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ABSTRACT  

We present a novel method using four artificial intelligence (AI) algorithms to anticipate the cumulative degree of soil 

compaction (CDSC) after dynamic compaction (DC). Four AI algorithms adopted in this study include support vector 

regression SVR, artificial neural network (ANN), random forest (RF), and gradient boosting machine (GBM). Input 

variables for AI algorithms involve the average SPT N-value before dynamic compaction, cumulative applied energy 

normalized with a cross-sectional area of tamper, and the number of the tamper drops. Apart from cross-validation with 

a testing set, additional in situ test data compiled from a different section within the studied site are used to estimate the 

generalized capacity of the AI models. In addition, we conduct out-of-distribution analyses for the four AI algorithms in 

view of parametric studies. The CDSC prediction performance for the four AI models results in high prediction metrics 

of accuracy with the r2 higher than 0.9 for the testing scenario while the r2 of the other AI models is more than 0.9 when 

out-of-sample data are considered except for the GBM. The ANN seems to be the best model as the parametric study 

considers out-of-distribution data and suggests a strong relationship between input variables and CDSC that is more 

coherent with engineering principles for DC. Finally, the ANN model can be utilized to develop a mathematical model 

for CDSC prediction.  

 

Keywords: Artificial intelligence; Cumulative degree of soil compaction; Dynamic compaction; Standard penetration 
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1. Introduction 

Dynamic compaction DC is an ancient ground 

improvement method involving heavy tamping to densify 

loose soils, historically used by Romans, Chinese, and 

Americans (Kramer and Holtz 1991; Thevanayagam et 

al. 2006). It is effective for loose sand deposits like 

alluvial, coastal, or sedimentary fills. Design relies on 

empirical correlations and charts, estimating depth of 

improvement and crater depths (Menard and Broise 

1975; Lukas 1995). Conventional models lack 

consideration for site-specific factors and provide depth 

of impact rather than soil compaction degree. In situ tests 

and computational studies address these limitations, with 

emerging interest in AI for dynamic compaction design 

due to its capability to analyze nonlinear soil behavior. 

Artificial intelligence, particularly machine learning, 

has shown promise in various geotechnical applications. 

Algorithms like artificial neural networks ANN, support 

vector machine SVM, and random forest RF have been 

successful in predicting various geotechnical parameters. 

Previous studies demonstrate the superiority of AI over 

traditional methods in prediction accuracy (Shahin and 

Broise 2008).  

In this study, four AI algorithms ANN, SVR, GBM, 

RF were applied to predict soil compaction degree 

induced by dynamic compaction. Input variables include 

SPT N data, normalized cumulative applied energy (Ea), 

and number of tamper drops (Ndrops), while cumulative 

degree of soil compaction (CDSC) is the target. Models 

were trained, tested, and cross-validated, with ANN 

showing the most robust performance. High prediction 

accuracy (r2 > 0.9) was achieved, even with out-of-

sample data, suggesting AI's potential for precise 

dynamic compaction design. 

2. Study Area and Data Available 

2.1. Site description 

Limited capacity led to land reclamation along 

Ulsan's southeastern coast for oil storage and harbor 

construction (Fig. 1). The site, mainly coarse-grained soil 

with a water table about 2 meters below sea level, had 

low SPT N-values (2-32, average 14), indicating weak 

bearing strength. Dynamic compaction, using a 22.5-ton 

tamper dropped from 20 meters with a base area of 2.27 

m², significantly improved soil strength, raising SPT N-

values to 30-43 post-compaction. 

2.2. Data pre-processing and correlation 

Data used in this study were sourced from sections 3 and 

9 of the sites (Fig. 1). The input variables used for 

prediction of the cumulative degree of soil compaction 

CDSC involve the average SPT N before the dynamic 

compaction, Nini, the number of the tamper drops, Ndrops, 

and cumulative applied energy normalized with a cross-



 

sectional area of tamper, Ea. Calculation of the applied 

energy Ea uses the following equation (Lukas 1995): 
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where Wt = weight of tamper, Hdrop = height for the 

tamper drop, Ae = influence area of each impact point 

(i.e., Ae = s2; s = spacing between tamper drops), and At 

= cross-sectional area of tamper. Equation (1) indicates 

that the applied energy Ea decreases with a larger tamper 

cross-sectional area (note: this study uses a single 

tamper). The cumulative degree of soil compaction 

CDSC is calculated using the Nini and Nfinal information 

per test location as follows: 
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where Nini is the average SPT N before dynamic 

compaction and Nfinal is the average SPT N after dynamic 

compaction. The predictive model for estimating the 

CDSC is trained and tested with data obtained from only 

section 9, and then each AI model is further cross-

validated with data from section 3.  

