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Summary. For the manufacturing process simulation of fiber-reinforced polymer composites,
flow simulations have to be performed at multiple spatial scales which govern the flow through
the fiber structures. Repetitive multiscale flow simulations are computationally expensive and
time-consuming. In order to speed up the multiscale simulation workflow, fast machine learning
surrogate models or emulators could be used to replace one or more of the flow simulations. In
this work, feature-based emulators and geometry-based emulators are developed using neural
networks for predicting the permeability of 3D fibrous microstructures based on a reference
dataset (doi:10.5281/zenodo.10047095). The best model achieved a mean relative error of 8.33%
on the test set with a significantly faster inference time compared to a conventional simulator.

1 INTRODUCTION

A fiber-reinforced polymer composite is a composite material in which fibers are dispersed
in a continuous polymer matrix. Fiber-reinforced composite materials can be prepared by man-
ufacturing processes such as Liquid Composite Molding (LCM), in which several stacks of dry
fiber textile layers are impregnated by a liquid polymer system [1]. The efficient design of
such impregnation processes is supported by process simulation. The flow of a liquid polymer
through the fiber structure is governed by flow phenomena at different spatial scales spanning
from micrometers (microscale) to millimeters (mesoscale) to meters (macroscale). To take into
account these multiscale phenomena in the process simulation, individual flow simulations are
performed on the different spatial scales and the information is transferred to the corresponding
higher spatial scales [2, 3, 4]. The first and vital step in this process simulation is the estimation
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Figure 1: Workflow for numerical permeability prediction for a statistical volume element
(SVE) of a 3D fibrous microstructure via steady state saturated flow simulation by solving
for the Stokes equation and applying Darcy’s law to compute the permeability tensor K.

of permeabilities of the fibrous microstructures. The porous media at higher spatial scales are
then subsequently homogenized using the permeabilities of the lower spatial scales.

Presently, conventional methods compute permeability by solving the Stokes equation which
governs the fluid flow through the microstructure. However, performing repetitive flow simu-
lations on 3D microstructures require a lot of computational effort and time. Since the flow
simulations on higher spatial scales are also expensive, a fast emulator for the permeability pre-
diction on the microscale is desirable. Here, modern machine learning (ML) and deep learning
(DL) methods which offer fast inference times have become of great interest. In this work, using
a reference dataset [5] generated using a conventional simulator, several ML emulators such as
fully connected neural networks (FCNN) and 3D convolutional networks (CNN) are developed
to predict the permeability of 3D fibrous microstructures and their performances are compar-
atively evaluated on a test dataset. Such fast data-driven emulators could be integrated in a
multiscale permeability prediction workflow to speed it up.

2 STATE OF THE ART

2.1 PERMEABILITY ESTIMATION

The fluid flow in porous media such as fibrous structures can be described using the Darcy’s
law [6] shown in Equation 1.

u⃗ =
−K ·∆p

η ·∆L
(1)

Here u⃗ is the volume-averaged velocity tensor, K is the permeability tensor, ∆p/∆L is the
driving pressure gradient, and η is the dynamic viscosity. The velocity field for a fluid flow
through a fibrous microstructure can be determined experimentally [7, 8] or through numerical
simulations by solving the Navier-Stokes equation [1] or the further simplified Stokes equations
[9] which is shown in Equation 2.

−µ∆u⃗+∇p = f⃗ (2)

The LIR Solver of the commercial software GeoDict (Math2Market GmbH, Germany) which
uses the LIR-Tree approach [10] is commonly used for efficient numerical solutions to the Stokes
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equation for a 3D voxel structure.

2.2 MACHINE LEARNING FOR PERMEABILITY PREDICTION

In recent years, ML methods have been used as surrogate models (or) emulators to replace
conventional simulators for the purpose of permeability prediction of microstructures. The
different methods in literature can be classified into two: (1) feature-based methods and (2)
geometry-based methods. In the feature-based methods [11, 12, 13], the inputs to the ML
models are morphological descriptors about the microstructure such as volume content, porosity,
Minkowski functionals, etc. With this approach, the descriptors can be used as input features to
classical regression models or FCNNmodels in order to predict the permeability values. However,
such methods necessitate the extraction of morphological features from the microstructure, which
could be computationally expensive. The geometry-based methods predict the permeability
using either 2D images [14, 15] or 3D images [11, 16] or point clouds [17] of the microstructure
as inputs. To the best of our knowledge, the 3D geometry-based ML methods in literature
only consider isotropic microstructures to predict the in-flow permeability, whereas our methods
consider anistropic fibrous microstructures and predict the diagonal of the permeability tensor.

