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Abstract. A CNN-based surrogate model is being developed to accelerate CFD calculations. 

In order to use this surrogate model for design development, it is necessary to improve 

generalizability. One solution to this problem is to use the principle of superposition. For the 

multiple heating elements that make up the model, their temperatures are predicted by heating 

them individually. We devised a method to predict the temperature of the entire model by 

adding up these individually predicted temperature distributions. Radiation and convection 

phenomena, for which the superposition principle does not hold, were also considered. 
 

 

1 INTRODUCTION 

In the thermal design of product development, the use of CFD for pre-assessment before 

actual development is considered an essential part of the development design process. 

Furthermore, with the evolution of simulators and hardware, it is now possible to evaluate large-

scale models that reproduce detailed structures, making CFD increasingly widely utilized. 

However, in the models we are focusing on, the computational time ranges from several 

hours to dozens of hours, and faster computation is required to interactively respond to design 

changes. 

To address this challenge, we have been working on accelerating computations using deep 

learning (CNN) for several years. We represent the input information for CFD (such as structure, 

physical properties, and heat generation) as image data and have developed a surrogate model 

to predict temperature distribution using a CNN-based network. This model is being 

implemented into our proprietary AI thermal design tool, making progress in its application to 

product development. 

Figure 1 depicts the developed AI thermal design tool. Traditionally, thermal design of the 

board using CFD took several dozen minutes for computation. With the use of this tool, the 

computation can be completed in less than one second, leading to a significant improvement in 

efficiency in developmental design. 

However, it became apparent that there are challenges in developing a surrogate model with 

generalization in mind to be incorporated into the tool. A surrogate model was developed 

targeting the temperature prediction of a specific product, board A. The training data for this 

surrogate model was created based on board A, with random variations in the shapes of heat 

sinks, positions of heat sources, heat generation rates, and so on. However, it is impossible to 
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cover all possible variations, so parts with fixed positions in the design or those with low heat 

generation that are deemed to have minimal impact on thermal design were assigned fixed 

positions. This surrogate model provides sufficient accuracy for use in the design of board A; 

however, the prediction accuracy was not satisfactory when applied to board B, another product 

of the same type. It is expected that a surrogate model of the same accuracy as board A can be 

developed by creating and training data for board B in a similar way. However, developing 

surrogate models in a one-size-fits-all manner in this way would require creating a new 

surrogate model every time a different board or model needs to be predicted, which would be 

labor-intensive and make it difficult to apply to product development. 

 

          Figure1:AI Thermal Design Tool 

 

In the field of image recognition, techniques such as transfer learning and fine-tuning can be 

utilized to create surrogate models with high generalization using a small amount of data. While 

we referred to these methods, it was challenging for us to create a surrogate model with high 

generalization.  

Therefore, we devised a method using the principle of superposition, where the temperature 

distribution of multiple heat sources constituting the model is individually predicted and then 

added together to predict the overall temperature of the model. In addition, while there have 

been reported attempts to accelerate computations using CNN-based networks, such as the 

multi-analysis method combining CNN and domain decomposition techniques by Nishida et al. 

[2], the acceleration method using a Poisson solver with CNN as preprocessing by Suzuki et al. 

[3], and the application of autoencoder-type CNN to channel turbulent phenomena by 

Nakamura et al. [4], these differ from the application of CNN-based networks to temperature 

prediction targeted in this study. 

 

 

2 METHODS 

2.1 CFD model 

In this report, the calculation target is shown in Figure 2. The circuit board is composed of a 

simplified consisting of a substrate and a heating element. The heating element consists of one 

or more units (Figure 2 shows 10 heating elements), and the circuit board is made up of two 

types of substrates. 

The sizes are as follows: the circuit board is 160mm in length, 160mm in width, and 1mm in 
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height, while the heating element is 10mm in length, 10mm in width, and 1mm in height. The 

material properties are as follows: the circuit board uses substrate A (thermal conductivity of 

36W/ m·K) and substrate B (4W/ m·K), while the heating element has a thermal conductivity 

of 36W/ m·K. The heating power ranges from 0.5 to 3.0W per heating element. Additionally, 

the grid size is 64 x 64 in the plane and 1 in the thickness direction of the circuit board. 

