the absence of stuck cells, we visualized154

the flow generated by crawling cells tracking the motion of suspended micron-sized beads, Fig. 3(e) and155

Supplementary Movie S11. We found that beads in the vicinity of cells underwent rapid motions revealing156

local flows induced by shape changes and flagellar beating. These bead velocities, however, exhibited rapid157

decay away from the cell body, where they were consistent with Brownian motion in a quiescent fluid.158

Thus, in the light of our model, cells in our capillary experiments were close to the limit of high hydraulic159

resistance, which acted as the propulsive force. In agreement with this notion, we observed significant160

pellicle sliding in cells crawling and turning in a capillary, Fig. 3(f) and Supplementary Movies S5 and161

S12. By contrast and showing the robustness of metaboly, our model suggests that cells between glass162

plates, where hydraulic confinement is very low, crawled by exploiting frictional propulsion, Fig. 1(b) and163

Supplementary Movies S2 and S3.164

Computational model165

Our previous observations have established that Euglena cells develop highly concerted shape deformations166

to crawl under confinement, and that cells can adapt their gait to varying degrees of confinement between167

plates or in a capillary. We then tried to understand whether this complex adaptive behavior necessarily168

required a dedicated mechanosensing and mechanotransduction machinery or if, instead, the active pelli-169

cle could mechanically self-adapt its dynamics to a changing environment. To test this second possibility,170

we developed a theoretical and computational model of crawling in confinement by metaboly, which in-171

cluded the biological activity leading to strip sliding, the pellicle mechanics, and the interaction with the172

environment, Supplementary Note 5.173

Despite similarities, the actuation mechanism and molecular players involved in metaboly are far less174

understood than those behind the much faster flagellar beating.17 On the basis of calcium precipitation as-175

says and reactivation of metaboly in detergent-extracted cell models, inter-strip sliding is thought to depend176

on molecular motors distinct from flagellar dyneins and associated to microtubules positioned along pellic-177

ular strips, which are locally and dynamically activated by the release/sequestration of cytoplasmic calcium178

from narrow subpellicular channels of endoplasmic reticulum.6,29 In our model, we assumed that the space-179

time activation pattern driving cell deformations was unaffected by varying confinement, consistent with180

the confinement-independent period of metaboly, Fig. 2(d). We modeled the pellicle as an extended mo-181

tor system, and its activation as a space-time modulation of the sliding velocity between adjacent strips in182

the absence of force, v0
motor(s, t) where s is arc-length along the strips and t is time, Fig. 4(a)i,ii. Forces183

between adjacent strips in the sliding direction can affect the velocity of the motor system. We considered184

an affine relation between the force experienced by the motor system, τ, and the actual sliding velocity,185

vmotor, Fig. 4(a)iii.30,31 To determine the a priori unknown force distribution τ(s, t) acting on the extended186

motor system, we accounted for the pellicle elasticity and for its mechanical interaction with the environ-187

ment, i.e. the cellular pressure to maintain cell volume constant, hydraulic forces required to push the water188

column, and contact/frictional forces against the capillary, Fig. 4(a)iv. We designed the activity pattern,189

Fig. 4(a)ii, to match the typical shape dynamics of metaboly at low confinement.7 To solve the highly non-190

linear equations governing the active mechanics of the deformable pellicle under confinement, we developed191

a spline-based finite element computational method.192
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In the absence of confinement, this model rapidly reached a limit cycle (or gait) within a few peri-193

ods, exhibiting the characteristic peristaltic cell deformations of metaboly, Supplementary Movie S13. As194

confinement incrementally constrained the shape excursions, we observed that the model self-adapted by195

developing a new limit cycle consistent with the imposed confinement, Fig. 4(b), which led to cell migration196

in the presence of frictional wall coupling and/or hydraulic resistance, see Fig. 4(c,d) for the limits of high197

hydraulic resistance and high friction. Remarkably, the computational model reproduced all the features of198

confined crawling by metaboly reported in Fig. 2, including the kinematics of the gait under confinement,199

Fig. 4(b,c), and the non-monotonic relation between capillary diameter and cell velocity, Fig. 4(d), which we200

attributed to a tradeoff between the ability to develop large shape excursions at low confinement and the sus-201

tained contact of the bulge running along a longer cell at high confinement. In agreement with the theoretical202

model in Fig. 3(c), the computational model also predicted faster motion in the limit of high fluid resistance,203

in which the maximum velocity agreed quantitatively with our experiments. Taken together, these results204

support a view of the pellicle of euglenids as an elastic and extended motor system that, once biologically205

activated, can mechanically self-adjust to the degree of confinement to produce an effective gait.206

Outlook207

We have thus established that, in analogy with the mesenchymal-to-amoeboid transition of animal cells26 or208

the amoeboid-to-flagellar transition of Naegleria gruberi,32 Euglena gracilis develop a transition between209

flagellar and metaboly modes of locomotion triggered by confinement. Biophysically, the peristaltic move-210

ment of Euglena during metaboly provides a new and remarkably robust mechanism of fast cell crawling. It211

is unclear, however, whether Euglena take advantage of this capability in natural conditions, where they pre-212

dominantly swim in the water column. How and why Euglena cells retained an active pellicle, a vestige of213

a phagotrophic ancestry, and developed the ability to operate this machine in a non-reciprocal manner com-214

patible with effective crawling is intriguing, as further emphasized by our examination of confined metaboly215

in a primary osmotrophic and a phagotrophic species of euglenids (Supplementary Note 6). From an en-216

gineering point of view, the ability of the pellicle to mechanically self-adapt and maintain the locomotory217

function under different geometric and mechanical conditions represents a remarkable instance of mechan-218

ical or embodied intelligence,33,34 a design principle in bio-inspired robotics by which part of the burden219

involved in controlling complex behaviors is outsourced to the mechanical compliance of the materials and220

mechanisms that build the device.221
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Figure captions