 The ANN model used in this research is 

modeled with a sigmoid activation function which is 

asymptotic to 0 and 1. Based on these limits of the 

sigmoid function, the data for the ANN is scaled within a 

range of 0.1 to 0.9 using the equation below: 
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where Imax and Imin are the maximum and minimum 

values for the unscaled dataset. The scaling of the data 

ensures early convergence at a very low error; in general, 

it leads to an efficient learning process. After the training 

and testing process, the predicted variables are unscaled 

to their original values. Note that the other AI models do 

not require data pre-processing as they can be trained 

using unscaled or raw data (Vapnik 1999; Breiman 

2001). 

 

 
Figure 1. Site location map indicating the study areas  

Fig. 2 shows Spearman’s rank correlation heatmap and 

Table 1 shows correlation classifications based on 

absolute rs values of feature variables to the target. The 

results of rs suggest that Nini and Ndrops are moderately 

correlated with CDSC with rs values of -0.53 and 0.46, 

respectively while the Ndrops parameter is strongly 

correlated with CDSC with rs of 0.75 (see Figure 2 and 

Table 1) because the implementation of DC reveals that 

the ground improvements generated by dynamic 

compaction increase gradually with the increasing 

number of tamper drops. 

 

 
Figure 2. Spearman’s rank correlation coefficient 

heatmap for input parameters and the target variable. 

 

3. Results 

This section presents the results for the cumulative 

degree of soil compaction CDSC predicted from the four 

AI models (i.e., artificial neural network ANN, support 

vector regression SVR model, gradient boosting machine 

GBM modeling, random forest RF) and their cross-

validations CV and comparison. In particular, an optimal 

AI model is selected and assessed with a parametric 

sensitivity analysis based on the CDSC prediction 

performance assessed with metrics of accuracy MOA and 

parametric study. 

3.1. Data division 

Fig. 3 illustrates RMSE values for predicting 

cumulative degree of soil compaction (CDSC) using 

iterative training and testing with data from Section 9, 

and validation with data from Section 3. In Figure 3(a), 

all AI models demonstrate successful learning with 

minor estimation errors (RMSE < 0.2). GBM and RF 

exhibit better performance compared to ANN and SVR 

in training data prediction. Ensemble models like GBM 

often outperform others due to their boosting method. 

Figure 3(b) shows low RMSE values (< 0.2) for all 

models in testing, with GBM performing the best. In 

Figure 3(c), ANN and SVR show higher errors, possibly 

due to data similarities with training data. RF has the 

lowest average RMSE, outperforming others. Models 

from iteration 3 are selected for further analysis due to 

consistently low RMSE values. 

 



 

 

 
Figure 3. Root mean square error RMSE values for the 

cumulative degree of soil compaction CDSC predicted 

using (a) Training set with data in Section 9, (b) testing 

set with data in Section 9, and (c) validation with with 

data in Section 3. 

3.2. Performance evaluation of AI predictions 

This study focuses on using measures of accuracy 

(MOA) to assess the performance of four AI models for 

predicting CDSC. Evaluation metrics include root mean 

square error (RMSE), coefficient of determination (r2), 

and mean absolute error (MAE). Low MAE and RMSE, 

along with high r2 values, signify effective CDSC 

prediction by AI models. Cross-validation is conducted 

for both the training and testing datasets in Section 9, as 

well as the data in Section 3. 

 

 Training 

Training. For each AI model employed in this study, 

the cross-validation plots based on the training set are 

displayed in Fig. 4. Fig. 4 shows that the MOA involves 

a high r2 = 1, and low MAE = 0.01 and RMSE = 0.02 for 

GBM and a high r2 = 0.98 and a low MAE = 0.05 and 

RMSE = 0.07 for RF. Both GBM and RF show relatively 

low errors in terms of MAE and RMSE and a high 

coefficient of determination due to the ensemble learning 

technique, which is popularly known for its high 

prediction accuracy in comparison to ANN and SVR 

(Opitz and Maclin 1999; Polikar 2006). Although ANN 

indicates relatively low prediction performance in 

comparison to GBM and RF, the MOA for ANN involves 

low errors of MAE = 0.11 and RMSE = 0.16 and a high 

coefficient of determination, r2 = 0.91. These MOA 

values for ANN support that the trained ANN efficiently 

mapped the relationship between the inputs and the 

output. SVR results in a high r2 = 0.89, a low MAE = 

0.14, and a low RMSE = 0.18 (Figure 4b). These MOA 

values result from its learning method, which 

accommodates a degree of error to improve the 

generalization ability of the SVR model (Chow et al. 

