
Implicit Neural Representation For Accurate CFD Flow Field Prediction

Laurent de Vito 1 Nils Pinnau 2 3 Simone Dey 4 3

Abstract
Despite the plethora of deep learning frame-
works for flow field prediction, most of them
deal with flow fields on regular domains, and
although the best ones can cope with irregular
domains, they mostly rely on graph networks,
so that real industrial applications remain cur-
rently elusive. We present a deep learning frame-
work for 3D flow field prediction applied to
blades of aircraft engine turbines and compres-
sors. Crucially, we view any 3D field as a func-
tion from coordinates that is modeled by a neu-
ral network we call the backbone-net. It inherits
the property of coordinate-based MLPs, namely
the discretization-agnostic representation of flow
fields in domains of arbitrary topology at infinite
resolution. First, we demonstrate the performance
of the backbone-net solo in regressing 3D steady
simulations of single blade rows in various flow
regimes: it can accurately render important flow
characteristics such as boundary layers, wakes
and shock waves. Second, we introduce a hyper-
net that maps the surface mesh of a blade to the
parameters of the backbone-net. By doing so, the
flow solution can be directly predicted from the
blade geometry, irrespective of its parameteriza-
tion. Together, backbone-net and hyper-net form
a highly-accurate memory-efficient data-driven
proxy to CFD solvers with good generalization
on unseen geometries.

1. Introduction
There is a recent surge to devise fast deep learning models
as a substitute for Computational Fluid Dynamics (CFD)
solvers for the prediction of fluid flows (Vinuesa & Brunton,

1MTU Aero Engines AG, Munich, Germany 2Microsoft, Mu-
nich, Germany, nils.pinnau@live.de 3Work done during an intern-
ship at MTU Aero Engines AG, Munich, Germany 4itestra, Mu-
nich, Germany, simi.dey@gmx.de. Correspondence to: Laurent de
Vito <laurent.vito@mtu.de>.

ECCOMAS CONGRESS 2024 9 th European Congress on Compu-
tational Methods in Applied Sciences and Engineering. Copyright
2024 by the author(s).

2021). Indeed, CFD solvers are, though accurate, partic-
ularly slow, and this problem gets compounded in design
optimization (Popov et al., 2020), possibly under manufac-
turing uncertainties (Kamenik et al., 2018; Meyer et al.,
2019), through numerous calls to the flow solver.

Over few years, we have witnessed CNN-based models,
followed by graph-based models and point cloud models for
fluid flow prediction. It is worth noticing that those models
are not intrusive. This is a key property for their wide-spread
adoption in industry. They are data-driven: They consume
data produced by expensive CFD solvers for training.

It is natural to re-interpret nodes of a computational mesh
as pixels, and make use of Convolutional Neural Networks
(CNNs) to solve expensive equations (Xiao et al., 2018; Gao
et al., 2021) but this approach is clearly limited to equally-
spaced Cartesian meshes (a regular grid in academic use
only). Unstructured meshes1 are widely used in the industry
because they can adequately delineate complex geometries
and easily deal with localized regions that require different
resolution, e.g. cells are small near walls to capture the
boundary layer where flow transitions are sharp whereas
they are large in the freestream where gradients are smooth.
To make unstructured meshes amenable to a treatment with
CNNs, they are rasterized into voxel grids and processed
using 3D volumetric convolutions (Thuerey et al., 2020;
Aulich et al., 2019). With low resolutions, some informa-
tion is inevitably lost during voxelization. Therefore, a high
voxel resolution is required to preserve flow details. How-
ever, scalability is poor because the computational cost and
memory requirement both increase cubically with voxel res-
olution. Thus, it is infeasible to train a voxel-based model
with high-resolution grids.

A mesh can equivalently be viewed as a graph. So Graph
Neural Networks (GNNs) are legitimate candidates for pre-
dicting flow fields (Pfaff et al., 2020; Meyer et al., 2021;
Baque et al., 2018). Since they rely on message-passing,
propagating the information from one node to a distant one
requires stacking many graph convolutional layers. Pooling
is an effective technique to increase the receptive field of
nodes but what is a cheap operation in CNNs turns out to
be challenging in GNNs (Grattarola et al., 2021).

1We regard body-fitted multi-block meshes as unstructured
meshes in opposition to equally-spaced Cartesian meshes.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

If the adjacency matrix of the graph is discarded, we end up
with a point cloud. Many point cloud techniques are in fact
graph techniques in disguise: A graph is built by linking a
node to its nearest neighbors. Point cloud models for flow
field prediction are uncommon (Kashefi et al., 2021).

Our work departs radically from those approaches that only
yield a discrete representation of the flow field. Instead,
we rely on an implicit neural representation of the flow
field: A flow field is viewed as a function from coordinates
that is approximated by a neural network. Given an input
coordinate, the network is trained to output the value of
the flow field at that coordinate. Such neural networks
are commonly referred to as coordinate-based networks or
simply coordinate networks in the literature. They have
become popular since (Tancik et al., 2020) showed how to
enable a neural network to learn high frequency functions
in low-dimensional problems, typically in 2D and 3D.

Once trained on a simulation, our coordinate MLP, called
here the backbone-net, offers a compressed mesh-agnostic
representation of the flow field it was trained on. Indeed,
our backbone-net is small, so its few weights can be stored
instead of the full CFD solution. But apart for data reduction
(Zhang et al., 2021; Huang & Hoefler, 2022), this is not
particularly useful in itself.