Figure 1: Confinement triggers changes in cell behavior and metaboly. (a) Euglena cells in dilute cul-
tures (i) exhibited fast flagellar swimming without cell shape changes, at typical speeds of 68.2±1.13µm/sec
(SEM, n=50) or 1.31±0.03 body lengths/sec (SEM, n=50). In crowded cultures (ii) cells displayed a variety
of behaviors, including fast flagellar swimming (yellow arrow), cell rounding and spinning (red arrow), and
large amplitude cyclic cell body deformations – metaboly (purple ellipse), Supplementary Movie S1. (b)
When confined between glass plates, cells systematically developed metaboly. Observation using brightfield
reflected light microscopy revealed the reconfigurations of the striated cell envelope (pellicle) concomitant
with cell deformations in the plane of the glass plate (n=5 cells), Supplementary Movies S2 and S3. (c)
Schematic representation of the pellicle, the strip separation w, and the local mechanism of active deforma-
tion of the pellicle, according to which the relative sliding between strips produces a shear strain γ along the
direction of the strips. During the shape dynamics in (b) w remained nearly constant (559±0.003 nm, SEM,
n=100). (d) According to a mathematical model for the kinematics of the pellicle (Supplementary Note 1),
the rate of change of γ with arc-length s along a strip (measured from the anterior end) is given by the
curvature of the strip κ. By selecting strips in (b) emanating from the pole, where sliding is geometrically
constrained, we could quantify the sliding displacement between adjacent strips wγ required to bend an
initially straight strip (e), where the color-coding matches the strips highlighted in (b). (f) Cells swimming
into tapered capillaries transitioned from fast flagellar swimming (i) to developing large amplitude shape
excursions (ii) including rounding (iii) and the prototypical highly orchestrated peristaltic cell deformations
of metaboly (iv), Supplementary Movie S4. This transition between (i) and (ii) occurred at a ratio between
capillary and cell diameter of about 2.1 ± 0.05 (SEM, n=10).
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Figure 2: Metaboly is an effective crawling mode of locomotion under confinement. (a) At low confine-
ment, the bulge traveling backwards along the cell body transiently contacted the capillary walls, producing
a net forward motion (i). At higher confinement, cells adapted the gait, with a larger contact area of the bulge
and smaller amplitude of cell deformations. However, the crawling mechanism remained the same (ii). (b)
Kymographs of crawling Euglena gracilis under increasing confinement show the regularity of the gait, the
backward bulge motion, and the forward cell motion. Crawling by metaboly was effective up to very large
degrees of confinement (see the insets and Supplementary Movie S6). The normalized velocity expressed
in cell body lengths per period was maximum at an intermediated capillary diameter (c), whereas the period
of the gait was largely insensitive to confinement (d). The blue dashed lines in (c) and (d) are guides to the
eye. The capillary diameter dcap was normalized by the cell diameter dcell as it was free-swimming with a
fixed cigar shape in the wider part of the capillary (dcell ' 9µm). The error bars in (c) and (d) refer to the
standard error of the mean and the size of samples is indicated. Here one sample is a complete period, and
data was gathered from 16 cells.
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Figure 3: Mechanism of locomotion during metaboly. (a) (i) Canonical model of propulsion of non-
adherent polarized animal cells under confinement: frictional forces induced by actin retrograde flow propel
the cell forward against resistive hydraulic forces required to displace the water column in the capillary. (ii)
In Euglena cells crawling by metaboly, the backward-moving pellicle bulge is analogous to actin retrograde
flow in animal polarized cells. (b) Kinematics of the theoretical model for the power phase of metaboly. (i)
Transformation of an idealized cylindrical pellicle by a uniform shear γ along the strips. (ii) By propagating
a pellicle shear profile γ̄(s) along the cell body following γ(s, t) = γ̄(s − ct), we model a moving localized
bulge, which with our sign convention, moves leftwards at speed c < 0 in the frame of the cell. (c) In
the limit of infinite frictional coupling relative to hydraulic resistance (i), cell velocity is determined by
the no-slip condition in the contact region. As indicated by the blue control volume, metaboly then results
in net water pumping in the direction opposite to cell motion. The average fluid velocity vf is defined as
the flow rate Q divided by the cross-sectional area of the capillary. In the limit of zero frictional coupling
relative to hydraulic resistance (iii), cell velocity is determined by the no water pumping condition, cells are
fastest, and the pellicle slides in the contact region, as indicated by the red arrows. In intermediate cases
(ii), hydraulic forces (propulsive) and frictional forces (resistive) compete, there is some degree of sliding
and pumping, and the cell velocity is intermediate. (d) Kymograph of an immobile cell next to another
cell crawling by metaboly, Supplementary Movie 10. (e) Quantification of fluid flow around crawling cells
tracking suspended beads. Error bars refer to the standard error of the mean and sample size is indicated (a
sampling point is the instantaneous velocity of a bead between two frames, data from 2 cells and 21 bead
trajectories). (f) Kymograph made from images intermittently focused at the capillary wall to visualize the
pellicle and at the capillary axis to visualize cell shape. The trajectories of pellicle features (yellow curve)
reveal sliding between the pellicle and the capillary wall in the contact region.
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Figure 4: Computational modeling of crawling in confinement by metaboly. (a) Model ingredients. (i)
The pellicle is viewed as an elastic and extended motor system, modeled by an axisymmetric continuum
surface with a field of material orientations converging towards two poles and accounting for the configu-
ration of strips. The activation of this motor system in space (along the arc-length of strips, s) and time, t,
is modulated to drive shape changes. Activation is modeled by the sliding velocity between adjacent strips
in the absence of force, v0

motor(s, t). (ii) Time-periodic pattern of the activation v0
motor(s, t) during two gaits,

in units of strip separation w per period T . (iii) The actual sliding velocity vmotor is modified by distributed
forces along adjacent strips in the sliding direction, τ. We model the force-dependent velocity of the mo-
tor system with an affine relation characterized by the time and space dependent v0

motor and by a stall force
τstall of fixed magnitude, see Supplementary Note 5 for a discussion. (iv) The distributed force acting on
the motor system, τ(s, t), is determined by the mechanical interactions of the pellicle with its environment
(cellular pressure; contact, frictional and hydraulic forces) and by the pellicle mechanics, which include
bending elasticity and stretching elastic forces that penalize deviations between the actual pellicle shear-rate
and that imposed by the motion of motors, vmotor(s, t)/w. (b) Selected snapshots during the gait at four
degrees of confinement. (c) Kymographs obtained from simulations in the high fluid resistance (i) and the
high wall friction (ii) limits at the same four degrees of confinement. The contact region is colored in or-
ange and the lines represent trajectories of material particles on the pellicle surface, showing sliding in the
hydraulic-dominated case and no sliding in the friction-dominated case. Induced flow rate, normalized by
the maximum cell velocity times the capillary cross-sectional area, is represented by gray curves in the case
of high friction; it is zero in the limit of high hydraulic resistance. (d) Normalized cell velocity in body
lengths per period as a function of normalized capillary diameter predicted by the simulations.
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Methods

Culture of cells

Strain SAG 1224-5/27 of Euglena gracilis obtained from the SAG Culture Collection of Algae at the Uni-
versity of Göttingen (Germany) was maintained axenic in liquid culture medium Eg. Cultures were trans-
ferred weekly. Heterotrophic Distigma proteus and Peranema trichophorum were obtained from Sciento
(https://www.sciento.co.uk). Subcultures of P. trichophorum were established in Eau Volvic with Chloro-
gonium capillatum (SAG 12-2b) as food source. All cells were kept in sterile 16 mL polystyrene test tubes
in an incubator IPP 110 plus from Memmert at 15 °C and at a light:dark cycle of 12:12 h under cold white
LED illumination with an irradiance of about 50µmol/(m2s).

Imaging of cells and preparation of tapered capillaries

An Olympus BX 61 upright microscope with motorized stage was employed in all experiments. These were
performed at the Sensing and Moving Bioinspired Artifacts Laboratory of SISSA. Typically, the microscope
was equipped with a LCAch 40X Ph2 objective (NA 0.55) for the imaging of cells behavior in capillaries
using transmitted brightfield illumination. A Plan N 10X objective (NA=0.25) was employed to image cells
and 1µm in diameter polystyrene beads by combining brightfield and fluorescence microscopy (Supplemen-
tary Note 1 and Supplementary Movies S7 and S11). The visualization of pellicle strips between microscope
slides and in glass capillaries was achieved by exploiting brightfield reflected light microscopy and using a
UPlanFL N 100X objective (NA 1.30 Oil). Micrographs were recorded with a CMOS digital camera from
Basler (model acA2000-50gm) at a frame rate of either 20 fps or 40 fps. The higher acquisition rate of 40 fps
was employed to time-resolve the dynamics of pellicle strips reconfigurations and for the study of wall fric-
tion as reported in Supplementary Note 2. Tracking of fluorescence beads was performed using Particle
Tracker 2D/3D of the MosaicSuite for ImageJ.35 Tapered capillaries of circular cross section were obtained
from borosilicate glass tubes (Sutter Instrument, model B100-30-7.5HP) by employing a micropipette puller
(Sutter Instrument, model P-97). A typical profile of such a capillary measured from micrographs is repre-
sented in Supplementary Fig. 2(b). At each trial a glass capillary was filled with a diluted solution of cells
in culture medium Eg and fixed to the microscope stage by means of a custom made, 3d-printed holder. To
avoid optical aberrations that could arise from the curvature of the external surface of the capillary, this was
positioned between two 0.17 mm coverslips and covered with microscopy immersion oil.

Estimation of cell area and volume

To estimate the area and volume of cells sandwiched between microscope glass slides, we measured the
surface area S and perimeter P of the part of the cell surface in contact with the glass slides by focusing the
microscope on these planes. We approximated the surface area of the cell envelope as S cell = 2S + πHP/2
and its volume by Vcell = S H +πH2P/8, which assumes that cross-sections of the part of the cell surface not
in contact with the plates are half circles. Using 15 frames from Supplementary Movie S3, where H = 4.3
µm, we estimated using this method S cell ≈ 1887µm2 ± 2% and Vcell ≈ 3283µm3 ± 1%.

