


of finite element nodes by particles and the definition of ramp functions. Thus
the region for transition is of the size of one finite element and the interpola-
tion is linear. With the same objectives in [2] the finite element domain and
the mesh-free region are coupled with Lagrange multipliers.

Here two recently proposed formulations to couple mesh-free and finite ele-
ment methods are discussed and compared. They generalize the ideas of [1]
for any order of interpolation, suppress the ramp functions, and do not re-
quire the substitution of nodes by particles. That is, as many particles as
needed can be added where they are needed independently of the adjacent
finite element mesh. This is done in a hierarchical manner and enforcing uni-
form consistency for the blended interpolation. In [3] a coupled hierarchical
approximation method is proposed, see also [4–6]. Liu and co-workers have
also proposed a hierarchical enrichment for bridging scales [7–10]. The ad-
vantages and disadvantages of both formulations are presented and discussed;
moreover, numerical examples illustrating these issues are presented.

2 Two consistent hierarchical formulations

2.1 The bridging scale method for hierarchical enrichment and boundary con-
ditions

Liu and coworkers, within the general developments of Reproducing Kernel
Particle Methods [11,12], present in a series of papers a formulation that fol-
lows a mesh-free approach and at the same time enriches a standard finite
element approximation [7–10]. The basic concept is the hierarchical decompo-
sition of a function u based on some projector πh. In general πh is a projec-
tion operator onto any approximation space, but usually a projection onto a
finite element space is employed [7,8]. That is, the span of some finite element
shape functions characterized by an element mesh size h. The rationale is to
enrich a non-complete finite element base (viz., a finite element base whose
supports do not cover the whole domain) with a mesh-free interpolation. In
this approach particles must be added in the whole domain in order to recover
the completeness of the interpolation. That is, the distribution of particles
over the whole domain is such that the necessary conditions for solvability are
met at every point of the domain [13,3,5]. Figure 1 presents an example. It
shows a spatial domain where finite element nodes are considered only along
the Dirichlet boundary. Those are the active nodes for the functional inter-
polation. Other non-active nodes are considered to define the support of the
shape functions (thus only associated to the geometrical interpolation), see
Figure 1.

Thus, designating as B the set of indexes of the active nodes, {xj}j∈B, the
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Remark 2 The approximation (2) can also be written as

û(x) =
∑

j∈B
Nh

j(x) cj +
∑

i∈I
Nρ

i(x) di where cj = aj −
∑

i∈I
Nρ

i(xj) di.

Thus, the approximation space in this hierarchical enrichment, which from
expression (2) appears to be span{Nh

j , j ∈ B} ⊕ span{N̂ρ
i , i ∈ I}, is nothing

else but the direct sum of the finite element and the mesh-free interpolation,
namely

Ŝ := span{Nh
j , j ∈ B} ⊕ span{Nρ

i , i ∈ I}.
Note that the finite element base is not complete almost everywhere. Only along
the boundary defined by the active nodes, see Figure 1, the finite element base
induces the desired consistency. Thus consistency is guaranteed by the mesh-
free approximation both in the region where particles are alone, as usual, and
also in the region where the finite element base is incomplete, the gray area in
Figure 1.

Remark 3 The shape functions {Nh
j }j∈B and {N̂ρ

i }i∈I are linearly indepen-
dent as long as the finite element base is not a complete base. If active nodes
are only distributed on the boundary this is verified automatically. In fact, if∑

j∈B
Nh

j 6= 1 the base is not complete because not every node in the element is

active.

Since this enrichment is hierarchical, in 1D all the mesh-free interpolation
functions cancel on the boundary where the active node, say xD, is located,
i.e. N̂ρ

i(xD) = 0 ∀i ∈ I. Thus the finite element shape function related to xD,
recall that Nh

D(xD) = 1, will impose exactly the Dirichlet boundary condition
as desired.