In this work, we are concerned with steady CFD flow fields
of single 3D blade rows of aircraft engine turbines and
compressors. We would like to capture the change in flow
solution when the blade geometry is varied. Since the
flow solution is equivalently viewed as the weights of the
backbone-net, we would like to adapt those weights with the
geometry of the blade. This task is per definition devoted to
a hyper-network (Ha et al., 2016). Our hypernetwork, here
in short hyper-net, takes in the blade geometry in the form
of a triangulated surface mesh, and yields the weights of
the backbone-net. Our solution is thus independent of the
blade parameterization. This makes our model even more
appealing as a proxy for a CFD solver in an optimization:
we can use the same model for different optimizations even
if the degrees of freedom of the parameterization change.
But there is another advantage in taking the surface mesh as
input to our model: some geometrical features, e.g. fillets,
small gaps or steps, are hard to describe in a compact form
that can be passed to the model. Because our model ingests
the surface mesh of the configuration, all those geometrical
features are no longer obstacles to a faithful representation
of the configurations. All in all, we substitute an optimized
CFD flow solver by a single forward pass of a hyper-net.
Whereas the backbone-net is trained on a single simulation,
the hyper-net is trained on a set of simulations. The hyper-
net is end-to-end differentiable and so it is trained using
stochastic gradient descent.

The contributions of this paper are as follows:

• We introduce an implicit neural representation for CFD
flow fields in turbomachines. As a result, our repre-
sentation of flow fields on 3D unstructured meshes is
compact and continuous. The advantage is threefold:
(1) This representation does not change if the mesh
is modified as long as the flow field is the same2; (2)
The interpolation to unseen coordinates is smooth; (3)
Because we can query the flow field at any coordinates,
the flow field has virtually an infinite resolution, a prop-
erty that was leveraged in image super-resolution (Klo-
cek et al., 2019).

• Our method does not require extra preprocessing like
the time-consuming and approximate interpolation of
CFD flow fields onto a Cartesian mesh.

• We demonstrate that our backbone-net, a small coor-
dinate MLP, with discrete Fourier features, can render
the full 3D flow field of turbomachine configurations
in various flow regimes, from subsonic to supersonic,
faithfully. In (White et al., 2020), a mixture of experts
was advocated where each mixture is a simple MLP.
The rational behind this choice was that the flow so-
lution is too complex to be accurately predicted by a
single MLP. We challenge this claim and show that
a coordinate MLP with a carefully tailored architec-
ture can adequately predict CFD flow fields. By doing
so, we circumvent the difficult problem of initializing
mixture of experts (Makkuva et al., 2020).

• We establish the direct mapping of the blade geome-
try to the aerodynamic flow fields using a hypernet-
work. The idea of using a hypernetwork is attractive
because it can more generally modulate the (weights
of) backbone-net based on any relevant information. In
this work, we condition the flow solution on the blade
geometry, but our framework can incorporate any other
type of side information, e.g. boundary conditions.

• We empirically show that our model generalizes well
from few samples.

We focus here exclusively on flow solutions of compressor
and turbine blades, but this concept is not limited to internal
aerodynamics: it can be applied more broadly to any solu-
tion of systems of partial differential equations (Pan et al.,
2022).

2. Related Work
Our work is closely related to (Pan et al., 2022): In their
work, a hyper-net they call ParameterNet produces the
weights and biases of a backbone-net they call ShapeNet
based on external factors. ShapeNet is also a coordinate-
based MLP. They showed the benefits of this new paradigm

2For this property to hold, the flow is in the asymptotic regime
and the mesh is modified keeping the mesh resolution unchanged.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

in a broad range of applications notably in CFD. Further-
more, they compared this approach against other recent
frameworks like DeepONet.

In this work, we leverage a similar framework and apply
it in a real-world large-scale industrial setting. Whereas in
(Pan et al., 2022) the input to their ParameterNet is a time
stamp because their focus is on unsteady simulations, the
input to our hyper-net is a blade geometry in the form of a
surface mesh. Furthermore, their ShapeNet has sine activa-
tion functions (Sitzmann et al., 2020), but our backbone-net
is equipped with deterministic Fourier features because we
found sine activation functions to underperform.

Convolutional Neural Networks (CNNs). Traditional
CNNs can be applied to predict the flow solution on regular
grids, either in 2D or 3D (Guo et al., 2016; Aulich et al.,
2019; Thuerey et al., 2020; Obiols-Sales et al., 2020; Chen
et al., 2021), as well as on irregular structured grids by
mapping them to canonical regular grids (Chen & Thuerey,
2021). However, CNNs do not scale well because compu-
tational and memory requirements grow cubicly with the
3D grid resolution. As a result, CNNs cannot exploit the
detailed geometry of irregular bodies in fluids and cannot
render important features such as boundary layers, wakes
and shock waves.

Compared to CNNs, our model has a very low memory foot-
print, so the infrastructure cost for training and deploying
our model is reduced. Furthermore, it faithfully predicts
important flow features.

Graph Neural Networks (GNN). Opposite to CNNS,
GNNs have the potential to work natively on arbitrary
meshes. Impressive results haven been obtained recently
with GNN-based methods that directly mimic the CFD
solver iterative process in computing the solution on a mesh
from one time-step to the next (Pfaff et al., 2020; Meyer
et al., 2021). However, GNNs scale badly with the mesh
size. The problem is that neighboring nodes affect each
other in the learning process. For the computation of the
embedding of a single node, a GNN needs the embeddings
of the neighbors of this node. Consequently, GNNs must
learn on the full graph, which is infeasible if the graph is
too large. Mini-batching is a solution, but despite advances
(Ding et al., 2021; Klicpera et al., 2021), training graph
neural networks on large graphs is still challenging. By
avoiding graph neural networks, our code is considerably
simpler (no need to introduce edges) and more efficient (no
information gathering at each node from neighbors) than
(Pfaff et al., 2020). (Meyer et al., 2021) proposed a data-
driven proxy that necessitates a hierarchy of meshes, which
makes it cumbersome to code and certainly precludes its
extension to 3D.