Code availability

Mathematica (version 11.3.0.0) custom algorithms were developed and used to analyze the theoretical model
in Fig. 3 and Supplementary Note 4. Matlab (R2017b) custom algorithms were developed and used to
compute sliding displacements from strip curvature (Fig. 1(e) and Supplementary Note 1) and to implement
the computational model in Fig. 4 and Supplementary Note 5. These computer codes are available from the
corresponding authors upon reasonable request.
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Data availability

The data that support the plots within this paper and other findings of this study are available from the
corresponding authors upon request.
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Figure 1. Confinement triggers changes in cell behavior and metaboly. (a) Euglena cells in dilute cultures (i) exhibited fast flagellar swimming 
without cell shape changes, at typical speeds of 68.2 ± 1.13 !m/sec (SEM, n=50) or 1.31 ± 0.03 body lengths/sec (SEM, n=50). In crowded cultures 
(ii) cells displayed a variety of behaviors, including fast flagellar swimming (yellow arrow), cell rounding and spinning (red arrow), and large 
amplitude cyclic cell body deformations—metaboly (purple ellipse). See Supplementary Video S1. (b) When confined between glass plates, cells 
systematically developed metaboly. Observation using brightfield reflected light microscopy revealed the reconfigurations of the striated cell 
envelope (pellicle) concomitant with cell deformations in the plane of the glass plate (see also Supplementary Videos S2 and S3). (c) Schematic 
representation of the pellicle, the strip separation !, and the local mechanism of active deformation of the pellicle, according to which the relative 
sliding between strips produces a shear strain " along the direction of the strips. During the shape dynamics in (b) ! remained nearly constant (559 
± 0.003 nm, SEM, n=100). (d) According to a mathematical model for the kinematics of the pellicle (Supplementary Note #), the rate of change of "
with arc-length # along a strip (measured from the anterior end) is given by the curvature of the strip $. This result together with the observations in 
(b) allowed us to quantify the sliding displacement between adjacent strips !" (e), where the color-coding matches the strips highlighted in (b). (f) 
Cells swimming into tapered capillaries transitioned from fast flagellar swimming (i) to developing large amplitude shape excursions (ii) including 
rounding (iii). When confined in capillary diameters smaller than about twice the free-swimming cell diameter, most cells developed the prototypical 
highly orchestrated peristaltic cell deformations of metaboly (iv). See Supplementary Video S4.
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Figure 3. Mechanism of locomotion during metaboly. (a) (i) Canonical model of propulsion of non-adherent polarized animal cells under 
confinement, according to which frictional forces induced by actin retrograde flow propel the cell forward and are balanced by resistive hydraulic 
forces required to displace the water column in the capillary. (ii) In Euglena cells crawling by metaboly, the backward-moving pellicle bulge plays a 
similar role to actin retrograde flow in animal polarized cells. (b) Kinematics of the theoretical model for the power phase of metaboly. (i) 
Transformation of an idealized cylindrical pellicle by a uniform shear " along the strips. (ii) By modulating the pellicle shear in space and time, "(s,t), 
we can model a localized bulge with contact length lc, angle %* between pellicle strips and cell axis, and moving backwards at speed c in the frame 
of the cell. (c) In the limit of infinite frictional coupling relative to hydraulic resistance (i), cell velocity is determined by the no-slip condition in the 
contact region. As indicated by the blue control volume, metaboly then results in net water pumping in the direction opposite to cell motion. The 
average fluid velocity vf is defined as the flow rate Q divided by the cross-sectional area of the capillary. In the limit of zero frictional coupling relative 
to hydraulic resistance (iii), cell velocity is determined by the no water pumping condition, cells are fastest, and the pellicle slides in the contact 
region, as indicated by the green arrows. In intermediate cases (ii), hydraulic forces (propulsive) and frictional forces (resistive) compete, there is 
some degree of sliding and pumping, and the cell velocity is intermediate. (d) Kymograph of two cells in a capillary, one stuck and immobile and the 
other one crawling by metaboly. (e) Quantification of fluid flow around crawling cells tracking suspended beads. (f) Kymograph made from images 
intermittently focused at the pellicle-capillary interface to visualize the pellicle and at the capillary axis to visualize cell shape. The trajectories of 
pellicle features (yellow line) reveal sliding between the pellicle and the capillary wall in the contact region.
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Figure 4. Computational modeling of crawling in confinement by metaboly. (a) Model ingredients. (i) The pellicle is viewed as an elastic and 
extended motor system, modeled by an axisymmetric continuum surface with a field of material orientations converging towards two poles and 
accounting for the configuration of strips. The activation of this motor system in space (along the arc-length of strips, s) and time (t) is modulated to 
drive shape changes. Activation is modeled by the sliding velocity between adjacent strips in the absence of force, vmotor0(s,t). (ii) Time-periodic 
pattern of the activation vmotor0(s,t) during two strokes, in units of strip separation ! per period T. (iii) The actual sliding velocity vmotor is modified by 
distributed forces along adjacent strips in the sliding direction, ". We model the force-dependent velocity of the motor system with the relation
vmotor= vmotor0(1-"/"stall), where vmotor0 depends on space and time and the stall force remains constant (see Supplementary Note #). (iv) The 
distributed force acting on the motor system, "(s,t), is determined by the mechanical interactions of the pellicle with its environment (cellular 
pressure; contact, frictional and hydraulic forces) and by the pellicle mechanics, which include bending elasticity and stretching elastic forces that 
penalize deviations between the actual pellicle shear-rate and that imposed by the motion of motors, vmotor(s,t)/w. (b) Selected snapshots during the 
gait at four degrees of confinement. (c) Kymographs obtained from simulations in the high fluid resistance (i) and the high wall friction (ii) limits at 
the same four degrees of confinement. The contact region is colored in orange and the lines represent trajectories of material particles on the 
pellicle surface, showing sliding in the hydraulic-dominated case and no sliding in the friction-dominated case. Induced flow rate, normalized by the 
maximum cell velocity times the capillary cross-sectional area) is represented by gray curves in the case of high friction; it is zero in the limit of high 
hydraulic resistance. (d) Normalized cell velocity in body lengths per period as a function of normalized capillary diameter predicted by the 
simulations.
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Supplementary Note 1
Theory relating pellicle strip geometry and inter-strip sliding

We particularize to the observations in Fig. 1(b) a previously developed theory relating the sliding between
adjacent strips and the pellicle configuration [7, 18]. We consider the deformation of a planar region of
pellicle with initially straight strips as shown in Supplementary Fig. 1. Because in the experiments in
Fig. 1(b) cells are sandwiched between glass plates, the deformation of the imaged region of pellicle is such
that it remains planar. We describe it mathematically by the mapping x(u, v) from the plane to the plane,
where v is a coordinate along the pellicle strips.

reference configuration
u

v

u=u0
x(u, v)

deformed configuration
x1

x2

xv(u0, v)

n

xu(u0, v)

Supplementary figure 1: Sketch of the planar deformation of a region of pellicle. We consider an ideal
reference configuration in which all pellicle strips are straight, which is deformed by the mapping x.

