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Summary. The goal of this work is to develop LDG high-order well-balanced schemes for
the shallow-water equations with Coriolis terms. We will follow the strategy presented in [3,8]
for building well-balanced methods by considering well-balanced reconstruction operators. The
critical step of this procedure is solving a stationary PDE problem for each cell and time step. In
this work, we combine local and global solvers to determine stationary solutions for the system.
Once the local solution is obtained at the volume, it is extended to the whole considered stencil.
We focus on the case where it is not possible to obtain the exact solutions for the stationary
system. In this case, the exact stationary solution is replaced by a suitable approximation.
Following [3], in this case, the semi-discrete finite volume numerical scheme is well-balanced, if
the sequence of cell averages computed from the approximation is an equilibrium of the system
of the ODE system given by the semi-discrete scheme. In this work, we propose techniques based
on nonlinear optimization and Deep Learning to compute the stationary discrete solutions with
the desired properties.

1 INTRODUCTION

The main objective of the current work is to develop LDG high-order well-balanced schemes
for the two-dimensional shallow-water equations with Coriolis terms. The main novelty of this
work is the development of numerical methods that allow the capture of high-order approxima-
tions of the stationary solutions for this system. The approximations will be computed with
optimization processes and deep learning. To the best of our knowledge, this is the first time
presented in the literature. This problem is fitted in the more general framework of high-order
schemes for two-dimensional balance laws [12]

d

dt
u = −∇f(u) + S(u).
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Where u ∈ R × R × R+ → R2 is the solution, f ∈ C1(R2,R2) is the physical flux, and s ∈
C1(R2,R2) is the source term.

We are interested in the study of the elliptic PDEs that describe the stationary solutions:

∇f(u∗)(x) = S(u∗)(x),

where u∗ is the so-called stationary solution.
The main difficulty in this problem is the construction of the stationary solution of the system.

This issue has been of great interest during the last decades, giving rise to a large number of
publications [3, 5, 8]. In particular, the shallow-water system of equations is of great interest in
this field due to its complexity [1, 4, 6].

Our approach consists in applying optimization processes to surpass the main complexities
of these two-dimensional equations: uniqueness of solutions and solving a non-linear elliptic
equation. Also, a new method is proposed using new Deep Learning techniques for this problem.

2 WELL-BALANCED LOCAL DISCONTINUOUS GALERKIN METHOD

2.1 The LDG method

The Local Discontinuous Galerkin (LDG) methods are used to obtain numerical solutions of
balance laws. For the sake of simplicity, we will explain the method in the one-dimensional case.

First, we consider Finite Element-like mesh. It consists of a set of N + 1 cells

M = {Ωi = [xi−1/2, xi+1/2) | i = 0, . . . , N}.

On each cell, we consider a compact support basis ϕip ∈ P k(Ωi) where P
k is a family of polyno-

mials and ϕip stands for the p polynomial in the basis for the i-th cell.
We project the solution on that basis

u(x, t) ≈ uh(x, t) =
∑
i,p

ui,p(t)ϕ
i
p(x).

So, in each cell, we will have p values of u. In particular, the polynomial basis considered are
the Lagrange polynomials associated with the quadrature points xp of Gauss-Legendre on each
cell. This means, that ui,p is the point value of the solution in the quadrature point xp on the
i-th cell.

The weak formulation of the balance law leads to a semi-implicit formulation by multiplying
by a general test function of our basis

d

dt
ui,p(t)

∫
Ωi

ϕip(x)
2 =ϕip(xi−1/2)Fi−1/2 − ϕip(xi+1/2)Fi+1/2

+

∫
Ωi

F(uh)∂xϕ
i
p(x) +

∫
Ωi

S(uh)ϕ
i
p(x). (1)

Here, the numerical fluxes Fi+1/2 are computed by solving the Riemann problem at each intercell

with a consistent numerical flux Fi+1/2 = F(u−
h,i+1/2,u

+
h,i+1/2). We choose the HLL Riemann

solver (see [11]). Also, the integrals are computed using the Gauss-Legendre quadrature formulas
and the derivatives of the basis functions can be computed analytically. Finally, the time
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integration will be accomplished with a Strong Stability Preserving Runge-Kutta (SSP- RK) [9]
with an accuracy according to the spatial integration order.