The output of GNNs is furthermore inherently discrete: the

solution is available only at the nodes of the mesh. With our
method, the solution can be queried anywhere in space (and
time if time is included as input feature).

Furthermore, most graph-based methods are confined to 2D
configurations in subsonic flow regime (Bonnet et al., 2022).
We consider 3D configurations in subsonic up to supersonic
flow regimes.

Hypernetworks. Hypernetworks are models that generate
parameters for other models (Ha et al., 2016). Many recent
works rely on hypernetworks (Kang et al., 2017; Sitzmann
et al., 2019; Littwin & Wolf, 2019; Spurek et al., 2020;
Knyazev et al., 2021; Skorokhodov et al., 2021). This suc-
cess is rooted in the modularity property of hypernetworks
(Galanti & Wolf, 2020). That hypernetworks outperform
embedding-based methods was experimentally illustrated
in (Skorokhodov et al., 2021).

Physic-Informed Neural Networks (PINNs). The models
mentioned above are proxies (also called deep surrogates)
to CFD solvers that need training data. On the opposite,
physic-informed neural networks (Raissi et al., 2019) solve
for the motion of fluid flows just as CFD solvers do. Hence,
their generalization power is on par with that of CFD solvers.
This property makes them highly attractive, but despite all
the hype, they suffer from severe deficiencies: 1/ They have
not matured yet as a drop-in replacement for CFD solvers as
they currently cannot compete with advanced PDE solvers
in terms of accuracy (Wang et al., 2021; Chuang & Barba,
2022) 2/ The laborious effort to encode all the equations
to solve, including turbulent and transition models, and the
various boundary conditions, is overlooked, though it is a
huge undertaking (Du et al., 2022); 3/ Mass, momentum
and energy are not conserved, because the solution is solved
point-wise, whereas finite volume flow solvers have the
mass, momentum and energy conservation property built-in.
Those drawbacks hamper the wide-spread use of PINNs.

Implicit Neural Representation (INR). In implicit neural
representation, a discrete signal, e.g. the color information
on a lattice (an image) or on a low-dimensional manifold
(a meshed shape), is represented as a continuous function
by a neural network, usually a MLP with the ReLU acti-
vation function. Since the input to those networks are the
low-dimensional coordinates, those networks are referred to
as coordinate-based MLPs. Not only is the representation
continuous but also compact. Coordinate-based MLPs have
been used to represent images (Stanley, 2007), volume den-
sity (Mildenhall et al., 2020), occupancy (Mescheder et al.,
2019), signed distance (Park et al., 2019) and have been
employed in a variety of other tasks. Coordinate MLPs have
difficulty learning high frequency functions (Rahaman et al.,
2019). To overcome this limitation, (Mildenhall et al., 2020)
propose to map the raw coordinates to deterministic Fourier
features whereas in (Tancik et al., 2020) they are mapped



Implicit Neural Representation For Accurate CFD Flow Field Prediction

to random Fourier features. (Sitzmann et al., 2019) take
another approach and use sinusoidal activation functions.

3. Models
A overview of the full model is given in Figure 1. All
models are implemented in Python using PyTorch (Paszke
et al., 2017). We emphasize that our implementation is
simpler compared to other approaches: The hyper-net is a
small residual networks (He et al., 2016) and the backbone-
net is a fully-connected network, both do not require any
specialized modules and so are easily coded using any deep
learning framework.

3.1. The Backbone-Net

The backbone-net is a small coordinate-based MLP that
takes in a coordinate vector x and outputs an approxima-
tion ŷ to the flow features y at that position. Typically,
the geometry of a blade is specified by the design vector
θ. From the design vector, the 3D computational domain
around the blade is defined and meshed, and the flow so-
lution for prescribed boundary conditions is computed at
cell-centers by the flow solver. So the dataset for training
the backbone-net is Db−net = {(xn,yn)}Nn=1 with cell-
center coordinates xn ∈ RDx and flow features yn ∈ RDy

for n = 1, · · · , N given by the flow solver. It is clear that
the nature of the mesh — block-structured, unstructured or
hybrid — is irrelevant.

The input x is optionally fed into a positional encoder
PE as introduced in (Tancik et al., 2020) and the result
is linearly transformed after concatenation with the input:
z
(b)
0 =W

(b)
in [PE(x)‖x]. We omit the bias term of the linear

transformation for sake of simplicity. ‖ denotes concate-
nation. Concatenation of raw data x with Fourier features
PE(x) was found beneficial as in (Chen & Zhang, 2019;
Jaegle et al., 2021). Opposite to (Tancik et al., 2020), the
encoder does not construct random Fourier features. Fol-
lowing (Mildenhall et al., 2020), the positional encoding
scheme is deterministic: The mapping contains only on-axis
frequencies. The positional encoder has base frequency fb
and the L on-axis frequencies are defined as fl = 2π(2lfb)
for l = 0, · · · , L− 1 (Mildenhall et al., 2020). We experi-
mentally observed that the benefit of a positional encoding
with L > 4 is negligible though it does not hurt perfor-
mance.

Following the positional encoder is a stack of fully con-
nected layers with identical layout:

z
(b)
k = σ(W

(b)
k z

(b)
k−1), k = 1, · · · ,K (1)

σ designates the GELU activation function (Hendrycks &
Gimpel, 2016). We finally insert a linear layer to convert
to the expected output: ŷ =W

(b)
outz

(b)
K . In all experiments,

the positional encoder has base frequency fb = 0.5 and the
number of Fourier features is L = 4. The backbone-net has
K = 6 layers and the hidden dimension is 112.

