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Abstract. Granular flow is a phenomenon widely presented in both the natural and engineering 
fields. Here granular materials could be either solid particles, e.g. rocks, soil, and grains, or 
liquid particles, e.g. mud and fresh concrete mortar. Soil landslides, particle transport, and 
grain accumulation have been edge-cutting hot research topics. Discrete Element Method 
(DEM) has been regarded as one of the most important methods to simulate granular flows and 
to investigate discontinuous and large deformation problems. The basic principle of DEM was 
to view the simulated object as consisting of discrete particles, to define specific constitutive 
relationships for the particles, and to study the macroscopic properties of the simulated object 
from a microscopic perspective based on the interactions between particles. However, DEM 
simulations usually consume very high computational cost for particle contact searching and 
detection. To accelerate the computational process of discrete element simulation, the Graph 
Neural Network (GNN) based deep learning model was proposed in this paper. In GNNs, graph 
nodes and graph edges represent the particles and their interactions. The training and testing 
datasets were generated using an open-source software named YADE, while the neural network 
model was constructed using PyTorch and Deep Graph Library (DGL). Replacing the direct 
calculation of particle collisions in DEM with the trained neural network model, the state of 
the particles at the next moment could be predicted based on the current state of the particles. 
It significantly increased computational speed. The proposed technique was applied in various 
examples, such as drum rotation and hopper stacking, and its accuracy had been verified. This 
study established a solid foundation and provided robust support for further research and 
applications of granular flow simulation based on GNN. 

 
 
1 INTRODUCTION 

Granular materials are widely used in various industries such as agriculture, soil engineering, 
petrochemicals, medicine and geotechnical engineering. In recent years, researchers have used 
numerical simulation methods to study complex granular flow phenomena. Among these 
methods, the Discrete Element Method (DEM) is a method for direct simulation of particles 
with high calculation accuracy[1]. However, since DEM requires calculating the forces on 
particles in very small time steps, it results in large computational loads and high costs. 

With the improvement of computer technology, machine learning and artificial intelligence 
technologies have been widely used in various fields such as computational mechanics, image 
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processing, data prediction, computer vision, and speech recognition, and have received great 
attention from scientific research institutions and the industrial community. Using neural 
networks as agents or accelerating numerical calculations has become a popular research 
direction. 

On the one hand, neural networks can establish the relationship between microscopic 
parameters and macroscopic behaviors in DEM, so that microscopic parameters can be 
calibrated or DEM calculation results can be predicted. This aspect has been extensively studied 
by many researchers[2–5]. On the other hand, based on the current state information of the 
particles, neural networks can be used to predict the state of the particles in the next time step, 
thereby accelerating the calculation process of granular flows. This study will explore the latter 
aspect. 

This study aims to further explore the possibility of using Graph Neural Networks (GNN) to 
accelerate DEM simulation in various granular flow scenarios. A particle-particle and particle-
boundary GNN prediction model was established, and the boundaries in the DEM were sampled 
as discrete points and input into the GNN as nodes to consider the influence of irregular 
boundaries. By inputting the current state of the particle, the model can predict the state of the 
particle in the next time step. The prediction accuracy and stability of the GNN model were 
verified through the simulation cases of granular flow with horizontal drum and hopper stacking. 

2 RELATED WORK 
Neural network methods for predicting particle states generally include Multi-Layer 

Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and GNNs. 
MLPs can be used to establish prediction models for particle flows. Zhang et al.[6] created 

the FluidsNet model to predict the velocity field of fluid particles based on simulation data. Lai 
et al.[7] used MLPs to detect particle contact and obtain related contact information to simulate 
the physical behavior of irregularly shaped particles. Yao et al.[8] constructed a data-driven 
model to solve the pressure Poisson equation in fluid particles, which greatly accelerated the 
calculation speed. 

The three-dimensional continuous convolution method was proposed by Ummenhofer et 
al.[9], which uses spatial convolution as the main differentiable operation to connect particles 
with their neighbors and has achieved good results in Lagrangian fluid simulation. Lu et al.[10] 
and Xu and Shen[11] applied this method on DEM and trained CNNs to replace the calculation 
process of particle-particle and particle-boundary contacts. 