According to the mechanism of deformation of the pellicle, this deformation is the result of a local shear
deformation along the strips given by γ(u, v). The relation between the deformation mapping x and the
pellicle shear distribution γ is given by the relations [7, 18]

1 + γ2 =xu · xu, (1)

1 =xv · xv, (2)

γ =xu · xv, (3)

where xu and xv denote the partial derivatives of x with respect to the coordinates u and v. Pellicle lines
are given by u = u0 = constant in the reference configuration and by x(u0, v) in the deformed configuration.
Thus, the vector field xv is tangential to deformed pellicle lines. Furthermore, Eq. (2) shows that this vector
field has unit length, and thus x(u0, v) is an arc-length parametrization of the deformed pellicle strip given
by u = u0 (pellicle strips do not stretch). Since v is the arc-length parameter, the signed curvature of pellicle
strips κ is given by the relation [36]

xvv = κn, (4)

where n is a unit vector field normal to the pellicle strips. An expression for the normal vector can be
obtained by subtracting to xu its projection along xv, see Supplementary Fig. 1,

n = xu − (xu · xv) xv = xu − γxv, (5)

where we have used Eq. (3). Note that |n|2 = n · n = xu · xu − 2γxu · xv + γ2xv · xv = 1, where we have used
Eqs. (1–3). We conclude that

xvv = κ (xu − γxv) . (6)

To find an alternative expression for the vector xvv, we express it in the basis formed by xu and xv as

xvv = axu + bxv. (7)
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Differentiation of the Eq. (2) with respect to u and v leads to

0 =xv · xuv, (8)

0 =xv · xvv. (9)

Differentiation of the Eq. (3) with respect to v leads to

γv = xu · xvv + xv · xuv = xu · xvv, (10)

where we have used Eq. (8) in the second step. Thus, combining Eqs. (7, 9, 10) we find

γv = xu · xvv = (1 + γ2)a + γb, (11)

0 = xv · xvv = γa + b. (12)

Inverting these relations, we find that a = γv and b = −γγv, and thus

xvv = γv (xu − γxv) . (13)

Comparing this expression with Eq. (6), we conclude that

γv = κ, (14)

which coincides with the expression in Fig. 1(d) denoting v by s.
To compute relative sliding displacements from this expression, we considered pellicle strips emanating

from the anterior end (given by s = 0), where strips converge and cannot slide relative to each other,
γ(s = 0) = 0. We then fitted spline curves to such strips and computed their curvature as a function of
arc-length κ(s) at selected time instants. The sliding displacement required to bend an initially straight strip
to the observed configuration is then

wγ(s) = w
∫ s

0
κ(r) dr, (15)

computed as the product of the shear strain and the width of a strip w.

Supplementary Note 2
Estimation of friction coefficient and hydraulic resistance in the capillary

Biological locomotion at microscopic scales is the result of forces exerted by the environment on the cell
surface. For an Euglena cell under capillary confinement, these forces are exerted on the pellicle by the fluid
in the capillary and by the capillary walls. Hydrodynamic forces are essentially those required to displace
the column of water in the capillary as the cell moves. Since Euglena are not known to establish specific
adhesions with substrates, we reasoned that the mechanical interaction with the capillary wall should include
contact forces normal to it, and thus not directly contributing to propulsion, and tangential forces due to
unspecific viscous friction and thus proportional to the sliding velocity, in agreement with previous reports
on animal cells [24] and with the framework of hydration lubrication [37], which studies the rheological
properties of thin aqueous interfaces such as those between cells and solid substrates.

To understand and quantify the forces experienced by a non-deforming cell moving under capillary con-
finement, we drove cells into the narrower sections of capillaries. Tapered glass capillaries of circular cross
section were filled with a diluted solution of cells and of 1µm polystyrene, fluorescent beads (∼ 1.5 mg/mL
from Life Technologies, catalog number F8823) in culture medium (CM) Eg. The capillaries were then
fixed to the microscope stage by means of a custom made, 3d-printed holder and their inlet was connected
to an external reservoir of CM. The holder was designed in such a way that the capillaries were positioned

3



between two 0.17 mm coverslips and immersed in CM. Starting from a state of hydrostatic equilibrium,
lifting the external reservoir resulted in a controlled increase of the pressure (relative to the reference atmo-
spheric pressure) at the capillary inlet, pin, and in fluid flow within it. Eventually, a cell convected by the
flow contacted the capillary wall and created a hydraulic seal. This condition was verified by the imaging of
micro-beads diluted in the solution, whose velocity correlated with that of the cell and which stopped when
cells became immobile, Supplementary Movie S7. Consequently, under these conditions cell velocity was
a reporter of the flow rate in the capillary. Note that in a Poiseuille flow, beads can go faster or slower than
the average flow velocity given by that of the cells.

Supplementary Figure #. Estimation of friction coefficient and hydraulic resistance in the capillary. TODO
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Supplementary figure 2: Estimation of friction coefficient and hydraulic resistance in the capillary. (a)
Force balance for a confined cell moving in a capillary by a pressure difference. (b) profile of a typical pulled
capillary. (c) Linear relation between the cell velocity and the applied pressure, allowing us to measure
the friction coefficient µwall. We performed four measurements from the same sample for each condition
(confinement and appalied pressure). We performed analogous measurements for other cells.

The cell motion along the capillary axis was recorded at 40 fps with a Basler digital camera (model
acA2000-50gm) and an Olympus Plan N 10X objective (NA 0.25). Analysis of the micrographs allowed us
to determine the cell position along the capillary xcell, its radius, which coincides with the capillary radius
at the cell position r(xcell), the cell velocity vcell, and the length of the contact area `c.

Inertia being negligible in these experiments, the net forces due to pressure differences across a cell δp
and given by

Ffluid = δpπr2, (16)
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had to be balanced by the frictional forces between the cell and the capillary, which we modeled as

Fwall = −2πr`cµwallvcell (17)

where µwall is a viscous friction coefficient linearly relating sliding velocity, which here coincides with the
cell velocity, and the frictional force per unit area τwall = µwallvcell, Supplementary Fig. 2(a). By balancing
these two forces, we found

δp =
2`c

r
µwallvcell. (18)

The pressure jump across the cell δp could also be estimated with elementary hydrodynamics. Assuming
a Poiseuille flow and small capillary taper (dr/dx�1) leads to

dp
dx

= −
8η
πr4 Q, (19)

where η is the dynamic viscosity of the solvent and Q = πr2vcell is the flow rate. The pressure difference
across the cell, δp, was determined by integration of the equation above while accounting for the boundary
conditions on pressure at inlet and outlet (where p = 0), leading to

δp = pin −
ζ

π
Q, (20)

where

ζ = 8η
(∫ xcell−`c/2

0
r−4 dx +

∫ L

xcell+`c/2
r−4 dx

)
' 8η

∫ L

0
r−4 dx, (21)

is the the hydraulic resistance and L the capillary length. We computed this quantity for the actual geometry
of the capillaries as measured from the micrographs, Supplementary Fig. 2(b), obtaining ζ = 5 ·1016 N s/m5.

Equating the two expressions for δp, we obtained the following linear relation between cell velocity and
pressure applied at the inlet

pin =

(
2`c

r
µwall + r2ζ

)
vcell. (22)

Since the coefficient µwall could depend on the lateral confining pressure, we considered the possibility
that it could be confinement-dependent. For this reason, µwall could be considered as constant in the equa-
tion above, provided that measurements were performed at a given position in the capillary x with radius
r(x). To test this relationship, we carried out tests for different values of pin and measured cell velocity
at specified positions (and thus specified degrees of confinement). Consistent with our model, we found a
confinement-dependent linear relationship between inlet pressure and cell velocity, Supplementary Fig. 2(c),
which allowed us to measure the ratio pin/vcell and thereby the confinement-dependent friction coefficient
µwall. Indeed, rearranging Eq. (22) we have

µwall =
r

2`c

(
pin

vcell
− r2ζ

)
. (23)

Our measurements for the friction coefficient were in the range of 104 − 105 Pa s/m, comparable to those
reported between animal cells and PDMS channels [24].