After the backbone-net is trained on the dataset Db−net in a
supervised manner, its weights are implicitly dependent on
the design vector θ that specifies the geometry of the blade
for which we have the simulation. We would like to make
this dependency explicit. Stated otherwise, we would like
to directly get the flow solution (or equivalently the weights
of the backbone-net denoted collectively by φ) as a function
of the design vector, or, more generally, as a function of the
blade geometry. For that purpose, we introduce a hyper-net
that predicts the weights of the backbone-net from the blade
geometry. By doing so, the expensive flow solver is replaced
with a single forward pass of the hyper-net.

3.2. The Hyper-Net

Since the hyper-net yields the weights of another neural
network, namely the backbone-net, the dataset for train-
ing the hyper-net is a dataset of simulations (configura-
tions): Dh−net = {(Gm,Db−netm )}Mm=1. Gm designates
the geometry of the m-th blade in the form of a triangu-
lated surface. It is equivalent to a graph. Each Db−netm =
{(xm,n,ym,n)}

Nm
n=1 is the 3D flow solution for the blade

geometry Gm. The number of points Nm in each of those
simulations can vary but they are the same in our experi-
ments.

The input to the hyper-net is a fixed-size pseudo-design
vector (or blade embedding), θ′, representing the geome-
try. It is obtained by passing the geometry through a graph
neural network (GNN). Typically, a GNN uses a stack of
message passing layers (Gilmer et al., 2017) to learn pow-
erful embeddings compared to a plain MLP. However, they
are computationally expensive to train. We experimentally
found out that we can achieve comparable performance us-
ing the simple and much faster PointNet architecture (Qi
et al., 2017). It is a MLP followed by global max pooling.
This suggests that, at least for the task of predicting the CFD
flow fields from the blade geometry (or its embedding), a
complex architecture is not crucial. The input, a triangu-
lated surface mesh, is thus treated as a point cloud. This is
fortunate as the triangulation of the original surface mesh
is not unique. In our experiments, the MLP is a residual
network with 4 layers, a hidden dimension of 128 in the
main branch and 192 in the residual branch with GELU
nonlinearities. The pseudo design vector has dimension
16 which is surely greater than the intrinsic dimension of
the datasets we consider experimentally. Indeed, the blade
parameterization has at most 17 degrees of freedom, see
Tables 3 and 4, and reconstruction of blades is as good as
with pseudo design vectors of greater size, see Figure 23.

The hyper-net takes in the blade embedding θ′ and outputs



Implicit Neural Representation For Accurate CFD Flow Field Prediction

θ q
Mesh generator Flow solver

Backbone-Net

Postprocessor

NNφ : x =

xy
z

→ ŷ =


ρ
p
Vx
Vy
Vz


θ′ φ

GNN Hyper-Net

NNψ : θ′ → φ

Figure 1. Overview of the backbone-net and hyper-net. At the top in black, we have the usual tool chain: From the blade design vector
θ, a 3D mesh is generated (only the surface mesh is depicted), then the CFD solver computes the full 3D flow solution and eventually
the postprocessor aggregates the local information at the cell-centers and outputs quantities of interest denoted by q like massflow and
efficiency. At the bottom in red, we have our model that comprises the backbone-net and the hyper-net. The backbone-net maps the
coordinates of a point of the computational domain to its flow features. It is specialized to a configuration. We make it capable of dealing
with any blade by predicting its weights and biases from the surface mesh of a blade given as input. First, a graph neural network (GNN)
extracts a fixed-sized vector representation of the blade, θ′. This representation can be thought of as a pseudo design vector. Afterwards,
the hyper-net generates the weights and biases, φ, of the backbone-net. Finally, the backbone-net yields the 3D flow solution that is
compared to the ground truth.

the weights φ of the backbone-net. The hyper-net is a small
residual network:

z
(h)
0 =W

(h)
in θ (2)

z
(h)
k =z

(h)
k−1 +W

(h)
2,kσ(W

(h)
1,kσ(z

(h)
k−1)), 1 ≤ k ≤ K

′ (3)

φ =W
(h)
outz

(h)
K′ (4)

Notice that we insert a GELU non-linearity right at the
start of the residual branch. Experimentally the hyper-net
is shallow with K ′ = 1 residual blocks; in each block, the
hidden dimension of the main branch is 48 while it is 96
in the residual branch. In the residual branch dropout is
enabled to provide additional regularization in the small
data regime.

Training a hypernetwork is notoriously difficult (Lorraine
& Duvenaud, 2018; Ukai et al., 2018). We follow (Ortiz
et al., 2023) and treat the hyper-net predictions as additive
changes to the backbone-net. This makes training stable.

Hypernetworks are also prohibitively expensive, in both
compute and memory. To avoid an explosion of the num-
ber of parameters, only the biases of the backbone-net are
predicted by the hyper-net. This is similar to applying shift
modulations (Naour et al., 2023). However, by doing so, the
performance of our model degrades markedly. To counter-
act this loss of performance, the hyper-net also predicts the
first and the last weight matrices of the backbone-net,W (b)

in

and W (b)
out respectively. The hyper-net is thus small, with

260k parameters in our experiments.

4. Training
We train the backbone-net solo for 300 epochs and the hyper-
net for 400 epochs using NAdam (Dozat, 2016) and a cosine
learning rate scheduler. The initial learning rate is 0.01 for
the backbone-net solo and 0.001 for the hyper-net.