GNNs use less structured data (i.e., graph structure) as input. The lower structured level 
means that the input can have any shape and size and can show complex topological 
relationships. This method has a natural advantage in establishing connections between 
particles. Particles are represented as nodes and the interactions between particles are 
represented as edges. Sanchez-Gonzalez et al.[12] proposed a graph network-based simulator to 
represent the physical state of particles such as fluids and rigid solids. Klimesch et al.[13] 
established a GNN for learning fluid dynamics and improved the generalization ability and 
stability of the model by adding random noise. Li and Farimani[14] also used GNN to predict 
fluid particle flows, and they used two GNN structures, node-focused networks and edge-
focused networks. Ma et al.[15] established a computational framework combining fluid 
dynamics with GNN, which can infer and predict the dynamics of particles in suspension. 
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Kumar and Vantassel[16] used GNN to predict the flow behavior of two-dimensional particles. 
Mayr et al.[17] established a boundary GNN model based on effective theory, which can 
effectively take into account the irregular triangular geometric boundaries in DEM. 

3 METHODS 

3.1 The basis of DEM 
The basic equations of DEM include physical equations and motion equations. The physical 

equations are used to solve the forces on the particles, and the motion equations are used to 
calculate the acceleration, velocity and displacement of the particles. 

In the linear contact stiffness model, the normal contact force vector nF  is determined by the 
normal contact stiffness nK  and the overlap between particles nξ . The tangential contact force 
vector is calculated in an incremental manner, that is, the increment of the tangential force T∆F  
is related to the increment of the tangential relative displacement t∆ξ  

N n nK ξ=F n  (1) 

T t tK∆ = ∆F ξ  (2) 

where n is the unit vector in the normal direction, tK  is tangential contact stiffness. 
Newton’s second law is used to calculate the displacement, velocity and acceleration of 

particles. The movement of particles consists of two parts: translation and rotation. The 
translation equation and rotation equation are 

( )i i iF m u g= −  (3) 

i iT Iω=   (4) 

where iF  is the resultant force acting on the particle, im  is the mass of the particle, iu  is the 
acceleration of the particle, g is the gravitational acceleration, iT  is the total torque acting on 
the particle, I is the moment of inertia, iω  is the angular acceleration of the particle. 

3.2 Encoder-processor-decoder GNN 
GNN is a class of neural networks designed to work with graph-structured data, which learns 

the feature information of nodes and edges in the graph. GNNs can process data represented as 
graphs, which consist of nodes and edges. 

Suppose a graph ( , )G N E= , with nodes in N∈  and edges ije E∈ , each node has node feature 

ih , and each edge has edge feature ijm . The traditional encoder-processor-decoder architecture 
is used. First, the node features and edge features are encoded 

( )N
i ih hε′ =  (5) 

( )E
ij ijm mε′ =  (6) 
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where Nε  and Eε  are the encoders for nodes and edges respectively, and the encoder is 
implemented by MLP. 

In the processor, the message is transmitted for each edge to obtain the processed edge 
feature ijm , and then the message is aggregated for each node to obtain the processed node 

feature ih  

( ), ,ij i j ijm h h mφ ′ ′ ′=  (7) 

( )( ),
iji i e E ijh h mψ ∈

′= Λ

  (8) 

where φ  and ψ  are MLP, 
ije E∈Λ  represents the aggregation of the edge ije  of node in , Λ  

represents the aggregation method, generally there are sum, mean, and maximum methods, this 
study adopts the sum method. 

Finally, the node features are decoded to obtain the output result 

( )N
i io hγ=   (9) 

where Nγ  is the decoder of the node and is also implemented by MLP. 

3.3 GNN framework 
The boundaries in DEM are generally composed of walls. The movement of particles is 

affected by both particle-particle contact and particle-boundary contact. In order to consider the 
influence of boundaries in GNN, the walls are discretized into uniformly distributed boundary 
points[9,10], which can be input into the graph as nodes. When the distance between particles is 
less than the cutoff distance for particles cutoffr , edges are established between nodes. Similarly, 
the cutoff distance for particles to contact the boundary 

cutoff

wr  determines the edge between 
particles and boundary points. 

The GNN computation framework is shown in Figure 1. They are two GNN models, GNN 
for particle-particle contact and GNN for particle-boundary contact. The positions of particles 
and boundary points are input, and then node features and edge features are constructed. The 
particle node feature contains the position nx  and velocity vector nv ; the boundary point 
feature contains the position and normal vector nnv ; the edge feature refers to the idea of Mayr 
et al.[17] and contains many formulas with physical information calculated based on the node 
position. 