For our problem, we consider structured meshes for the 2d problems. Also, we will focus on
two-point quadratures and linear polynomials for the cell basis.

2.2 Well-balanced schemes

The well-balancing procedure is introduced in numerical schemes to preserve the stationary
solutions of the problem (see [3, 8]).

For hyperbolic problems, the LDG scheme must be able to preserve the stationary solutions
described by

∇f(u∗)(x) = S(u∗)(x). (2)

We introduce the following definitions

Definition 2.1. An LDG scheme (1) is said to be exactly well-balanced if it can preserve the
exact stationary solutions (2). This means the analytical solutions.

Definition 2.2. An LDG scheme (1) is said to be well-balanced if it can preserve a high-order
approximation of the exact stationary solutions (2). This approximation must be specified and
consistent with the numerical method.

In both cases, the discrete numerical schemes will have stationary solutions to be preserved.
Following [8], the well-balanced procedure can be accomplished following the next steps for

each cell Ωi:

1. Compute the stationary solution on the ith-cell (u∗
i ):

∇f(u∗
i )(x) = S(u∗

i )(x) x ∈ Ωi.

Which is usually constrained with the preservation of the mean value and minimizes the
L2 norm on Ωi.

2. Compute the DG fluctuations concerning the stationary solution in the cell

vh,i(x) = uh(x)|Ωi
− u∗

i (x).

3. Redefinition of the numerical method (1)(∫
Ωi

ϕip(x)
2

)
d

dt
ui,p(t) =ϕ

i
p(xi−1/2)

(
F̂i−1/2 − F∗

i−1/2

)
− ϕip(xi+1/2)

(
F̂i+1/2 − F∗

i+1/2

)
+

∫
Ωi

(F(uh)− F(u∗
i )) ∂xϕ

i
p(x) +

∫
Ωi

(S(uh)− S(u∗
i ))ϕ

i
p(x).

Where F̂i+1/2 = F
(
u∗
i (xi+1/2) + vh,i(xi+1/2),u

∗
i+1(xi+1/2) + vh,i+1(xi+1/2)

)
and F∗

i−1/2 =

F(u∗
i (xi+1/2)) is the evaluation of the physical flux with the stationary solution. This

redefinition is valid since u∗i is a stationary solution of the problem.

If the system is locally in a stationary state, on the i-th cell, the fluctuations vh,i(x) = 0. If
the system is globally in a stationary state, then it is locally stationary ∀Ωi, in this case, the
stationary solution is preserved.

To preserve the stationary solution, the critical step lies in the first. We need to compute the
stationary solution on the ith-cell only using local information.
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Pérez-Villarino

2.3 The 2d shallow-water system with Coriolis forces

The shallow-water equations in two dimensions [1], are given by

∂t

hq1
q2

+ ∂x

 q1
q21
h + gh2

2
q1q2
h

+ ∂y

 q2
q1q2
h

q22
h + gh2

2

 =

 0
fq2
−fq1

 .
Determining stationary solutions for this problem has been studied widely in the literature [4].
The main difficulties of the two-dimensional problem are the following:

1. Stationary solutions are determined by a first-order PDE system in two dimensions that
needs to be solved locally.

2. A divergence-free equation is part of the system which complicates the resolution of the
problem.

3. The PDE system is non-linear. In most cases, proving the uniqueness of the solution is
challenging.

3 WELL-BALANCED PROCEDURE FOR THE 2D SHALLOW-WATER EQUA-
TIONS WITH CORIOLIS FORCES

For this problem, we seek for a general solver that computes a general global solution of the
stationary solutions system. The global solution is an approximation of the exact solution which
converges as the number of cells grows. This will be a preprocessed initial condition for the LDG
method.