The backbone-net is small and data is plenty, so it is not
regularized. But the hyper-net is trained with limited data,
so it is regularized with dropout. The dropout rate is a
hyperparameter that is found by grid search using Optuna
(Akiba et al., 2019).

We train the backbone-net solo with mini-batches. With
large batch sizes generalization is poor, in accordance with
(Keskar et al., 2016) that showed that large batch sizes are
associated to a degradation in model quality, whereas with
small batch sizes the training run-time takes longer. We set
the trade-off by a batch size of 0.5k. Training takes circa
20 minutes on a single core of an Intel Xeon Platinum CPU
for a dataset with around 0.4Mio points. We also train the
hyper-net with mini-batches: each batch has 20k points of a
single configuration associated to a given blade geometry.
Notice that we consider all points of a configuration at each
epoch. The training takes less than one day on 32 cores of a
CPU for a dataset with circa 130 configurations.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

5. Experiments
In our experiments, both qualitative and quantitative evalu-
ations are provided. Visual examination of 3D flow fields
is hard, so to avoid cluttered plots we only show slices at
constant relative radius rS1

, ranging from 0 (hub) to 1 (tip).
rS1

= 0.5 is referred to as midspan. See Figure 6 for an
illustration.

5.1. Datasets

We consider four different blades, a stator and a rotor
from a low-pressure subsonic turbine, turb-stator and
turb-rotor, and a stator and a rotor from a low-pressure
transonic compressor, comp-stator and comp-rotor.
Those blades feature complex geometries: Both turbine
blades have large fillets, the compressor stator has half-gaps
(small gaps in the rear part at the hub and tip, see Figure
6) and the compressor rotor has a tip clearance (small gap
between blade and casing). For each of these four origi-
nal blades indexed by b, we sample its geometry vector θb
randomly Mb times by varying radially among other things
the leading edge blade angle, trailing edge blade angle and
stagger angle, so as to construct a dataset of configurations
Dh−netb = {(Gb,m,Db−netb,m )}Mb

m=1 for training the hyper-
net. As a result, all datasets Db−netb,m of a given series b for
m = 1, · · · ,Mb have the same number of points, approx-
imately 0.4Mio. Recall that Db−netb,m is the dataset from a
simulation. The boundary conditions at inlet (total pressure,
total temperature and velocity directions) and outlet (back
pressure), along with the rotational speed, are hold constant
for each series of blades.

All 3D steady compressible flow solutions Db−netb,m were
generated using the Navier-Stokes solver TRACE3 (Becker
et al., 2010) with the Wilcox k − ω turbulence model
(Wilcox, 1988). For turbine blades, the γ −Reθ transition
model (Langtry & Menter, 2009) was enabled.

Our model outputs ŷ = [ρ, p, Vx, Vy, Vz]. To those five
primitive variables, it is possible to add quantities related to
the turbulence model like the (log of the) turbulent viscosity,
but ultimately we are interest in quantities like massflow,
efficiency and flow turning, whose derivation relies only on
the five primitive variables our model predicts.

All input and output features are linearly scaled into [−1, 1]
based on the extreme values computed from samples in the
training set only.

5.2. Data Augmentations

The stators and rotors are extracted from axial flow tur-
bomachines. So the flow solution is equivariant under a

3The non-commercial TRACE solver is developed jointly by
DLR and MTU.

translation along the x-axis. Furthermore, the flow solution
of a configuration is the same if the configuration is rotated
about the x-axis, under the condition that the velocity com-
ponents Vy and Vz are rotated accordingly. A blade has no
canonical position in space we could set it in. Hence our
model would fail to generalize to configurations in unknown
positions and experience a performance drop at test time.
To overcome this difficulty, we let our model learn those
properties using data augmentations (as is usually done in
image classification (Alex et al.)). We re-center each config-
uration at x = 0 (by translation) and y = 0 (by rotation) —
thereby defining approximately a reference position – and
at training time we apply a small random rotation (between
-5° and +5° in all our experiments) about the x-axis to the
configurations. Since the extension of each configuration
(of a given series) in the x direction is the same, it is not
necessary to apply a random translation along the x-axis. At
test time, we simply put the configurations in the reference
position. This data augmentation mitigates overfitting and
makes the hyper-net robust against a departure from the
reference position at inference.

5.3. Evaluation Metrics

In regression the choice of a differentiable cost function
usually defaults to the mean squared error (MSE) but we
use the mean absolute error (MAE) as evaluation metric
since MAE produces results that are visually better, as is
the case in many image application tasks (Zhao et al., 2016;
Isola et al., 2017). Figure 2 illustrates the advantage of MAE
over MSE in predicting flow solutions.

Figure 2. Left: Predictions with MAE loss; middle: predictions
with MSE loss; right: ground-truth, for the backbone-net trained
solo on comp-rotor. We show the axial velocity component Vx
at the leading edge (top row) and the pressure p at the trailing edge
(bottom row), both at rS1 = 0.8.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

5.4. Backbone-Net Solo

We check the capability of the backbone-net by training
it solo on various configurations. For each configuration,
we choose a 80/20 train/test split. The training set is fur-
ther divided into training and validation sets (90/10 split).
A summary of our results for the compressor and turbine
configurations is presented in Tables 1 and 2, respectively.