The two GNNs output the particle-particle velocity 1
ppˆn+v  and the particle-boundary velocity 

1
pwˆn+v  at the next time step (t+ t∆ ), respectively, and calculate the particle velocity and the particle 

position according to the difference method. 
1 1 1

pp pwˆ ˆ ˆn n n+ + += +v v v  (10) 

1 1ˆ ˆn n n t+ += + ⋅∆x x v  (11) 
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Figure 1: GNN framework 

4 EXPERIMENTS 
This study used the open-source software for DEM numerical simulations, Yade[18], which 

runs on Linux system, is written in C++. It has a variety of common particle models, and can 
customize particle material and contact constitutive relations. The GNN waws built by Deep 
Graph Library (DGL), which is an open-source library for deep learning GNN in Python. It 
provides an efficient architecture, easy-to-use API, and support for various GNN models and 
algorithms. The computing framework was implemented and trained by PyTorch, and the 
graphics card device used was NVIDIA RTX 4090 24GB. 

4.1 Simulation details 
(1) Horizontal drum simulation 
As shown in Figure 2, a horizontally placed drum with a diameter of 300 mm and a length 

of 600 mm was used to generate dataset. Densely packed particles were generated in random 
regions of the drum, and the initial velocity of the particles was set to a random velocity, with 
a total of 20 different cases. The number of particles was 2530. The DEM simulation parameters 
are shown in Table 1. The global damping coefficient was 0, the time step was 1×10−5 s, and 
the drum rotation speed was 3 rad/s. For each case, the run time was 3 s.  

Table 1: DEM simulation parameters 
Parameter Value 
gravity acceleration (m/s2) 9.81 
particle diameter (m) 0.02 
particle density (kg/m3) 1000 
particle elastic modulus (Pa) 1×106 
particle friction angle (rad) 0.5 
particle Poisson’s ratio 0.25 
wall friction angle (rad) 0.5 
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Figure 2: Horizontal rotating roller simulation (unit: mm) 

(2) Hopper simulation 
As shown in Figure 3, the diameter of the upper and lower parts of the hopper is 500 mm, 

the diameter of the middle hopper mouth is 200 mm, and the total height is 900 mm. Particles 
were generated at random positions in the cylindrical area of the upper part of the hopper, and 
the initial velocity of the particles was set to a random velocity, with a total of 20 different cases. 
The number of particles was 2608. The DEM simulation parameters were shown in Table 1. 
The global damping coefficient was 0.2, and the running time was 2 s. 

 
Figure 3: Hopper simulation settings (unit: mm) 

4.2 Training 
The DEM simulation sampled data at a frequency of 100 Hz for the two cases. For both the 

horizontal drum simulation and the hopper simulation, 16 cases were used as training set, and 
4 cases were used as test set. 

Based on the Poisson distribution sampling method[19], the geometric boundary of the 
horizontal drum was discretized into 3000 boundary points, and the geometric boundary of the 
hopper was sampled to 5000 boundary points, see Figure 4. The cutoff distance of particle-
particle contact was cutoff 2.5r r=  and the critical distance of particle-boundary contact was 

cutoff
2.5wr r= , where r is the radius of the particle. The input features were the position and velocity 

of the particles, the position and the normal vector of the boundary points. The encoder and 
decoder in the GNN both used three-layer MLP, the hidden layer dimension was 128, and the 
ReLU activation function was used. The number of layers of the GNN was 3. 

The training of the GNN network adopted the one-step prediction mode, inputting the state 
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information of the particles at a certain time to predict the position of the granular flow at the 
next time. The loss function was the Mean Square Error (MSE) between the predicted value 

1ˆ n+x  and the true value 1n+x  of the position of all particles. The Adam optimizer was used to 
optimize the model parameters. We performed a maximum of 20000 gradient update steps, with 
the learning rate decay from 1×10−4 to 3.125 ×10−6. 

( )21 1

1

1 ˆ
N

n n

i
MSE

N
+ +

=

= −∑ x x  (12) 

 
Figure 4: Boundary points for the horizontal drum and hopper 

5 RESULTS AND DISCUSSIONS 

5.1 Results 
The evaluation of the results adopts the rollout prediction mode. The state information of the 

particle flow at a certain time is input, and the neural network outputs the state of the particle 
flow at the next time step, and then the output result is re-input, and the state of the particles at 
the next time step is continued to be output, and the cycle repeats.  