Additionally, we develop a local solver which, using only information in the neighborhood
of each cell, calculates the same solution as the global solver. So, in this case, the scheme is
well-balanced as it preserves a high-order approximation of the stationary solution obtained
from the global solver.

In 1d, initializing with the continuous solution, the local solver can determine the exact
solution with the neighborhood information [6]. It is an exactly well-balanced scheme.

3.1 Global solver

We consider a Q1 basis for the LDG solver. For the global stationary solution solver we
consider the dual mesh of the LDG mesh. This is the set of vertices of each cell. On this dual
mesh, the basis ΨI,J(x, y) ∈ P1×P1 has compact support on the cells containing the vertex I, J
and ΨI,J(xP , yQ) = δI,P δJ,Q with P,Q being the set of vertices. This choice forces the global
continuity of the solution.

However, to make computations cell-wise, we can define the coordinates of the vertex (xm, yn)

on the cell (i, j) as (i, j,m, n). In this case, defining the base function ψk,l
i,j (x, y) as the Lagrange

polynomials on the cell (i, j) associated with the vertex (k, l) have compact support on the cell
(i, j). This is related to the global basis as follows

ΨI,J(x, y) =
∑
i,j,k,l

ψk,l
i,j (x, y) (3)
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for (i, j, k, l) ∈ [(I, J)]. Where [(I, J)] is the equivalence relation of the nodes (i, j, k, l) that
correspond to the same vertex.

We project the solution in this space:

u(x) =
∑
I,J

u(I,J)ΨI,J(x).

With u(I,J) = (u0, u1, u2)(I,J) = (h, q1, q2)(I,J).
Now, we multiply the stationary system by a test function on this space and integrate over

the domain, denoting, this last operation as ⟨·, ·⟩Ω.

⟨∂x (q1) , ψI,J⟩Ω +⟨∂y (q2) , ψI,J⟩Ω =0,

⟨∂x
(
q21
h

+ g
h2

2

)
, ψI,J⟩Ω+⟨∂y

(q1q2
h

)
, ψI,J⟩Ω − ⟨fq2, ψI,J⟩Ω =0,

⟨∂x
(q1q2
h

)
, ψI,J⟩Ω +⟨∂y

(
q22
h

+ g
h2

2

)
, ψI,J⟩Ω − ⟨−fq1, ψI,J⟩Ω=0.

However, taking into account (3) the previous equations can be written, in a more convenient
way, as

⟨∂x (q1) , ψk,l
i,j ⟩Ω +⟨∂y (q2) , ψk,l

i,j ⟩Ω =0,

⟨∂x
(
q21
h

+ g
h2

2

)
, ψk,l

i,j ⟩Ω+⟨∂y
(q1q2
h

)
, ψk,l

i,j ⟩Ω − ⟨fq2, ψk,l
i,j ⟩Ω =0,

⟨∂x
(q1q2
h

)
, ψk,l

i,j ⟩Ω +⟨∂y
(
q22
h

+ g
h2

2

)
, ψk,l

i,j ⟩Ω − ⟨−fq1, ψk,l
i,j ⟩Ω=0.

Which leads to a nonlinear system on each cell (i, j). We have used the property that each of

the functions ψk,l
i,j has compact support on cell (i, j), and ψI,J is decomposed as a sum of these

functions. This is useful for computing the loss function in the LDG mesh.
Now, for each cell, (i, j) we compute the Finite Element approximation for the vertex (m,n)

according to these matrices, it is.