However, this property is not generalizable to higher dimensions. Although
the mesh-free shape functions vanish at the finite element nodes, they do not
vanish along the element boundaries (edges in 2D and faces in 3D). Figure 2
shows an example of such a case. The shape function of a particle positioned
in the center of a 2D element with two active nodes is hierarchical, i.e. goes to
zero at the active nodes, but it does not cancel along the edge between those
nodes. This fact induces important errors in the implementation of Dirichlet
boundary conditions as already noticed in [8, sec. 5.2.1]. Convergence of this
approach is still guarantee but at a lower rate than expected [9].

2.2 Continuous blending method

Another alternative for a hierarchical enrichment is the technique proposed in
[3], which has been generalized in [14] to get a nodal interpolation property,
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verify that now the approximation space is

S̃ := span{Nh
j , j ∈ J } ⊕ span{Ñρ

i , i ∈ I}.

Note that the shape functions {Nh
j }j∈B and {Ñρ

i }i∈I are linearly independent.
That is, the only possible combination of parameters αi, i ∈ I, and βj, j ∈ J ,
such that ∑

j∈J
αj Nh

j +
∑

i∈I
βi Ñ

ρ
i = 0

is the trivial one. Note that, on one hand, in Ω \Ωρ every Ñρ
i is zero and the

finite element shape functions are linearly independents, i.e. the only possible
combination of parameters αj such that

∑
j∈J αj Nh

j |Ω\Ωρ = 0 is the trivial one.
And, on the other hand, in Ωρ the moving least square procedure to determine
Ñρ

i from (5) and (7) ensures linear independency.

3 Comparing both formulations

3.1 General remarks

As seen in Remarks 2 and 6 the interpolation spaces corresponding to the
bridging scale method and the continuous blending method are not equivalent

Ŝ = span{Nh
j , j ∈ B} ⊕ span{Nρ

i , i ∈ I}
6= S̃ = span{Nh

j , j ∈ B} ⊕ span{Ñρ
i , i ∈ J }.

In fact, equations (1) and (8) also illustrate the differences. The last term in the
r.h.s. of both equations is clearly different; note that the constant value Nρ

i(xj),

which appears in (1), is replaced by the function ¯̄Nρ
i(x, xj) in (8). As noticed

in Remark 5, there is a coincidence at x = xj j ∈ B because both approaches
are hierarchical, but elsewhere the differences have important consequences:

(1) Lower computational cost of continuous blending method. Both formu-
lations require the determination of mesh-free shape functions. Thus at
each integration point a system of equations must be solved. In the con-
tinuous blending method the system is defined in (7), for the bridging
scale method the same system is solved but without the second term on
the r.h.s. Apart from this, on one hand, the bridging scale method re-
quires the computation of the projection of the standard mesh-free shape
functions onto the finite element space, πhNρ

i . That is, the standard
mesh-free shape functions, Nρ

i , must be computed at every active finite
element node, {xj}j∈B. On the other hand, the continuous blending cou-
pled interpolation requires only the computation of the projection of the
polynomial base P at some finite element nodes. That is, it requires the
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computation of P(xj) only at the nodes xj in the transition region Ω̃,
which is easily implemented.

(2) The continuous blending method requires particles only where needed. As
observed in Section 2.2 in the continuous blending method the mesh-free
contribution is cancelled in the region where the finite element base is
complete. Thus, there is no need to have any particles in this region.
This is not the case for the bridging scale method. For this approach a
complete mesh-free approximation is needed in the whole domain in order
to ensure the continuity of the approximation. Obviously, this increases
the total number of degrees of freedom. If finite elements are only used
along the Dirichlet boundary to introduce essential boundary conditions,
the number of degrees of freedom may not increase because the region
where the finite element base is complete is reduced to the Dirichlet
boundary. But in this last case the next comparison is crucial.