The evaluation error of the GNN network adopted the average value of the Euclidean 
distance between the true value and the predicted value of all particle positions, and the 
calculation formula is 

1 1

2
1

1 ˆ
N

n n

i
E

N
+ +

=

= −∑ x x  (13) 

The GNN model inputted the state of the particles at time t = 0.1 s. Figure 5 shows the 
average error of the horizontal drum test set over time. At t = 0.11 s, the average error of the 
test set for one-step prediction of all particles was 0.00281 m; at t = 3 s, the average error of all 
particles in the test set was 0.0790 m. Figure 6 shows the comparison of the average angle of 
repose (AoR) of the test set. It can be seen that under DEM calculation, the AoR of the particle 
flow was basically stable at t = 3 s, with an average of about 34.46°. The average AoR predicted 
by GNN was about 35.03°. Figure 7 show the comparison between the predicted particle 
velocity and the DEM calculated value at t = 3 s. The velocity predicted by GNN was lower 
than the value calculated by DEM. This is because the value calculated by DEM was the 
instantaneous velocity (calculated with a time step of 1×10−5 s), while the velocity predicted by 
GNN is calculated by the difference method (calculated with a time step of 1×10−2 s). Therefore, 
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there is a certain difference between the two. Lu et al.[10] believed that the prediction model 
underestimated the velocity of the particles, which is due to the fact that the prediction model 
ignored the fluctuations of the particles and smoothed the collision of the particles. 

 
Figure 5: Evaluation error curves for the test set under horizontal drum simulation 

 
Figure 6: Comparison of AoR for the test set between GNN and DEM 

 
Figure 7: Comparison of particle velocity between GNN and DEM under horizontal drum simulation (t = 3 s) 

In the hopper stacking prediction, Figure 8 shows the average error of the hopper test set. At 
t = 0.11 s, the average error of all particles in the test set single-step prediction was 0.000874 
m; at t = 2 s, the average error of all particles in the test set was 0.0939 m. Figure 9 shows the 
change of the average weight center of all particles over time. It can be seen that the two curves 
are very close, indicating that GNN can accurately predict the change of the center of gravity 
of the particles and evaluate the stacking state of the granular flow as a whole. Figure 10 shows 
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the comparison of the particle velocity values predicted by GNN and the DEM calculated values 
at t = 2 s. 

 
Figure 8: Evaluation error curves for the test set under hopper simulation 

 
Figure 9: Comparison of weight center for the test set between GNN and DEM 

 
Figure 10: Comparison of particle velocity between GNN and DEM under hopper simulation (t = 2 s) 

5.2 Limitations 
In this study, we adopted the GNN framework to accelerate the computational process of 

DEM by predicting the state information of each time step of the granular flow, which is capable 
of performing both speedy and accurate simulations. The time step of GNN was 1000 times 
that of DEM, and the average speed of GNN prediction was about 30 times that of DEM 
calculation. However, there are still several limitations as follows. 

First, GNN training not only takes time, but also the larger the graph (more nodes and edges), 
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the more hardware resources are occupied by training, which limits the size of GNN graph. 
Second, there will always be an irreconcilable error between the prediction results of the 

GNN model and the calculated value, and as the number of prediction steps increases, the 
difference with the calculated value will gradually be amplified. 

Finally, the GNN model will smooth the collision of particles, resulting in the particle speed 
being lower than the DEM calculated value. In addition, there may be overlap between particles 
in the prediction results. 

6 CONCLUSIONS 
This study adopted a GNN-based accelerated DEM calculation model, including GNN for 

particle-particle contact and GNN for particle-boundary contact, to simulate the granular flow 
under horizontal drum and hopper. The main conclusions are as follows. 

1) The single-step prediction errors of the GNN prediction model for the test set under the 
cases of horizontal drum and hopper were 0.00281 m and 0.000874 m. This indicates that the 
GNN can achieve high accuracy in the prediction of different granular flow scenarios. 
Compared with traditional DEM, GNN had high prediction accuracy and fast calculation speed, 
achieving about 30 times acceleration. 

2) The GNN can predict macroscopic features such as the angle of repose and weight center 
better, but the GNN smoothed out the collision of the particles and might lead to the overlapping 
of the particles. 

The effects of different hyperparameters on the prediction results of GNN should be further 
investigated subsequently. In addition, how to make the GNN learn the effects of factors such 
as the size and shape of the particles is also worth considering. 
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