PDE(0,i,j,m,n) =
∑
k,l

−⟨ψk,l
i,j (x), ∂xψ

m,n
i,j (x)⟩(q1)(i,j,k,l) − ⟨ψk,l

i,j (x), ∂yψ
m,n
i,j (x)⟩(q2)(i,j,k,l),

PDE(1,i,j,m,n) =
∑
k,l

−⟨ψk,l
i,j (x), ∂xψ

m,n
i,j (x)⟩

(
q21
h

+ g
h2

2

)
(i,j,k,l)

− ⟨ψk,l
i,j (x), ∂yψ

m,n
i,j (x)⟩

(q1q2
h

)
(i,j,k,l)

− ⟨ψk,l
i,j (x), ψ

m,n
i,j (x)⟩f (q2)(i,j,k,l) ,

PDE(2,i,j,m,n) =
∑
k,l

−⟨ψk,l
i,j (x), ∂xψ

m,n
i,j (x)⟩

(q1q2
h

)
(i,j,k,l)

− ⟨ψk,l
i,j (x), ∂yψ

m,n
i,j (x)⟩

(
q22
h

+ g
h2

2

)
(i,j,k,l)

− ⟨ψk,l
i,j (x), ψ

m,n
i,j (x)⟩f (−q1)(i,j,k,l) ,

In the case (i, j,m, n) is a boundary node we set the PDE(a,i,j,m,n) to the Dirichlet boundary
condition. Finally, using (3) we can compute the PDE(I,J) terms for each vertex (I, J) of the
mesh.
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PDE(eq,I,J) =
∑
i,j,k,l

PDE(eq,i,j,k,l) if (i, j, k, l) ∈ [(I, J)].

Notice that the PDE(eq,I,J) terms are the same as the variables u(I,J) in the LDG mesh.
This is a centered approximation of the equations. The PDE terms an interior node will have
contributions of (and contribute to) 9 vertices from 4 cells. A boundary node will contribute to
the equations of 4 vertices from 2 cells and a corner node contribute to 2 vertices from 1 cell.

Once the PDE terms are computed, we assemble the loss function

Floss(U) =
∑
eq,I,J

PDE2
(eq,I,J).

Noticing that an interior node P has contributions of 4 cells. When P is a boundary node
PDEk

P is a Dirichlet boundary condition based on the exact value on the boundary.
The solution of the global solver is obtained by minimizing the Floss using its analytical

∇Floss. The minimum value should be 0. The minimization process is performed with an L-
BFGS solver initialized with the exact solution at each node. When the number of nodes is
large enough the minimization stops at the starting value, granting convergence.

Once the solution of the global solver is computed, de vertices values are interpolated to the
interior nodes of LDG and used as initial conditions for the LDG solver.

3.2 Local solver

For each cell (i, h), the local solver procedure is:

1. Build a 5× 5 patch of the center cell and its neighbors (stencil).

2. Extrapolate the values to the dual mesh of the stencil. A mean of the extrapolation is
used in each vertex. We obtain a representation of the global solution in a patch.

3. Compute PDE(eq,I,J) for each (I, J) being a vertex of the center cell. Compute Floss =∑
(eq,I,J)(PDE(eq,I,J))

2. Notice that we only optimize the Floss for the center cell values,
the rest of the values of the stencil are fixed. This is, we only need the values of the PDE
for the four vertices and the three equations, leading to a total of 12 terms.

� If the local values are the same as the global solution calculated previously, Floss is
already at its minimum and it does not need optimization.

� Otherwise, it optimizes for the vertices values.

4. Interpolate the vertices values to the center cell LDG nodes and use this projection as the
local stationary solution.