Supplementary Note 3
Feasibility of flagellar locomotion in capillary confinement

From the typical speed of free-swimming cells, vfree ' 68µm/s, and approximating their body geometry
by prolate spheroids of semi-major and semi-minor axis a ' 25µm and b ' 4.5µm to compute the drag
coefficient, we estimated the flagellar propulsive force to be

Fp = 6πηavfree χ(e) ' 10.9 pN , (24)
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where

χ(e) =
8e3

3[(1 + e2) log[(1 + e)/(1 − e)] − 2e]
(25)

is a coefficient accounting for the spheroid eccentricity, e = [1 − (b/a)2]1/2 [38].
Assuming that a cell could exert the same propulsive force in capillary confinement, in order to move

forward it would need to overcome the hydraulic resistive force Ffluid required to move the column of water
in the capillary and the frictional force Fwall. Adapting the model of the Supplementary Note 2, we have

Ffluid = −8πηr4vcell

∫ L

0
r−4 dx = −πζr4vcell, (26)

where ζ ' 5 · 1016 N s/m5 is defined in Eq. (21), and

Fwall = −2πr`cµwallvcell. (27)

Force balance during flagellar locomotion requires that Fp + Ffluid + Fwall = 0, and thus

Fp = −Ffluid − Fwall = π
(
ζr4 + 2r`cµwall

)
vcell, (28)

which allows us to estimate the velocity at which a cell would move in capillary confinement while propelled
by flagella. We considered a first situation of moderate confinement (dcap/dcell ≈ 1), with r = 4.5µm,
`c = 10µm and µwall = 0.5 · 104 Pa s/m, which led to vcell ∼ 0.15µm/s, about 10 times smaller that the
crawling velocity by metaboly at this degree of confinement, Fig. 2(c). We then considered a more confined
case with r = 4µm, `c = 30µm and µwall = 2.5 · 105 Pa s/m, which led to vcell ∼ 0.05µm/s, about 20 times
smaller that the crawling velocity by metaboly at this degree of confinement.

Supplementary Note 4
Theoretical model of the power phase of metaboly

During metaboly, a power phase corresponding to a bulge of fixed shape traveling along the body in direction
opposite to that of the resulting crawling motion can be clearly identified, see Supplementary Movie 6 and
Figs. 2 and 3. A simplified model of this process can be derived by assuming that the strips in the thinner
cylindrical end sections are all aligned with the main body axis, and that the angle θ∗ between strips in the
bulge and that axis is constant in the region in contact with the capillary. We note that allowing strips in
the thinner section of the cell body to be helical slightly complicates the mathematical expressions but does
not fundamentally alter the conclusions. The transition between the wider cylindrical bulge, of radius r, and
the thinner cylindrical end sections, of radius r0, can be realized by modulating the pellicle shear from the
maximal value γ∗ at the bulge, and the reference value γ = 0 at the ends, provided that the transition region
is sufficiently long [18]. The bulge is assumed to be in contact with the capillary walls in a region of length
`c, establishing a hydraulic plug which does not allow transfer of fluid between the regions ahead of and
behind the cell. See Fig. 3(b) and Supplementary Fig. 3 for an illustration. Elementary geometry shows that
the radius of the slender part of the cell body, that of the bulge in contact with the capillary, and the angle θ∗

follow the relation [18]
r0 = r cos θ∗. (29)

To analyze the kinematics and mechanics of this idealized gait, we define three frames of reference, the
laboratory frame where the capillary is quiescent, whose origin is O, the frame of the cell fixed for instance
at the leading edge of the cell (Otip), and a frame attached to a fixed material point (Ocontact) in the region
of the bulge in contact with the wall, see Supplementary Fig. 3. We assume that the bulge is generated
by a traveling localized profile of active shear given by γ(s, t) = γ̄(s − ct), where c is the velocity of the
actuation pattern along the coordinate s describing arc-length of strips, Fig. 3(b). We adopt the convention
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that all velocities are positive when they represent motions from left to right. Since we consider backward
moving bulges, c < 0. As a result of this motion of the activation pattern, the bulge also moves backwards
at velocity c in the frame of the cell. In the frame attached to Ocontact, however, the bulge moves slower at
velocity c cos θ∗ given the geometry of the bulge.

The other velocities characterizing the kinematics of the cell are

• the sliding velocity vs, that is the velocity of Ocontact relative to O,

• the velocity of Otip relative to Ocontact, dl/dt,

• the cell velocity v in the laboratory frame, that is the velocity of Otip relative to O,

• the velocity of the bulge vb in the laboratory frame (the velocity of the leading edge of the bulge
relative to O),

• the average fluid velocity vf = Q/(πr2) in the capillary at a small distance from the cell in the labora-
tory frame.

a

Lab frame

t = �t

t = 0

Otip

O

O Ocontact

Otip

Cell frame

Material point frame

Ocontact

vs�t
vf�t

v�t

�(s, t)

s

`c

✓⇤

r0 r

By non-uniform
pellicle shearing

b
Capillary wallc < 0

Supplementary figure 3: (a) Idealized model of the power phase of metaboly and (b) two snapshots of
the resulting motion in a capillary to highlight the frames of reference relevant to the analysis and the three
velocities v, vs, and vf .

We assume c to be given, and obtain the other five unknown velocities from the kinematics of the traveling
bulge and force balance. The forces acting on the cell are the frictional force exerted by the wall, which
depends on the velocity of points in the contact region relative to the capillary wall

Fwall = −2πr`cµwallvs , (30)

and the hydraulic force exerted by the fluid

Ffluid = −αQ = −απr2vf , where α = ζr2 , (31)

ζ is defined in (21), and the expression of Ffluid follows from (20) by assuming that inlet and outlet are at
atmospheric pressure, pin = pout = 0. Force balance on the cell gives then

0 = Fwall + Ffluid . (32)
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Introducing the nondimensional parameter

ξ =
2µwall`c

αr
(33)

controlling the relative strength of friction and hydraulic resistance, force balance can be rewritten as

0 = ξvs + vf . (34)

From the previous definitions, we can express the velocity of the bulge in the laboratory frame in terms of
its velocity relative to Ocontact and the sliding velocity as

vb = vs + c cos θ∗. (35)

Likewise, we can express the cell velocity relative to O as

v = vs +
dl
dt
. (36)

Furthermore, noting that the pellicle deformation mechanism locally preserves area, and thus the area of
pellicle to the right (or left) of material point Ocontact remains constant during the motion, we derive the
following relation

0 = 2π(r − r0)c cos θ∗ + 2πr0
dl
dt
. (37)

Finally, volume conservation of the fluid inside the capillary yields

πr2vf = Q = π(r2 − r2
0)vb + πr2

0v . (38)

Solving the last five equations for the five unknown velocities we obtain

vs = −
1

1 + ξ
(1 − cos θ∗) cos θ∗ c , (39)

vf =
ξ

1 + ξ
(1 − cos θ∗) cos θ∗ c , (40)

v = −

(
1 +

cos θ∗

1 + ξ

)
(1 − cos θ∗) c , (41)

vb =
cos θ∗ + ξ

1 + ξ
cos θ∗ c , (42)

and
dl
dt

= −
(
1 − cos θ∗

)
c . (43)

In the limit of vanishing hydrodynamic resistance relative to the wall friction, ξ → +∞, we obtain

v = −(1 − cos θ∗) c , vs = 0 , vf = (1 − cos θ∗) cos θ∗ c . (44)

In the opposite limit of vanishing wall friction relative to hydraulic resistance, ξ → 0, we obtain instead

v = −
(
1 − cos2 θ∗

)
c , vs = −(1 − cos θ∗) cos θ∗ c , vf = 0 . (45)

It is easy to see that, in the general case, the cell, sliding, and fluid velocities are intermediate between those
of the two extreme situations.
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Supplementary Note 5
Computational model of confined crawling

Setup

We describe mathematically the pellicle of euglenids as a deformable surface and focus on axisymmetric
cells. We consider a reference configuration of the cell given by a surface Γ described by a parametrization of
its generating curve {ρ0(u), z0(u)}, u ∈ [0, 1], not necessarily parametrized by arc-length. In this reference
configuration, the pellicle strips are meridians of the axisymmetric surface, see Supplementary Fig. 4. A
general deformed configuration of the cell at time t under the assumption of axisymmetry is defined by the
deformed generating curve and the azimuthal angle displacement, {ρ(u, t), z(u, t), ψ(u, t)}. We denote space
derivatives by ρ′ and time derivatives by ρ̇.

z

⇢

Supplementary figure 4: Reference pellicle surface Γ (top) and an axisymmetric deformed shape of the
reference pellicle resulting from a nonuniform pellicle shear distribution (bottom).