3 ABOUT THE DATASET

Parameter Parameter space Unit

Fiber volume content 50, 52, 54, 56, 58, 60, 62, 64, 66 %

Fiber diameter 6, 7, 8, 9, 10, 11, 12 µm
Fiber direction 0, 11.25, 22.5, 33.75, 45 °

Table 1: The three primary modeling parameters and their parameter spaces which were used
to generate the statistical volume elements (SVE) of the 3D fibrous microstructures

The representative dataset [5] of 3D fibrous microstructures and their numerically computed
permeabilities created by [18] was at the core of this study. The geometries of the microstructures
were artificially generated using FiberGeo module of GeoDict [19]. Three primary features
influencing permeability: fiber volume content, fiber diameter and fiber direction were sampled
from the parameter spaces defined in Table 1 to generate 4284 geometries as shown in Figure
2. For each of these microstructurs, steady state saturated flow simulations along the three
flow directions X, Y and Z were performed using the FlowDict module of GeoDict [20] and the
corresponding permeability tensor was calculated using Darcy’s Law [6] as illustrated in Figure
1. Further details about the dataset generation can be found in [5, 18]. In this study, the focus
was on the task of predicting the diagonal of the permeability tensor for a given 3D fibrous
microstructure.

4 MODELING APPROACHES

In this work, two types of ML-based modeling approaches to predict the permeability of
3D fibrous microstructures were considered: (1) Feature-based emulators and (2) Geometry-
based emulators. These two approaches had the same task of predicting the diagonal of the
permeability tensor, but differed by the input features used to achieve that task.
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Figure 2: Artificially generated statistical volume elements (SVEs) of the fibrous microstruc-
tures by varying the fiber volume content (FVC), fiber diameter and fiber direction. Each ge-
ometry has a resolution of 0.5 µm³ / voxel, containing 320× 320× 320 voxels. The coordinate
system indicates the three orthogonal flow directions X, Y and Z.

4.1 FEATURE-BASED EMULATORS

The feature-based emulators were designed using fully connected neural networks (FCNN) to
map the relationship between the morphological features describing the 3D fibrous microstruc-
tures and the diagonal of the permeability tensor. In Approach 1, the fiber features from Table
1 used to generate the microstructures were used as input features. In Approach 2, additionally
the five Minkowski features of volume fraction, surface area, curvature integral mean and total,
and Euler Characteristic extracted using GeoDict [21] were used. These features describe the
topology of the pore space [22] in the fibrous microstructures.

4.2 GEOMETRY-BASED EMULATORS

The geometry-based emulators were designed using 3D convolutional layers and fully con-
nected layers to map the relationship between the 3D fiber microstructure and the diagonal
of the permeability tensor. Three modeling approaches of the geometry-based emulators were
studied as shown in Figure 4. In the first approach, only the 3D geometry was used as input. In
the second approach, the 3D geometry and the three fiber features (volume content, diameter
and direction) were used as inputs. In the third modeling approach, the 3D geometry and all 8
additional features were used as inputs.

As seen in Figure 4, the geometry-based emulator consists of two trainable neural network
components: the 3D CNN encoder and the FCNN. The 3D CNN encoder learnt a latent represen-
tation of the 3D geometry. This latent encoding was then flattened and optionally concatenated
with either 3 or 8 additional input features. A FCNN was then used to map the flattened or
concatenated features to the target or predicted features.
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Figure 3: Two modeling approaches for the feature-based emulators: (1) using 3 input fea-
tures, and (2) using 8 input features to predict the diagonal of the permeability tensor. These
emulators were built using configurable FCNNs.

Figure 4: Three modeling approaches for the geometry-based emulators: (a) Using geome-
try only as inputs, (b) Using geometry and 3 fiber features as inputs, and (c) Using geometry
and 8 additional features as inputs to predict the diagonal of the permeability tensor. These
emulators were built using 3D CNN encoders and FCNNs. The architecture of the 3D CNN
encoders is elaborated in Figure 6.
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Figure 5: Distributions of the three target permeabilities in the dataset containing 4284 sam-
ples. The permeabilities K11, K22, and K33 representing the diagonal of the permeability ten-
sor are each on a different scale with ranges of values between 10−12 and 10−15m2.