Our backbone-net is rather small, with roughly 80k param-
eters. It would be straightforward to scale up this model
to get much better results than the ones we will present in
this section without severely overfitting the training dataset
because a training dataset has circa 0.4Mio points. However,
we must keep in mind that all the weights of the backbone-
net will be later predicted by the hyper-net and so we must
refrain from building a too large backbone-net, otherwise
the hyper-net would require too many parameters. Though
small, the backbone-net is expressive enough. Figure 3
clearly illustrates its outstanding ability in accurately pre-
dicting the flow fields of the primitive variables. The flow
is transonic close to the hub and supersonic close to the
tip, exhibiting a strong shock wave. Differences against the
ground-truth are barely noticeable visually. Figure 4 shows
the ability of the backbone-net in rendering the complex
flow solution close to leading and trailing edges.

Figure 3. Predictions of the axial velocity component Vx for the
configuration comp-rotor using the backbone trained solo (left)
versus ground-truth (middle); absolute differences on the right. Top
row: Near hub (rS1 = 0.1). Bottom row: Near tip (rS1 = 0.8).

To verify that the interpolation to unseen coordinates is
smooth, we conduct the following experiment: we select
only 1% and 5% of the samples of the dataset Db−netcomp-rotor
for training. In Figure 5, we see that the flow solution is

Figure 4. Predictions of the circumferential velocity component Vθ
for the configuration turb-rotor using the backbone trained
solo (left) versus ground-truth (middle) at midspan; absolute dif-
ferences on the right. Top row: at leading edge; bottom row: at
trailing edge.

Table 1. Summary of backbone-net solo training on the compressor
datasets. A dataset is a simulation.

DATASET Db−netCOMP-STATOR Db−netCOMP-ROTOR

TRAINING LOSS 4.7E-4 7.4E-4
VALIDATION LOSS 5.3E-4 8.6E-4
TEST LOSS 5.2E-4 8.5E-4
#TRAINING SAMPLES (K) 416 307
#TEST SAMPLES (K) 104 77
#EPOCHS 300 300
TRAINING TIME (MINUTES) 23 19

Table 2. Summary of backbone-net solo training on the turbine
datasets. A dataset is a simulation.

DATASET Db−netTURB-STATOR Db−netTURB-ROTOR

TRAINING LOSS 5.8E-4 6.7E-4
VALIDATION LOSS 6.4E-4 7.4E-4
TEST LOSS 6.7E-4 7.4E-4
#TRAINING SAMPLES (K) 346 346
#TEST SAMPLES (K) 86 86
#EPOCHS 300 300
TRAINING TIME (MINUTES) 19 19

nevertheless not erratic and flow characteristics are well
reproduced. As expected, the quality is not as good as in
Figure 3 (bottom row). In this experiment, we clearly have
too few data points. Our model was implicitly biased to
smooth solutions by keeping the batch size the same as in
the experiment with all data points. With only 5% of the
samples, results are already very good.

5.5. Hyper-Net

The number of parameters of the hyper-net is generally huge,
proportional to the number of parameters of the backbone-



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 5. Predictions using the backbone trained solo with only
1% (left), 5% (middle) of the dataset versus ground-truth (right) of
variable Vx for comp-rotor near tip (rS1 = 0.8).

net, the constant of proportionality being the hidden dimen-
sion of the hyper-net. This explains why we took great
care to have a small but nevertheless accurate backbone-net.
By applying shift modulation (see Section 3.2), the num-
ber of trainable parameters was reduced to roughly 0.5Mio
parameters.

To better assess the generalization performance of the hyper-
net in the low data regime, we consider circa 130 training
samples. The training set is divided into training and valida-
tion sets (85/15 split).

Following (Lee et al., 2019), we consider experimentally
two sources of uncertainty: 1/ the fold for training, and
2/ the initialization of the parameters. In Table 3 and 4,
we report the mean and standard deviation of the losses
calculated over 20 trials using different random seeds and
training folds (generated by shuffling the dataset prior to
the split). Notice that the hyperparameters for regularizing
the model were optimized for a single random split prior
to the trials and then frozen. We observe that the model
performance is the same across all folds, so we are confident
that the observations made henceforth for a random split
will hold for any split, in particular the agreement between
true and predicted quantities of interest is remarkable, with
correlation coefficients close to 1, Figure 16, 18, 20 and 22.

To illustrate that model predictions are at least visually sat-
isfactory, we pick up a test sample with a loss close to
the average test loss from the dataset Dh−netcomp-stator and plot
the pressure field, Figure 6. From that perspective, predic-
tions are excellent. We proceed similarly with the dataset
Dh−netturb-stator and plot the pressure profiles since they are of
uttermost importance for turbomachine designers, Figure 7.

Now we specifically focus on the dataset Dh−netcomp-rotor ran-
domly build around the low-pressure compressor rotor blade
comp-rotor: it is the most challenging from all datasets
we tested our method on since the flow of many configura-
tions in this dataset is highly inhomogeneous radially with
a large separation induced by a strong shock wave from

Figure 6. Predictions (left) and ground-truth (right) of the pressure
for sample 301 of the dataset Dh−netcomp-stator at rS1 = 0.2 (close to the
hub), rS1 = 0.5 (midspan) and rS1 = 0.8 (close to the tip). This
test configuration has a loss close to the average test loss.

Figure 7. Pressure profiles at rS1 = 0.2 (left) and rS1 = 0.8
(right) for sample 153 of the dataset Dh−netturb-stator. This test configura-
tion has a loss close to the the average test loss.

midspan outwards. Those are mostly the configurations
on the right in Figure 8 because their aerodynamic loss is
significantly high. What makes comp-rotor, and so all
configurations in this dataset, even more particular is that
the blade is modelled with a tip clearance; the blade rotates
while the casing is non-rotating. This raises severe difficulty
in accurately predicting the flow solution.