The pellicle is an active surface, capable of undergoing simple shear along a Lagrangian direction given
by the strips under the action of molecular motors. We denote the pellicle shear field relative to the reference
configuration by γ(u, t). Shape changes are the result of this actively generated deformation. The precise
connection between deformation and pellicle shear can be established by noting that the (Cauchy-Green)
deformation tensor of the surface can be expressed either as [7, 18]

C =


ρ′2+z′2+ρ2ψ′2

a2
0

ρ2ψ′

ρ0a0

ρ2ψ′

ρ0a0

(
ρ
ρ0

)2

 , (46)

where a2
0 = ρ′20 + z′20 , or as

C̄ =

[
1 γ

γ 1 + γ2

]
. (47)

By equating these two forms of the same physical quantity, we obtain a set of algebraic and differential
equations, which for instance allow us to compute {ρ(u, t), z(u, t), ψ(u, t)} given the internal actuation γ(u, t).

While this geometric approach is very powerful to understand the pellicle kinematics, it has limitations
in the present context. First, the resulting equations do not always admit solutions. If the pellicle shear
γ is too large or has very sharp variations, as made precise elsewhere [18], it may not be “embeddable”,
meaning that there exist no geometric realization of the pellicle having C̄ as its deformation tensor. A way
to make this set of kinematic relations more flexible, and also more physical, is to allow for some stretching
of the surface, and elastically penalize deviations between C and C̄ as described below. Another limitation of
trying to prescribe γ(u, t) directly is that, if an euglenid is performing metaboly in the presence of constraints
such as the wall of a capillary, then the reaction forces associated with the constraints will oppose the action
of the molecular motors and could even stall them. For this reason, rather than imposing the pellicle shear
γ(u, t), in the present model we impose a biological activity creating forces conjugate to pellicle sliding.
We will then obtain γ(u, t), now an unknown, as the result of balancing the externally applied forces on the
motors with those being actively generated.
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Model ingredients

To model the mechanics depicted in Fig. 4(a), which couple elasticity, dissipative mechanisms, constraints
and active power input, we resort to Onsager’s variational principle [39, 40], which, given the enumeration
of the elastic and dissipation potentials describing the different physical mechanisms, provides a systematic
tool to derive the governing mechanical equations by minimizing the Rayleighian functional. In this sys-
tematic modeling approach, it is important to formalize the state of the system, which here is given by the
deformation of the pellicle and the actual pellicle shear distribution:

X(u, t) = {ρ(u, t), z(u, t), ψ(u, t), γ(u, t)}, u ∈ [0, 1], t ≥ 0.

We will derive equations to find the dynamics of these state variables.

Elastic energy

To account for the elastic in-plane stretchability of the pellicle and without attempting to describe in detail
the possibly anisotropic mechanical properties of the pellicle, we consider a Kirchhoff-Saint Venant energy,
which locally penalizes deviations between the actual deformation and that given by γ(u, t), along with a
Helfrich energy contribution to elastically penalize curvature

Eelastic[ρ, z, ψ, γ] =
Y
2

∫
Γ

|C − C̄|2 dS 0 +
D
2

∫
Γ

H2 dS 0

=
Y
2

∫
Γ


ρ′2 + z′2 + ρ2ψ′2

a2
0

− 1

2

+ 2
(
ρ2ψ′

ρ0a0
− γ

)2

+

( ρρ0

)2

− 1 − γ2

2 dS 0

+
D
2

∫
Γ

H2 dS 0,

where Y is the stretching modulus, D is a bending modulus, H is the mean curvature, and dS 0 = 2πρ0a0du.
Note that, because the pellicle surface is largely inextensible, dS 0 is very close to dS and the last term
closely approximates the usual Helfrich functional used to model lipid membranes.

Volume conservation

At the typical time-scales of metaboly, our observations suggest that cells can be considered as incompress-
ible. Without attempting to model the active and passive processes leading to cell volume regulation, we
penalize volume variations with respect to a target volume V̄ by

Evolume[ρ, z] =
K
2

(
V[ρ, z] − V̄

)2
,

where V[ρ, z] is the cell volume, depending only on the parametrization of the generating curve, and K is a
parameter large enough to control cell volume variations within a few percent.

Contact with a capillary wall

We model the contact interaction with a capillary wall with a potential V(ρ) that becomes repulsive when
ρ ≥ r, the radius of the capillary. Here, we consider

V(ρ) =


0 if ρ < r
k
p

(
ρ − r
δ

)p
if ρ ≥ r

where δ is the “thickness” of the interaction. We take δ � r, p = 3, and the parameter k is large enough so
that the maximum cell radius only exceeds r by a few percent. The resulting energy functional is

Econtact[ρ] =

∫
Γ

V(ρ) dS 0.
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V (t)

V (t+ �t)

Supplementary figure 5: Calculation of the flow rate Q by comparing between time instants the volume of
fluid at either side of the hydraulic plug delimited by the cell-wall contact.

Friction with the capillary wall

In agreement with previous related studies [24, 37], we assume that the rheology of the frictional interaction
at the cell-capillary interface is viscous and linearly dependent on the normal pressure. Thus, the frictional
traction is proportional to the relative sliding velocity, whose longitudinal and azimuthal components are
ż and ρψ̇, with a coefficient µwall proportional to the normal pressure V′(ρ) and given by µwall = µ̄V′(ρ).
Thus, we can write the corresponding dissipation potential as

Wwall[ż, ψ̇; ρ] =

∫
Γ

µ̄V′(ρ)
2

[
ż2 + (ρψ̇)2

]
dS 0.

Note that at the locations where ρ < r, the normal pressure is zero and there is no frictional interaction. The
longitudinal and azimuthal frictional tractions are given by

tz =
δWwall

δż
= µV′(ρ)ż, tψ =

δWwall

δ(ρψ̇)
= µV′(ρ) ρψ̇.

Hydraulic resistance

As the cells move in capillary confinement, they perturb the viscous fluid around them and dissipate energy.
We can distinguish between local flows around the shape-changing cells and induced flow rates along the
water column in the capillary. A direct scaling argument shows that the latter should be dominant in setting
fluid forces onto the cell, and for this reason we only consider the viscous dissipation due to the induced flow
rate in the capillary. Recalling the expression for Ffluid in Supplementary Note 4, the associated dissipation
potential is

Wfluid[ρ̇, ż; ρ, z] =
ζ

2π
Q2.

Since confined cells act as hydraulic plugs and are nearly incompressible, the flow rate Q can be computed
as the rate of change of volume on either side of the cell-wall contact, see Supplementary Fig. 5. This
volume depends on ρ and z, and therefore its rate is a linear functional of ρ̇ and ż.

Motor activity

Models for molecular motors relate forces to velocities. In the present context, the “force” is a shear force
per unit length along the strip direction, denoted by τ, opposing motor activity. The “velocity” is the sliding
velocity between adjacent strips vmotor, obtained as pellicle shear rate times the strip width, vmotor = wγ̇.
In the absence of precise information about the nature, arrangement and constitutive relation of the motors
powering the pellicle, we adopt an affine relation between vmotor and τ, Fig. 4(a)iii [30, 31]. This affine
relation is characterized by a force-free velocity v0

motor and by a stall force τstall. To model motor activation,
we assume that v0

motor is modulated in space and time, consistent with a control of the rate of ATP hydrolysis
by the local calcium concentration. We further assume that the space-time pattern of activation v0

motor(s, t),
Fig. 4(a)ii, is a time-periodic given function consistent with the shape dynamics of metaboly in the absence
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of confinement [7], which can switch sign, and that the magnitude of the stall force τstall remains constant.
Such a model can be mathematically expressed as

vmotor = v0
motor

[
1 −

(
sign v0

motor

) τ

τstall

]
,

or inverting this relation as

τ =
(
sign v0

motor

)
τstall

1 − vmotor

v0
motor

 . (48)

These equations show that for a given force τ and when motors are barely activated (very small v0
motor), then

the sliding velocity will also be very small, consistent with the notion that inactive motors remain in a bound
state as in the flagellar axoneme [17]. In fact, in the limit v0

motor = 0, the force-velocity relation becomes the
constraint vmotor = 0 and τ the corresponding Lagrange multiplier.