5 TRAINING AND EVALUATION

5.1 DATA PROCESSING

For the training of the ML emulators, the dataset of 4284 fiber microstructures and their
corresponding permeability values were split into training, validation and test sets using a 60%
- 20% - 20% randomized split. To bring the various input features for the feature-based em-
ulators to a similar scale, they were normalized to the range [-1,1]. The 3D geometries were
in binary format with 0 values representing voids and 1 values representing fibers, therefore no
normalization was applied. The target features, i.e., the diagonal of the permeability tensors in
the dataset were each on a different scale with ranges of values between 10−12 and 10−15m2 as
shown in Figure 5. Therefore, the three permeabilities were each normalized to the range [-1,1].

5.2 OBJECTIVE FUNCTION

For the regression task of predicting the permeability values, the mean squared error (MSE)
was used as the objective function to compute the error between the ground truth and the
predictions of the neural network as shown in Equation 3. The errors and their gradients were
used to update the neural network parameters using the Adam optimizer [23, 24] with a given
learning rate.

MSE(ytrue, ypred) =
1

n

n∑
i=0

(yitrue − yipred)
2 (3)

where yitrue, y
i
pred are the ground truth and predicted permeability values of the ith sample

in the normalized scale [−1, 1].

5.3 HYPERPARAMETER TUNING

To find the best FCNN configurations for the feature-based emulators, a hyperparameter
search was performed using the Optuna [25] library. Based on the defined search spaces in
Table 2, 200 sampling trials were done and subsequent training of the FCNNs were performed
to find the best performing model w.r.t MSE on the validation set. The configurations of the
best FCNNs for the two modeling approaches for the feature-based emulators are shown in Table
3.
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Hyperparameter name Hyperparameter search space

Number of hidden layers 1,2,3,4

Number of neurons in each
hidden layer

logarithmic space in range (4,64)

Activation function ReLU, LeakyReLU, ELU, SELU, sigmoid, tanh

Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5

Table 2: Hyperparameters of the FCNNs in the feature-based emulators and their search
spaces used for the purpose of hyperparameter tuning using Optuna [25].

Hyperparameter Approach 1: 3 input features Approach 2: 8 input features

Number of hidden layers 2 3

Layers of the network [3, 49, 59, 3] [8, 64, 49, 45, 3]

Activation function Leaky ReLU ELU

Dropout rate 0.1 0.2

Table 3: Best performing FCNN configurations based on hyperparameter tuning using Optuna
[25] for the two modeling approaches of the feature-based emulators.

The design of the geometry-based emulators were inspired by the architecture proposed by
[26]. Different architecture variations from [26] were created by introducing additional input
features (Figure 4) and by using different convolutional kernel sizes (Figure 6). The performances
of architectures A and B for the three modeling approaches were compared.

5.4 ERROR METRICS

The permeability values predicted by the trained emulators were evaluated in their true scale
using the two error metrics: mean relative error (MRE) and coefficient of determination (R²),
which are defined in Equations 4 and 5.

MRE(Ytrue, Ypred) =
1

n

n∑
i=0

∥∥∥Y i
true − Y i

pred

∥∥∥
2∥∥Y i

true

∥∥
2

(4)

R²(Ytrue, Ypred) = 1−

∑n
i=0

∥∥∥Y i
true − Y i

pred

∥∥∥
2∑n

i=0

∥∥Y i
true − Ymean

∥∥
2

(5)

where Y i
true is the ground truth permeability values of the ith sample, Y i

pred is the predicted

permeability values of the ith sample, and Ymean is the mean permeability values across all
samples in the true scale [m2].

6 RESULTS & DISCUSSION

In this section, the performances of the best architectures from each modeling approach in
the feature-based and geometry-based emulators are discussed. All the evaluation metrics are
reported on the test set, which were hidden from the models during training.
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Figure 6: The 3D CNN encoders considered in this study: Architecture A is based on [26] and
Architecture B is a modified sequential encoder with variable kernel sizes in the first two lay-
ers k1,2. Both encoders lead to a latent encoding of dimensions 32× 3× 3× 3, which was then
flattened/concatenated with additional features as described in Figure 4.