           Figure 2: CFD model  

2.2 Network 

 The surrogate model developed in this study is based on a CNN network known as U-Net. U-

net was developed by Olaf and colleagues as a Semantic Segmentation technique for biomedical 

purposes, and it was presented at MICCAI (Medical Image Computing and Computer-Assisted 

Intervention)2015. 

Figure 3 depicts the network diagram of U-Net, which consists of an encoder and a decoder. 

The encoder performs multiple convolutions on the input image to extract its features, while 

the decoder utilizes a process called deconvolution, which is the opposite of convolution, to 

generate an output image of the same size using the features extracted by the encoder. In the 

upsampling process using deconvolution to expand the feature maps, capturing the spatial 

information of objects can be challenging. To address this issue, U-Net resolves it by combining 

the feature maps from the encoder with those of the decoder at each layer. 

The key feature of U-Net is the integration of the feature maps from the encoder with those 

from the decoder, known as skip connections. This operation enables high-precision pixel-level 

classification. Based on U-Net, a surrogate model has been developed to predict temperature 

distribution using structural information (heat generation, thermal conductivity in the plane and 

thickness directions, emissivity, and grid width in the x, y, and z axes) as input. 

                                             Figure 3: U-Net (Reference [1] Citation) 
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2.3 Method 

In this report, we propose a method to predict the temperature of each heating element and 

sum the predictions using the principle of superposition. The rationale for this approach is the 

potential for improvement in generalization due to the principle of superposition, as well as the 

dominance of heat conduction phenomena in product development for high-density and dust-

resistant designs. 

Heat transfer is divided into three forms: conduction, radiation, and convection. For heat 

conduction, we utilize the principle of superposition, while for radiation and convection, we 

use a surrogate model for temperature correction. 

The principle of superposition is a characteristic principle that generally holds for linear 

systems, wherein the response of the system when two or more inputs are simultaneously 

applied is the sum of the responses returned when each input is applied individually, as in 

Equation (1). This principle can be applied to linear differential equations.  

𝐹(𝑥1 + 𝑥2) = 𝐹(𝑥1) + 𝐹(𝑥2)  (1) 

 

    The heat conduction is described by the heat conduction equation (Equation (2)). Since the 

heat conduction equation related to heat transfer is a linear partial differential equation with 

respect to temperature, the principle of superposition holds true, allowing for the superposition 

of temperatures. 

    However, the principle of superposition does not hold for convection and radiation. The 

reason is as follows: Convection is represented by the Navier-Stokes equation (Equation 3). 

This equation is a second-order nonlinear partial differential equation for fluid flow, and 

therefore, superposition for fluid flow is not possible. Consequently, the heat (temperature) 

transferred by fluid flow cannot be superimposed. 

    Radiation is represented by Stefan-Boltzmann’s law (Equation (4)). From this equation, as 

radiation energy is proportional to the fourth power of the absolute temperature, superposition 

with respect to temperature is not possible. 

𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) +

𝑞

𝜌𝑐
 

T:temperature   ｔ:time      α:thermal conductivity       x、y、z：Coordinates 

ρ:density     c：specific heat    q: heat generation per unit volume 

(2) 

𝜌 {
𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ 𝛻)𝑣} = −𝛻𝑝 + 𝜇𝛻2𝑣 + 𝜌𝑓 

ρ: density   μ: viscosity coefficient   v: flow velocity    p: pressure acting on the fluid 

f: external force acting per unit volume of fluid  

(3) 

𝐸 = 𝜀𝜎𝑇4 

Ｅ:radiation energy   ε:emissivity(0～1)   

Ｔ:absolute temperature(surface temperature of the object) 

Α:5.67E-8(Stefan-Boltzmann constant) 

(4) 
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    All the training data is created using Computational Fluid Dynamics (CFD), and the correct 

temperatures are obtained from the results of the CFD calculations. 