From the losses reported in Table 3 for both compressor
datasets, it is clear that our model overfits the training dataset
despite the use of dropout to mitigate overfitting. Notice
that our model has a small memory footprint: It does not
exceed 12GB even though all samples are read in at the start
to avoid IO intensive operations during training. To illus-



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 8. Aerodynamic characteristics of the samples randomly
generated from the blade comp-rotor.

trate the predictive capability of our model, we consider test
sample 112 that clearly lies outside the support of training
samples in the dataset, see Figure 8. The geometry of this
sample is unconventional and definitively not interesting for
designers because of the high aerodynamics losses it gener-
ates, but to stress test our model it is the perfect candidate.
Its geometry is compared to a more conventional blade in
Figure 9. Intuitively, we expect that our model will have
trouble with new samples that lie outside the convex hull of
the training dataset as sample 112. But the plot is deceptive
since it is low-dimensional: It cannot fully convey a sense
about how the convex hull of the dataset looks like.

Figure 9. Geometry of sample 112 in red and sample 465 in grey.

Figures 11-14 show the excellent performance of the hyper-
net in predicting challenging 3D flow solutions of blades
with complex geometry. We can nevertheless observe some
minor discrepancies, in particular the predicted show wave

from midspan outwards seems to be slightly more smeared
out, not as sharply captured as in the CFD simulation. Fig-
ure 10 depicts the pressure distribution around the blade.
Close to the hub, the agreement between ground-truth and
predictions is particularly good. Close to the tip, our model
has trouble with the large flow separation on the suction
side and with the attached flow on the pressure side. A
domain where such a proxy can shine is blade shape opti-
mization because it is cheap and accurate. However, until
now we only provided a visual assessment of the model
prediction ability. To be useful as a low-fidelity model in
a multi-fidelity optimization, a model has to predict quan-
tities of interest also accurately, by far a much harder task.
This ability is usually demonstrated with correlation plots:
fidelity models should be well correlated, with a correla-
tion coefficient close to 1 (Toal, 2015). Figure 18 reveals
that the hyper-net can almost perfectly predict massflow
and flow turning. Predicting aerodynamic losses is usually
more difficult (Bonnet et al., 2022; Kalaydjian et al., 2023)
since it is a highly non-linear function of the predictions of
the primitive variables, but the hyper-net tops here with a
Pearson correlation coefficient as high as 0.995 on the test
set.

Figure 10. Pressure profiles at rS1 = 0.2 (left) and rS1 = 0.8
(right) for sample 112 of the dataset Dh−netcomp-rotor.

Figure 11. Prediction (left), ground-truth (middle) and absolute
differences (right) for the radial velocity component Vr for sample
112 at rS1 = 0.2 (near hub).



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 12. Prediction (left), ground-truth (middle) and absolute
differences (right) for the pressure p for sample 112 at rS1 = 0.2
(near hub).

Figure 13. Prediction (left), ground-truth (middle) and absolute
differences (right) for the axial velocity Vx for sample 112 at
rS1 = 0.5 (midpsan).

Figure 14. Prediction (left), ground-truth (middle) and absolute
differences (right) for the tangential velocity Vθ for sample 112 at
rS1 = 0.8 (near tip).

6. Conclusion
In this work, we derived a fast and accurate proxy to CFD
solvers based on an implicit neural representation. Our
model comprises a backbone-net that establishes the map-
ping of a point in the computational domain to its flow
features. It is instantiated as a small coordinate-based MLP.
We conditioned the weights of the backbone-net onto the

blade geometry using a hyper-net. It is instantiated as a
small residual network. By doing so, we could directly pre-
dict the full 3D flow solution for any unseen blade geometry.
We showed that our model can make accurate predictions of
full 3D flows of compressor blades. Our model succeeded
even though the flow exhibits large separations induced by
strong shock waves and is inhomogeneous from hub to tip.
Furthermore, for quantities-of-interest like massflow, flow
turning and efficiency aggregated from the model predic-
tions, our model has also very good predictive capabilities.
As a result, our model is likely to be useful in future as a
low-fidelity model in a multi-fidelity optimization of blade
shapes.

7. Acknowledgments
The authors would like to thank MTU Aero Engines for
the permission to publish this paper. The research work
associated with this publication has been supported by the
German Federal Ministry for Economic Affairs and Climate
Action under grant number 20X1909E. The funding of the
work through the 1st call of the Federal Aviation Research
Program VI (LuFo VI-1), grant project title ‘DIGIfly’, is
gratefully acknowledged. The authors are responsible for
the content of this publication.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Alex, K., Sutskever, I., and Hinton, G. E. Imagenet classi-
fication with deep convolutional networks. In volume-1;
pages-1097–1105; NIPS’12 Proceedings of the 25th In-
ternational Conference on Neural Information Processing
System.

Aulich, M., Küppers, F., Schmitz, A., and Voß, C. Surrogate
estimations of complete flow fields of fan stage designs
via deep neural networks. In Turbo Expo: Power for
Land, Sea, and Air, volume 58585, pp. V02DT46A013.
American Society of Mechanical Engineers, 2019.

Baque, P., Remelli, E., Fleuret, F., and Fua, P. Geodesic
convolutional shape optimization. In International Con-
ference on Machine Learning, pp. 472–481. PMLR, 2018.

Becker, K., Heitkamp, K., and Kügeler, E. Recent progress
in a hybrid-grid cfd solver for turbomachinery flows. In
Proceedings fifth European conference on computational
fluid dynamics ECCOMAS CFD, volume 2010, 2010.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Bonnet, F., Mazari, J. A., Cinella, P., and Gallinari, P. Air-
frans: High fidelity computational fluid dynamics dataset
for approximating reynolds-averaged navier-stokes so-
lutions. In Neural Information Processing Systems
(NeuRIPS 2022), 2022.