In the Table 4, for each modeling approach in the feature-based emulators, the evaluation
metrics of the best FCNN model and a baseline ridge regression model are shown. It is observed
that the FCNN model clearly outperformed the corresponding ridge regression model for both
modeling approaches. On comparing the two modeling approaches, the best FCNN model with
8 input features achieved a lower MRE of 11.35% than the model with 3 input features which
had MRE of 12.68%. The R² scores for K11 and K22 were comparable for both models, whereas
the model with 3 input features had a slightly better R² score for K33.

In the Table 5, the performances of the architectures A and B from Figure 6 for the three
modeling approaches of the geometry-based emulators are shown. With respect to both the
MRE and R² scores, the architecture B with k1,2 = 15 using geometry and 8 features as inputs
clearly outperformed the other architectures with the lowest MRE of 8.33%.

In comparison to the feature-based emulators, improvements were seen in both MRE and R²
scores for the geometry-based emulators. In particular, the R² scores for K33 made a significant
improvement from 0.706 for the best feature-based emulator to 0.870 for the best geometry-
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Modeling Approach Model
MRE [%] R² score

[K11,K22,K33] K11 K22 K33

3 input features
Ridge regression 49.78 0.794 0.681 0.548

Best FCNN 12.68 0.941 0.953 0.706

8 input features
Ridge regression 34.14 0.882 0.754 0.622

Best FCNN 11.35 0.941 0.954 0.701

Table 4: Evaluation metrics for different modeling approaches of the feature-based emulators
on the test set. The error metrics compare the ground truth permeabilities and the predicted
permeabilities in their true scale [m2]. The lower the MRE metric, the better. The higher the
R² metric, the better.

Modeling Approach Architecture
MRE [%] R² score

[K11,K22,K33] K11 K22 K33

Geometry only
Arch A 11.21 0.967 0.966 0.818

Arch B with k1,2 = 24 13.35 0.942 0.956 0.790

Geometry + 3 features
Arch A 9.48 0.970 0.969 0.818

Arch B with k1,2 = 24 9.65 0.978 0.974 0.870

Geometry + 8 features
Arch A 12.17 0.973 0.962 0.820

Arch B with k1,2 = 15 8.33 0.984 0.978 0.870

Table 5: Evaluation metrics for different modeling approaches of the geometry-based emu-
lators on the test set. The error metrics compare the ground truth permeabilities and the
predicted permeabilities in their true scale [m2]. The lower the MRE metric, the better. The
higher the R² metric, the better.

based emulator. Across the 3 modeling approaches, either architecture A or B performed better.
Further hyperparameter tuning to find a consistently better performing architecture across the
different modeling approaches is necessary.

7 CONCLUSION

In this work, feature-based emulators and geometry-based emulators were developed to pre-
dict the diagonal entries of the permeability tensor based on a dataset for permeability estimation
of 3D fibrous microstructures [5]. In total, 5 different modeling approaches were trained and
then evaluated on an unseen test set. The proposed feature-based and geometry-based emu-
lators can be used as surrogate models to quickly estimate the permeability of a 3D fibrous
microstructure. The total computing time used to generate the 4284 samples in the dataset
was 1046 hoursi, averaging an inference time of 14.65 minutes per sample. In comparison, the

iUsing Intel Core i7-8700K, Intel Core i9-12900K CPUs

9



D. K. Natarajan, T. Schmidt, S. Cassola, M. Nuske, M. Duhovic, D. May and A. Dengel

(a) Best feature-based emulator: 8 input features

(b) Best geometry-based emulator: Geometry + 8 input features

Figure 7: Ground truth vs predicted permeabilities in the true scale on the test set for (a) the
best feature-based emulator (using 8 inputs features) and (b) the best geometry-based emula-
tor (using geometry and 8 input features). The solid black diagonal line represents the ideal
fit to the data with R² = 1.0.

training effort and inference times of the proposed emulators are summarized in Table 6. Note
that the feature-based models ii and geometry-based models iii were trained and evaluated using
GPUs. Therefore, these fast data-driven emulators can be employed to speed up a multiscale
permeability prediction workflow by an order of 104 with a relative error of 8.33%.
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