The constitutive model in Eq. (48) can be derived from an activity potential (a power per unit length)
a(vmotor, v0

motor) as

τ = −
∂a

∂vmotor

with

a(vmotor, v0
motor) =

(
sign v0

motor

)
τstall

v2
motor

v0
motor

− vmotor

 .
This activity potential is quadratic and convex for any value of v0

motor, and it is minimized when vmotor =

v0
motor, which will only be realized when the net force along the motor system due to other physical mech-

anisms vanish. Thus, within the variational modeling approach adopted here, the activity of the molecular
motors can be understood in terms of a dissipation potential whose minimizer is biased biologically. Recall-
ing the relation between sliding velocity vmotor and pellicle shear rate γ̇, the total activity potential over the
entire pellicle is then given by

Wmotor[γ̇; v0
motor] =

∫
Γ

1
w

a(wγ̇, v0
motor) dS 0,

where w is the strip width.

Rayleighian and governing equations

Collecting all energy contributions, we have

E(X) = Eelastic[ρ, z, ψ, γ] + Evolume[ρ, z] + Econtact[ρ].

Therefore, the rate of change of energy can be computed from the functional derivative of E

Ė =
δE
δX

(X) · Ẋ = δE(Ẋ; X).

We also collect all dissipative/active contributions in

W(Ẋ; X, t) = Wwall[ż, ψ̇; ρ] + Wfluid[ρ̇, ż; ρ, z] + Wmotor[γ̇; v0
motor].

We then form the Rayleighian of the system as [39, 40]

R(Ẋ; X, t) =
δE
δX

(X) · Ẋ + W(Ẋ; X, t).

The dynamics of the system is then given by the minimization of the Rayleighian with respect to Ẋ

Ẋ = arg min
Ẋ

R(Ẋ; X, t),
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subject to geometric boundary conditions such as ρ(0, t) = ρ(1, t) = z′(0, t) = z′(1, t) = 0. The stationarity
conditions δẊR = 0 provide a system of nonlinear partial differential equations governing the time evolution
of the system. Stationarity conditions with respect to the deformation {ρ, z, ψ}, that is δρ̇R = δżR = δψ̇R = 0,
provide the mechanical equilibrium equations in the radial, longitudinal and azimuthal directions, balancing
in-plane and bending elastic stresses, contact and frictional forces, the cell pressure resulting from the vol-
ume penalty and the hydrodynamic resistance. On the other hand, δγ̇R = 0 provides a statement of balance
between actively generated forces at the pellicle strips and the forces acting externally on the motor system.

Force balance along the capillary axis

As a particular case, global force balance along the capillary axis can be obtained by equating to zero the
variation of the Rayleighian with respect to a rigid motion along z,

0 =
d
dε

∣∣∣∣∣
ε=0

R(ρ̇, ż + ε, ψ̇, γ̇; X).

Since all energetic contributions and the activity potential are invariant with respect to rigid body motions,
this equation leads to only two contributions balancing the frictional force with the wall and the hydraulic
force

0 = µ̄

∫
Γ

V′(ρ)ż dS 0 + ζr2Q,

where the first term is the integral over the surface of the frictional traction tz and the second term is Ffluid.
In the limit of large frictional coupling relative to the hydraulic resistance, this equations becomes

0 =

∫
Γ

V′(ρ)ż dS 0,

which when divided by the net pressure force
∫
Γ
V′(ρ) dS 0 can be interpreted as the average pellicle-wall

sliding velocity in the contact region. Thus, we recover in this limit the no-sliding constraint, which deter-
mines the cell velocity independently of the parameter µ̄. In the limit of small frictional coupling relative to
the hydraulic resistance, force balance becomes Q = 0, which determines the cell velocity independently of
ζ and r.

Numerical discretization

The variational structure of the statement governing the dynamics of the system can be exploited computa-
tionally to formulate time-incremental minimization problems to advance in time. This results in nonlinearly
stable implicit time-stepping schemes for the dynamics, which are very robust and efficient when combined
with gradient-based optimization algorithms.

Suppose we consider discrete time-instants (tn, n = 0, 1, . . . ) at which we will approximate the time
evolution. Suppose that we know the state of the system Xn at time tn. Using for instance a simple backward-
Euler scheme, we can approximate the time-continuos Rayleighian as

E(Xn+1) − E(Xn)
tn+1 − tn + W

(
Xn+1 − Xn

tn+1 − tn ; Xn+1, tn+1
)

and minimize it with respect to Xn+1 to find the new state at time tn+1. Since in this minimization E(Xn) is a
constant, we can rewrite the time-discrete Rayleighian as

R∆t(X, Xn, tn+1) = E(X) + ∆tW
(

X − Xn

∆t
; X, tn+1

)
where we have introduced the shorthand notation ∆t = tn+1 − tn. The time-stepping algorithm is then given
by the time-incremental minimization principle

Xn+1 = arg min
X

R∆t(X, Xn, tn+1). (49)

13



Having a time-discrete principle to derive the dynamics, we discretize all four unknown fields in space using
a finite element expansion of the form

X(u, t) =
∑

I

XI(t)NI(u), where XI(t) = {rI(t), zI(t), ψI(t), γI(t)} ,

and where NI(u) are B-spline basis functions (cubic B-Splines in our calculations). The high degree of
continuity of the B-Spline basis functions is required to deal with the bending elastic energy, which involves
the mean curvature and hence second derivatives of the curve parametrization. Plugging this representation
into R∆t(X, Xn, tn+1), Eq. (49) becomes an algebraic minimization problem that can be solved efficiently with
gradient-based methods. The calculation of the gradient of the objective function is explicit and follows from
the chain rule. Integrals are approximated using Gaussian quadrature in the knot spans of the B-Splines.

Selection of model parameters

The model parameters not related to capillary confinement are the pellicle stretching modulus Y , its bending
modulus D, the cell compressibility modulus K, the space-time pattern of actuation v0

motor(s, t) and the stall
force per unit length τstall. Since a mechanical and biophysical characterization of the pellicle is lacking,
we performed rough estimations of these parameters. Our results, however, are largely insensitive to these
choices as discussed below.

The stretching modulus was computed assuming a Young’s modulus for the pellicle material of about
10 MPa, typical of proteinaceous materials, and multiplying it by a nominal thickness of 40 nm, resulting
in Y = 400 nN/µm. Taking into account the geometry of cross-sections of the strips [1], we estimated the
bending modulus as D = 5 nN·µm, about 100 times higher than that of a lipid bilayer.

As discussed in the main text, v0
motor(s, t) was inferred from the shape dynamics of unconfined cells [7],

with a maximum sliding velocity of about vmax = 0.5µm/s. To estimate τstall, we reasoned that, with our
affine force-velocity relation, the maximum power generated per unit length in a pellicle strip interface is
vmaxτstall/4. If we denote by φ the number of motors per unit length, we can estimate the maximum power
required from a single motor protein as

P =
vmaxτstall

4φ
.

The typical step length for motors running along microtubules is δ = 8 nm, for which they hydrolyze a
single ATP molecule. Assuming that 50% of the chemical energy is converted into mechanical energy,
about ∆G = 40 pN nm can be extracted per step. Thus, at maximum sliding velocity, the mechanical power
produced by a single molecular motor is about

P =
∆Gvmax

δ
.

Equating these two expressions, we obtain

τstall =
4φ∆G
δ

.

Assuming that motors bridge a pair of microtubules across the interface between adjacent strips, and that φ
is one motor per 25 nm as in the axoneme, we find that τstall ≈ 1 nN/µm.

With these parameters and adjusting the compressibility modulus K so that cell volume variations are
below 1%, the model reaches a limit cycle that very closely resembles metaboly in the absence of confine-
ment, with total area changes below 2%. If Y is reduced, then area changes progressively become larger
and become inconsistent with our observations. If D is reduced by an order of magnitude, then the pellicle
exhibits buckling events during the gait, characterized by sudden shape transitions, not observed in our ex-
periments. If D is increased by an order of magnitude, then the shape changes are smeared by the energetic
cost of bending the pellicle and the bulge cannot adopt the sharp features observed experimentally.
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When placed in capillary confinement, the thickness δ and stiffness k of the repulsive contact potential
are adjusted so that the pellicle surface moves beyond the nominal capillary radius by less than 2%.