1992; Chik et al. 2014). The evaluation MOA for the 

prediction of CDSC by the four AI models using the 

training set suggests that GBM performs the best 

followed by RF, ANN, and SVR the least. 

 
Figure 4. Cross-validation plots from ML CDSC 

predictions using training set with data in Section 9: (a) 

ANN, (b) SVR, (c) GBM, and (d) RF. 

 Testing 

Fig. 5 displays cross-validation (CV) plots for the 

four AI models using the testing subset, entirely 

unknown to the trained model. Evaluation of CDSC 

prediction performance based on measures of accuracy 

(MOA) reveals GBM as the top performer, followed by 

RF, ANN, and SVR. GBM and RF exhibit high 

prediction performance with high r2 and low errors (MAE 

and RMSE in Figure 5c and 5d). Their MOA values for 

the testing dataset indicate robust prediction and high 

generalization ability. GBM results suggest successful 

training without significant overfitting. 

 
Figure 5. Cross-validation plots from the ML CDSC 

predictions using testing set with data in Section 9: (a) 

ANN, (b) SVR, (c) GBM, and (d) RF. 
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 Validation 

Fig. 6 displays cross-validation plots utilizing the 

trained AI models and data from Section 3. Evaluation of 

measures of accuracy (MOA) for the four AI models 

indicates satisfactory and reliable CDSC prediction 

performance, a typical characteristic of AI models. While 

SVR and RF yield similar results, ANN exhibits a higher 

r2 compared to GBM, although GBM demonstrates 

lower error values than ANN. SVR's improved 

performance with Section 3 data may be attributed to its 

ability to tolerate estimation errors through the 

hyperparameter "cost" (C). By selecting a low cost, SVR 

accommodates prediction errors during training, 

enhancing its generalization ability when tested on 

validation datasets. MOA values for CDSC prediction 

performance obtained by the four AI models across 

training, testing, and validation datasets suggest 

difficulty in identifying the best model due to highly 

comparable performance across all scenarios. Further 

investigation is necessary to determine the optimal model 

in subsequent subsections. 

 
Figure 6. Cross-validation plots from the ML CDSC 

predicted using data in Section 3. (a) ANN, (b) SVR, (c) 

GBM, and (d) RF. 

 

4. ANN Model Deductions 

4.1. ANN model topology 

Fig. 7 depicts the architecture of the ANN model used 

in this study, featuring three nodes in the input layer, two 

nodes in the hidden layer (H1 and H2), and an output 

layer representing CDSC. The ANN method constructs a 

network by incorporating biases and weights to the input 

and hidden layers, influencing the output layer. A 5-fold 

cross-validation process determines the optimal weights, 

biases, and number of hidden layer nodes for this ANN 

topology. The architecture visualizes the weights 

assigned to each variable, with positive weights depicted 

by black lines and negative weights by grey lines. The 

thickness of the lines indicates the magnitude of the 

weights. Analysis of the architecture reveals the 

significance of Ndrops and Nini in CDSC prediction, while 

Ea contributes minimally. Variable importance analyses 

further quantify each input parameter's actual 

contribution to the ANN-based CDSC prediction. 

 

 
 

Figure 7. ANN model architecture used for CDSC 

prediction model. 

4.2. Input variable importance 

The Garson model, utilized to evaluate input variable 

importance in the ANN model, employs absolute scale 

values derived from the deconstruction of optimal 

weights. This algorithm scales the importance of input 

parameters, expressing their contribution out of a total 

value of 1. In Fig. 8, Nini ranks as the most influential 

variable for CDSC predictions, followed by Ndrops and Ea. 

A low Nini value reflects location characteristics and is 

particularly responsive to dynamic compaction (DC). 