If the optimization process returns the global stationary solution, then our scheme is well-
balanced.
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3.3 Numerical results

The initial condition considered is

h(x, y) =1− 1

g

(
fε

2b
exp(−br2) + ε2

4b
exp(−2br2)

)
,

Ψ(x, y) =εexp(−br2),
q1(x, y) =− yΨ(x, y),

q2(x, y) =xΨ(x, y),

for r =
√
x2 + y2, which is a radial solution of the stationary problem. The values are ε = 0.05,

f = g = 1 and b = 100. Ω = [−0.5, 0.5]× [−0.5, 0.5].
First, in table 1 we have the L2 norm errors between the global solver results and the exact

stationary solution. We can observe that when the number of nodes grows the global solver
solution coincides with the exact solution. This error is computed acording to:

L2(N) =

∫
Ω
(uN − u∗)2dΩ,

where u∗ is the exact solution and uN is the global solver approximation.
In figure 3.3 we represent the error for the water depth between the preprocessed initial

condition and the numerical solution of the well-balanced scheme for a time T = 5 under the
previous parameters. The errors committed are of the order of the machine errors concluding
that our scheme is well-balanced for this family of preprocessed initial conditions.

N L2(N)

10 1.1e-4

20 4.1e-6

40 3.1e-7

60 0

80 0

Table 1: L2 norm errors of the global solver against the exact solution. N2 is the total number of cells
in the mesh.

4 CALCULATING THE STATIONARY SOLUTION WITH DEEP LEARNING

The ongoing work consists in developing a PINN (Physical Informed Neural Network) which
approximates the stationary solutions. This is an extension of the previous work. The goal
is to develop a more efficient and faster local solver which does not require to perform the
optimization on each time step. We will use a feed-forward network. A map that transforms an

input y ∈ Rd̂ into an output z ∈ Rm using the composition of a variable number, L, of vector-
valued functions called layers. These consist of units (neurons), which are the composition of
affine-linear maps with scalar non-linear activation functions, [7]. Thus, assuming a L-layer
network with βl neurons per layer, it admits the representation

h(y; θ) := hL( · , θL) ◦ hL−1( · , θL−1) ◦ · · · ◦ h1( · , θ1)(y), (4)
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Figure 1: Point-wise difference between the preprocessed initial condition and the numerical solution
for the variable h at a time T = 5.

where, for any 1 ≤ l ≤ L,

hl(zl; θ
l) = σl(Wlzl + bl), Wl ∈ Rβl+1×βl , zl ∈ Rβl , bl ∈ Rβl+1 , (5)

with z1 = y, β1 = d̂ and βL = m. Usually (and this is taken as a guideline in this paper) the
activation functions are assumed to be the same in all layers except in the last one, where we
consider the identity map, σL( · ) = Id( · ). In addition, taking into account the nature of the
problem, it is required that the neural network fulfills the differentiability conditions imposed by
the stationary solutions (2), in the unsupervised task, requiring sufficiently smooth activation
functions such as the sigmoid or the hyperbolic tangent. The weights of the linear maps are
updated with a training procedure. This training consists on an optimization process where the
network’s weights are updated depending on a metric commonly known as loss function.

In our research, the global solution will be represented using a fully connected neural net-
work, using tanh in the hidden layers and linear functions in the output layer as the activation
functions, trained with a stochastic gradient-based descent algorithm. The input is the water
depth and the energy at a given spatial point (x, y). The output would be the values of the
stationary solution (h, q1, q2) at that point.

Locally, the stationary values are determined with the evaluation of the neural network. The
problem is divided into two stages:

1. The PINN would be trained, initially, against the exact solution with different coefficients.
This training set is unlimited. Loss = 1

N

∑
j(zj − ẑj)

2 =MSE(z, ẑ) for z being (h, q1, q2)
from the exact solution and ẑ being the proxy from the NN.

2. Finally, the PINN will be trained using the PDE information. Loss =
∑

(eq,I,J)(PDE(eq,I,J))
2

as it was done in the previous example.
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5 CONCLUSIONS

In this work, we can conclude that using optimization processes can surpass the unicity of
the problem leading to a unique numerical solution close to the analytical. Also, we are able to
preserve the stationary solutions of this family by using the same procedure in the local solver
as the one used in the global solver.

However, this procedure has a high computational cost due to the optimization process on
each cell at every time step. This is the motivation to use PINNs to substitute the optimization
process by an evaluation of the neural network on each time step.
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Pérez-Villarino
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