2.4 Temperature prediction methods 

We will explain the temperature prediction method of the proposed approach. For 

temperature prediction, surrogate models 1, 2, and 3 are used, and we will describe each of 

these surrogate models later. 

 

1. Summation of Temperatures (Figure 4) 

Prepare the substrate for prediction. In this example, we prepared a substrate with five heat 

sources installed. First, data with each of these five heat sources installed separately on the 

substrate is prepared, and the temperature of each substrate was predicted using surrogate model 

1. Subsequently, the predicted temperatures of the five substrates are summed up. 

                                         Figure 4: Add the temperatures together 

 

2. Correction of added temperatures 

    We input the average temperature of the added temperatures from Figure5(left) and the 

temperatures of the five individual substrates before summation into Surrogate Model 2 to 

perform temperature correction. The predicted results are shown in the graph in Figure6. The 

closer the graph is to the 45-degree line, the better the accuracy. While the prediction angle in 

Figure5(center) is greater than 45 degrees, the thickness of the prediction line is thinner than 

that in Figure5(left), indicating a reduction in the variability of the prediction. Next, we input 

the mean and variability of the predicted temperatures of each pixel of the substrate into 

Surrogate Model 3 and calculate the angle of the graph. We then correct the temperatures to 

ensure that the angle matches 45 degrees. The corrected result is shown in Figure5(right).  

Figure 5: left: added temperatures   center: dispersion suppression   right: Predicting angles, 

correcting temperatures          
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2.5 Surrogate Model 

Explaining the training methods of surrogate models 1,2,3. 

 

1.Surrogate Model 1 

Create training data with only one heat source installed on the circuit board. An example of 

the training data is shown in Figure 6. The size is the same as in Figure 2. The positions and 

heat generation rates of the heat source, as well as the sizes and positions of different parts of 

the substrate material, are randomly varied. Train using this training data. The input information 

consists of the heat generation rate, thermal conductivity(in-plane/through-thickness), 

emissivity, and the grid widths in the xyz directions over 7 layers, with the output information 

being the temperature distribution. (Figure7)  

 

Figure 6: An example of training data                        Figure 7: Data structure 

 

The structure of the network considered in this study is shown in Figure8, based on 3D 

Convolution, MaxPooling, and 3D Convolution Transpose. It includes two Skip Connections 

to transfer information. The input data to the network is subjected to standardization. This 

pretrained network is referred to as Surrogate Model 1. 

                                          Figure 8: Network structure 

2.Surrogate Model 2 

    The result of adding up temperatures yields a temperature distribution that follows the same 
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trend as the ground truth, but with differing absolute values. This is due to the influence of 

radiation and convection, and to correct this deviation, a surrogate model was created to reduce 

the variability in temperature prediction. I analyzed the summation temperature of boards 

equipped with various numbers of heat sources and found that even if the temperature rise at a 

specific point is the same, the thermal influence differs there, i.e., the summation temperature 

varies depending on the number of installed heat sources. An example is shown in Figure 9 and 

10. The temperatures of the central heating elements in Figures 9 and 10 are almost the same. 

Figure 9 is equipped with two heating elements. When each heating element is heated separately 

and the temperatures are calculated, the overlaid temperature (blue line in the figure) are the 

correct temperature (orange line in the figure) are almost the same. Figure 10 is equipped with 

five heating elements, and when the temperatures are calculated for each heating element heated 

separately, the overlaid temperature (blue line in the figure) and the correct temperature (orange 

line in the figure) diverge. It is understood that as the number of heating elements increases, the 

difference between the correct temperature and the temperature when each heating element is 

heated separately (gray line) becomes larger. It is considered that this temperature difference 

will have a significant impact on radiation and convection, and therefore it was decided to 

include it in the input data. 