Notably, under constant Ae, At, Ndrop, and Hdrop 

conditions, Ea increases with higher tamper weight, 

leading to higher CDSC. Therefore, the importance rank 

could change with the use of multiple tampers with 

different weights. 

 
Figure 8. Input parameter importance for ANN using 

Garson’s model. 

4.3. Input parameter sensitivity 

This study involves parametric sensitivity analysis 

(PSA) of input variables for the ANN model to assess 

their impact on predicting the cumulative degree of soil 

compaction (CDSC). The analysis divides input variables 

such as Ndrops, Ea, and Nini into six splits based on data 

distribution, ranging from minimum to maximum 

quantiles. Each split corresponds to a different value 

range, with "split 1" representing the minimum value and 

"split 6" representing the maximum value. The analysis 

varies a single input variable of interest from splits 1 to 6 

 1 
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while keeping the other two variables constant across 

their entire range. For instance, in Fig. 9, when the X-axis 

shows quantile 0, both Ea and Nini remain at their 

minimum values (split 1), while Ndrops varies from split 1 

to split 6. 

 

 

 
Figure 9. Parameter sensitivity analysis plots for the 

optimal ANN model: (a) Ndrops, (b) Ea, and (c) Nini. 

 

In Fig. 9(a), the parametric sensitivity analysis (PSA) 

for Ndrops reveals a correlation between CDSC and the 

increasing number of tamper drops (splits 1-to-6) while 

other variables remain constant. This highlights the 

significance of the lowest average SPT N before DC, 

particularly as the number of tamper drops increases, 

indicating substantial ground improvement (Lukas 

1995). However, CDSC gradually declines across all 

Ndrops splits as explanatory quantiles rise from minimum 

to maximum values, attributed to increasing Nini 

reflecting denser soil layers. At low explanatory 

quantiles, CDSC tends to approach low values for all 

Ndrops splits, suggesting minimal ground improvement in 

very dense soils due to dynamic compaction (Chik et al. 

2014). 

In Fig. 9(b), the PSA for Ea shows that split 1 

(maximum Ea) results in the highest CDSC across all 

explanatory quantiles. There's a transition of CDSC, with 

peak CDSC occurring at explanatory quantiles = 0.3-to-

0.4. This indicates inefficiency of dynamic compaction 

for very loose and dense soil layers due to soil dilation or 

energy absorption rather than transfer. At the lowest 

explanatory quantile (maximum Ndrops and Nini), 

predicted CDSC reaches a low asymptote across all 

splits, suggesting difficulty in further densification of 

dense soil layers (Das 2015). Conversely, at the highest 

explanatory quantile (maximum Ndrops and Nini), dynamic 

compaction energy may dissipate in other forms without 

significant soil densification. The narrow range of CDSC 

values with 6 splits indicates ANN-based CDSC 

prediction's low sensitivity to changes in Ea, aligning 

with practical dynamic compaction processes. 

In Fig. 9(c), the PSA for Nini illustrates a notable 

increase in CDSC with rising explanatory quantiles 

towards maximum Ndrops and Ea, with split 1 (smallest 

Nini) resulting in the highest CDSC. Dynamic 

compaction's effect on very loose soils with low Nini 

appears significant up to explanatory quantiles of 0.4, 

beyond which the effect diminishes. This suggests a 

threshold in dynamic compaction where small gains are 

achieved, consistent with practical DC processes. 

5. Summary and Conclusions 

Four commonly used artificial intelligence (AI) 

models, namely ANN, SVR, GBM, and RF, were 

assessed in this study for predicting soil compaction 

induced by dynamic compaction (DC). An equation 

based on the ANN model was developed to predict 

CDSC. Overall, the AI models demonstrated robustness 

in forecasting DC-induced ground improvement, with 

ANN emerging as the best model. The optimal ANN 

accurately captured soil compaction degree considering 

energy input, tamper drops, and subsurface conditions 

(Nini). Cross-validation using the test set and out-of-

sample data from Section 3 confirmed good CDSC 

prediction accuracy for all AI models, particularly the 

optimal ANN. Sensitivity analysis revealed Nini and 

Ndrops as the most influential parameters, while Ea had 

the least impact. The ANN model remained reliable and 

robust across various input parameter combinations, 

yielding rational CDSC estimations. The innovative AI 

technique complements rather than replaces standard 

design processes, enhancing smart DC design solutions. 
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