(3) Dirichlet boundary conditions are properly imposed by finite elements only
in the continuous blending method. As noted in Section 2.1, and in par-
ticular in Figure 2, the bridging scale mesh-free shape functions, N̂ρ

i do
not vanish at the element edges (or faces in 3D) where a complete finite
element base is present; for instance, along the essential boundary. Thus,
prescribing the essential boundary at the active finite element nodes, i.e.
imposing the coefficients aj in (2), does not imply that the Dirichlet con-
dition is “exactly” (in the sense of the consistency required) imposed
along this boundary. Moreover, and in fact more importantly, the test
functions do not cancel along the Dirichlet boundary decreasing the op-
timal rate of convergence. As noted in [8,10] this fact forces the use of a
modified weak form in order to impose the essential boundary condition
in a correct manner. Note that this problem is not present in the continu-
ous blending method because the mesh-free shape functions cancel when
the finite element base is complete, see Figure 5.

To better illustrate this last issue a particular example is presented. A square
domain is discretized by means of finite element nodes and particles. A regular
net of particles is used all over the square domain, and active nodes are added
along the boundary as shown in Figure 6 (top pictures). Thus, nodes and
particles coincide along the boundary.

Figure 6 also shows the shape function associated to a mesh-free particle
(depicted in gray) for both formulations. On the left, the particle is chosen
along the boundary. This represents the limit case when particles get close to
the boundary, because the same behavior is also present when the particle is
not located exactly on the boundary as shown on the right of the same figure.
The results are clear, for the bridging scale method (middle picture) the shape
function clearly does not cancel along the boundary. Thus as noted previously,
imposing the Dirichlet conditions only at the finite element nodes does not
suffice. For the continuous blending method, this is not the case, the shape
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3.2 Numerical example

The same example presented in [8] is repeated here to compare both ap-
proaches. The 2-D Laplace equation is solved on the unit square with Dirichlet
boundary conditions,

∆u = 0 for (x, y) ∈ Ω :=]0, 1[×]0, 1[, (9a)

u(x, 1) = 0 and u(x, 0) = sin(πx) for x ∈ ]0, 1[, (9b)

u(0, y) = u(1, y) = 0 for y ∈ ]0, 1[. (9c)

The analytical solution is simply,

u(x, y) =
(
cosh(πy)− coth(πy) sinh(πy)

)
sin(πx).

The Galerkin weak problem associated to (9) becomes: find u ∈ S such that,
for all v ∈ V , ∫

Ω
∇u · ∇v dΩ = 0, (10)

where the functional spaces are, as usual, the solution space,

S := {u ∈ H1(Ω) | u verifies (9b) and (9c)},

and the test space, V := H1
0(Ω), such that the test functions v vanish at the

essential boundary (recall, this is not exactly verified by the bridging scale
method). The finite dimensional subspaces have similar properties, the test
functions vanish along the Dirichlet boundary and the approximations ver-
ify (up to the interpolation error) the essential boundary conditions. Recall
that these conditions are easily imposed in the continuous blending method
by prescribing only the values at the finite element nodes. Thus the standard
theoretical convergence rates are easily obtained with this formulation. How-
ever, with the bridging scale method this is not the case, and a reduction in
the convergence rates is expected as shown in [9].

Figure 7 shows the results obtained with the continuous blending method and
the discretization shown in the same figure. Finite elements are considered in
a neighborhood of the boundary and only the nodes at the boundary are used
in the interpolation (marked with circles). The finite element shape functions
are coupled with the mesh-free shape functions (see the particles marked with
crosses) as commented in section 2.2. The solution is correctly interpolated at
the boundaries and vanishes at {x = 0}, {x = 1} and {y = 1}. The reason
being that a complete finite element base is available at the boundary and,
therefore, the interpolation is made exclusively with finite element shape func-
tions. Thus, it is piecewise linear. The interpolation of the essential boundary
condition is easily improved with the discretization shown in Figure 8, where
more finite element nodes are used at {y = 1}.
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