Figure 9: Temperature distribution                                  Figure 10: Temperature distribution 

in cross section                                                               in cross section 

 

I trained 100 instances of a circuit with three heat sources, each with their own temperature 

distribution, as shown in the figure 11. I predict the temperature of each heat source separately 

and then sum them together. From the combined temperature, I subtract the temperature of each 

individual heat source. (Figure 12) The Surrogate Model 2, as depicted in the figure 13, is 

trained to learn the correct temperature as an output, taking this combined temperature and the 

overlapping temperature as input. The network used for the Surrogate Model 2 is also a U-net, 

like Surrogate Model 1. 

 

3.Surrogate Model 3 

The prediction variability in Surrogate Model 2 has decreased, and the graph of the correct 

temperature on the horizontal axis versus the predicted temperature on the vertical axis forms 

almost a straight line, but deviates from the 45-degree line where the error is zero. Upon analysis, 

it was found that there is a relationship between the temperature variability of pixels within a 

single substrate and the average temperature of the substrate. Figure 14 shows the plots for 
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substrate and the average temperature of the substrate. Figure 14 shows the plots for substrates 

with 3, 5, 7, 10, 12, 15, and 20 heat sources, each consisting of 100 instances. The x-axis 

represents the temperature variability of each substrate’s pixels, which is the variability of the 

temperature of 64x64x8pixels. Similarly, the y-axis represents the average predicted 

temperature of each substrate’s pixels, and the z-axis represents the angle of prediction at that 

time. Surrogate Model 3 was trained with data from substrates with 3, 5, 7, 10, 12, 15, and 20 

heat sources, with 15 instances for each, totaling 105 instances. It takes the temperature 

variability between pixels of the substrate to be predicted and the predicted average temperature 

as input, and learns the angle of the graph. The network used is fully connected.   

 Figure 11: Diagram of a board with three heating elements, divided into one heating 

Figure 12: Average of superposition temperature        Figure 13: Surrogate Model 2  

 minus temperature of each heating element                                 Input and Output 

 

Figure 14: Graph of temperature variation vs.               Figure 15: Surrogate Model 3 

Predicted temperature average vs. angle                                         Input and Output 
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3 RESULTS AND DISCUSSION 

Using the method described in this report, we prepared 100 instances of data for substrates 

with 5, 10, 15, and 20 heat sources randomly placed, and predicted the temperature for each, 

confirming their accuracy. The results are shown in Table 1. The top section of Table 1, labeled 

“Surrogate Model 1,” presents the data where the temperatures is predicted separately for each 

heat source and then combined. The x-axis represents the actual temperature, and the y-axis 

shows the predicted temperature for each pixel. The middle section, labeled “Surrogate Model 

2,” represents the data input to Surrogate Model 2, consisting of the combined data (from the 

upper section) and the average difference between the combined temperature and the 

temperature when each heat source is activated, which was used for prediction. The lower 

section represents the data input to Surrogate Model 3, consisting of the temperature average 

and the temperature variability of each pixel. This was used to predict the angle of the graph in 

the middle section and to correct the temperature prediction. The data in the bottom section 

represents the final predicted temperatures. It is evident from this data that very accurate 

predictions can be made. 

 

 

                                                   Table 1: Prediction results 

4 CONCLUSION 

Using the principle of superposition, we proposed a method to individually predict the 

temperature distribution of multiple heat sources comprising a circuit board and combining 

these to predict the temperature of the entire circuit board. We were able to demonstrate the 
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efficacy of this approach in a simplified model. 

Furthermore, even for phenomena such as radiation and convention where the principle of 

superposition does not hold, we were able to create surrogate models with limited data. By 

predicting the temperature fore each individual heat source using Surrogate Model 1, and then 

correcting the combined results using Surrogate Model 2 and 3, we significantly improved the 

accuracy of temperature predictions. 

Previously, when creating training data by determining the component placement and heat 

generation randomly based on a target substrate, there were challenges such as reduced 

prediction accuracy for patterns not included in the data. However, with the proposed method 

in this study, it is no longer necessary to create surrogate models for various substrates, 

indicating the potential for a highly generalizable approach. 
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