As discussed above, in the limit of high friction, the results do not depend on µ̄. Analogously, in the
limit of high hydraulic resistance, the results do not depend on ζ. We analyzed the competition between
friction and hydraulic resistance by choosing the friction coefficient so that µwall = µ̄V′(ρ) agrees with our
measurements reported in Supplementary Note 2, and evaluating ζ for our capillary geometry. We found
that the results closely followed the limit of high hydraulic resistance, in agreement with the results reported
in Fig. 3.

Supplementary Note 6
Confined metaboly in Distigma proteus and Peranema trichophorum

To test the generality of our observations, we first examined Distigma proteus, a primary osmotrophic
species thought to have a phagotropic ancestor and exhibiting pronounced metaboly. We found that these
cells swam using their flagella when unconfined. As for Euglena gracilis, confinement between two plates
triggered non-reciprocal peristaltic cell deformations, which allowed Distigma cells to crawl at speeds of
about 0.41 ± 0.04 body lengths per cycle (SEM, n=4), see Supplementary Movie S14. We then examined
Peranema trichophorum, a voracious phagotroph known to engulf very large prey thanks to cell body defor-
mations. In the absence of confinement, these cells glided on the substrate thanks to movements of the tip of
their visible propulsive flagellum [41]. During gliding, they occasionally changed shape, including bending
of their body in a coordinated movement that also involved a change in the gait of the flagellum and that
resulted in sharp turns of their trajectory [42]. Under high confinement between two glass plates, Peranema
cells were not able to glide and consistently developed periodic shape changes, see Supplementary Movie
S15. However, in contrast with those of Euglena or Distigma cells, these shape changes were less specific,
largely reciprocal, and did not accomplish significant net motion.

Thus, a minimal examination of metaboly across euglenids suggests that species endowed with a de-
formable pellicle can operate this motile machinery in various ways, possibly accomplishing different func-
tions. Peranema cells, phagotrophs as the ancestor of all cells examined here, use it to engulf large objects
and to bend their body during turns while gliding. Euglena and Distigma cells, which do not use metaboly
for phagotropy, develop a remarkably non-reciprocal version of metaboly under confinement, which enables
fast and versatile crawling. Our computational model shows that these different modes of operation of the
pellicle only require different space-time activation patterns, which suggests that functional innovations of
the pellicle do not require modifications of the complex cortical system but rather changes in the signaling
networks that determine pellicle activation in space and time. The broader implications of this observation
will be the subject of future studies.

Captions of Supplementary Movies

Supplementary Movie S1: Video recordings of Euglena gracilis between glass slides separated by a spacer
of thickness ∼ 80µm. In dilute cultures (left), cells exhibit flagellar swimming without cell shape changes.
In crowded cultures (right), cells display a variety of behaviors, including flagellar swimming, cell rounding
and spinning, and large amplitude periodic cell body deformations typical of metaboly.

Supplementary Movies S2 and S3: Euglena gracilis cells exhibiting metaboly and directed motion in the
anterior-to-posterior direction while confined between glass slides. Observation using brightfield reflected
light microscopy reveals the reconfigurations of the striated cell envelope concomitant with cell body de-
formations in the plane of the glass slide. The separation between the slides is ∼ 6µm and ∼ 4µm for
Supplementary Movie S2 and S3, respectively.
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Supplementary Movie S4: Video recordings of Euglena gracilis in tapered capillaries. Cells swimming
into tapered capillaries transition from flagellar swimming (top left) to developing large amplitude shape
excursions (top right), including rounding (bottom left). When confined in capillary diameters smaller
than about twice the free-swimming cell diameter, most cells develop the prototypical peristaltic cell body
deformations of metaboly (bottom right).

Supplementary Movie S5: Euglena gracilis cell confined in a glass capillary and imaged using brightfield
reflected light microscopy. Rounding of the cell body, as determined by the reconfigurations of the pellicle
strips, allows the cell to switch its orientation. The microscope was intermittently focused at the pellicle-
capillary interface to visualize the pellicle and at the capillary axis to visualize cell shape.

Supplementary Movie S6: Video recordings of Euglena gracilis exhibiting metaboly and directed motion
in tapered capillaries under increasing confinement, as quantified by ratio of dcap/dcell, along with kymo-
graphs relative to the capillary axis. The movie shows that crawling by metaboly is effective up to very large
degree of confinement.

Supplementary Movie S7: Video recordings of Euglena gracilis not exhibiting body deformations and
acting as hydraulic plugs driven by a known pressure difference, pin, of increasing magnitude between
the capillary extremities. Data from these experiments allowed us to quantify a viscous and confinement-
dependent friction between cells and the capillary walls.

Supplementary Movie S8: Video recordings of Euglena cells stuck in a glass capillary and beating their
anterior flagellum.

Supplementary Movie S9: Results from the idealized model for the power phase of metaboly in the limit
of infinite wall friction relative to hydraulic resistance (top), in the limit of zero wall friction relative to
hydraulic resistance (bottom), and for an intermediate case where hydraulic propulsive forces and frictional
resistive forces compete (middle). The blue arrows report the average fluid velocity induced by the cell,
defined as the flow rate divided by the cross-sectional area of the capillary. The surface of the idealized
model is decorated along slip lines by material particles to highlight their motion relative to the capillary
walls in the contact region.

Supplementary Movie S10: Video recordings of an Euglena cell effectively crawling by metaboly (right)
in the presence of a immobile cell, stuck in the capillary and acting as a hydraulic plug (left).

Supplementary Movie S11: Video recordings of Euglena gracilis performing metaboly in a capillary and
of suspended polystyrene beads by combining brightfield and fluorescence microscopy. Data from these
experiments allowed us to quantify the fluid flow around crawling cells by tracking the fluorescent beads.
Only beads in the vicinity of the cell undergo rapid motions due to local flows induced by shape changes
and flagellar beating.

Supplementary Movie S12: Euglena gracilis crawling by metaboly while confined into a glass capillary.
Observation using brightfield reflected light microscopy allows for the visualization of the pellicle strips in
contact with the capillary wall. The microscope was intermittently focused at the pellicle-capillary interface
to visualize the pellicle and at the capillary axis to visualize cell shape. The movie reports also the kymo-
graph relative to the capillary axis. The trajectories of pellicle features reveal sliding between the pellicle
and the capillary wall in the contact region.

Supplementary Movie S13: Computational results from the theoretical model of crawling by metaboly
under confinement. Results are shown for increasing confinement, as quantified by ratio of dcap/dcell =

{0.875, 1.0, 1.375, 1.8}, in the limit of high hydraulic resistance, and during three cycles. The cell motion
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is reported by black and white features fixed in the frame of the capillary. Notice that the model self-
adapts to imposed confinement by developing a limit cycle (gait), which is consistent with the experimental
observations on Euglena cells. The four gaits at different degrees of confinement are the result on the same
activation pattern, represented as a space-time colormap (left).

Supplementary Movie S14: Video recordings of Distigma proteus between glass slides separated on one
side by a spacer of thickness ∼ 80µm in order to realize a wedge-shaped fluid chamber. In the absence
of confinement (gap between plates ∼ 36µm), cells exhibit flagellar swimming. Significant confinement
between the two plates (gap ∼ 5µm) triggers non-reciprocal peristaltic cell deformations, which allow Dis-
tigma cells to crawl.

Supplementary Movie S15: Video recordings of Peranema trichophorum between glass slides separated on
one side by a spacer of thickness ∼ 80µm in order to realize a wedge-shaped fluid chamber. In the absence
of confinement (gap between plates ∼ 52 - 43µm), cells glide on the substrate thanks to the movement of
their flagellum. During gliding, cells occasionally bend their body, and this shape change is associated with
sharp turns of the cell trajectory. Under high confinement between the glass plates (gap ∼ 7µm), cells are
not able to glide and develop periodic, largely reciprocal shape changes.
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