Chen, L.-W. and Thuerey, N. Towards high-accuracy deep
learning inference of compressible turbulent flows over
aerofoils. arXiv preprint arXiv:2109.02183, 2021.

Chen, L.-W., Cakal, B. A., Hu, X., and Thuerey, N. Numer-
ical investigation of minimum drag profiles in laminar
flow using deep learning surrogates. Journal of Fluid
Mechanics, 919, 2021.

Chen, Z. and Zhang, H. Learning implicit fields for gener-
ative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 5939–5948, 2019.

Chuang, P.-Y. and Barba, L. A. Experience report of physics-
informed neural networks in fluid simulations: pitfalls
and frustration. arXiv preprint arXiv:2205.14249, 2022.

Ding, M., Kong, K., Li, J., Zhu, C., Dickerson, J., Huang,
F., and Goldstein, T. Vq-gnn: A universal framework to
scale up graph neural networks using vector quantization.
Advances in Neural Information Processing Systems, 34,
2021.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Du, M., Chen, Y., and Zhang, D. Autoke: An automatic
knowledge embedding framework for scientific machine
learning. arXiv preprint arXiv:2205.05390, 2022.

Galanti, T. and Wolf, L. On the modularity of hypernet-
works. Advances in Neural Information Processing Sys-
tems, 33:10409–10419, 2020.

Gao, H., Sun, L., and Wang, J.-X. Super-resolution and
denoising of fluid flow using physics-informed convo-
lutional neural networks without high-resolution labels.
Physics of Fluids, 33(7):073603, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Grattarola, D., Zambon, D., Bianchi, F. M., and Alippi, C.
Understanding pooling in graph neural networks. arXiv
preprint arXiv:2110.05292, 2021.

Guo, X., Li, W., and Iorio, F. Convolutional neural networks
for steady flow approximation. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Ha, D., Dai, A., and Le, Q. V. Hypernetworks. arXiv
preprint arXiv:1609.09106, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Huang, L. and Hoefler, T. Compressing multidimensional
weather and climate data into neural networks. arXiv
preprint arXiv:2210.12538, 2022.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1125–1134, 2017.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021.

Kalaydjian, A., Balykov, A., Semiz, A., and Chan-Hon-
Tong, A. Packed-ensemble surrogate models for fluid
flow estimation arround airfoil geometries. arXiv preprint
arXiv:2312.13403, 2023.

Kamenik, J., Voutchkov, I., Toal, D. J., Keane, A. J., Högner,
L., Meyer, M., and Bates, R. Robust turbine blade opti-
mization in the face of real geometric variations. Journal
of Propulsion and Power, 34(6):1479–1493, 2018.

Kang, D., Dhar, D., and Chan, A. Incorporating side in-
formation by adaptive convolution. Advances in Neural
Information Processing Systems, 30, 2017.

Kashefi, A., Rempe, D., and Guibas, L. J. A point-cloud
deep learning framework for prediction of fluid flow fields
on irregular geometries. Physics of Fluids, 33(2):027104,
2021.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Klicpera, J., Qian, C., and Günnemann, S. Locality-based
mini batching for graph neural networks. 2021.

Klocek, S., Maziarka, Ł., Wołczyk, M., Tabor, J., Nowak, J.,
and Śmieja, M. Hypernetwork functional image represen-
tation. In International Conference on Artificial Neural
Networks, pp. 496–510. Springer, 2019.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Knyazev, B., Drozdzal, M., Taylor, G. W., and Romero So-
riano, A. Parameter prediction for unseen deep archi-
tectures. Advances in Neural Information Processing
Systems, 34, 2021.

Langtry, R. B. and Menter, F. R. Correlation-based transi-
tion modeling for unstructured parallelized computational
fluid dynamics codes. AIAA journal, 47(12):2894–2906,
2009.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling. In
International conference on machine learning, pp. 3734–
3743. PMLR, 2019.

Littwin, G. and Wolf, L. Deep meta functionals for shape
representation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1824–1833,
2019.

Lorraine, J. and Duvenaud, D. Stochastic hyperparame-
ter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419, 2018.

Makkuva, A., Oh, S., Kannan, S., and Viswanath, P. Learn-
ing in gated neural networks. In International Conference
on Artificial Intelligence and Statistics, pp. 3338–3348.
PMLR, 2020.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3d re-
construction in function space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 4460–4470, 2019.

Meyer, L., Pottier, L., Ribes, A., and Raffin, B. Deep
surrogate for direct time fluid dynamics. arXiv preprint
arXiv:2112.10296, 2021.

Meyer, M., Becker, B., Poloni, C., and Gambitta, M.
Aerodynamic design of a compressor rotor using an
optimization-under-uncertainty approach. In AIAA
Scitech 2019 Forum, pp. 1211, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer,
2020.

Naour, E. L., Serrano, L., Migus, L., Yin, Y., Agoua, G.,
Baskiotis, N., Guigue, V., et al. Time series continuous
modeling for imputation and forecasting with implicit
neural representations. arXiv preprint arXiv:2306.05880,
2023.

Obiols-Sales, O., Vishnu, A., Malaya, N., and Chan-
dramowliswharan, A. Cfdnet: A deep learning-based
accelerator for fluid simulations. In Proceedings of the

34th ACM international conference on supercomputing,
pp. 1–12, 2020.

Ortiz, J. J. G., Guttag, J., and Dalca, A. V. Magnitude
invariant parametrizations improve hypernetwork learn-
ing. In The Twelfth International Conference on Learning
Representations, 2023.

Pan, S., Brunton, S. L., and Kutz, J. N. Neural implicit flow:
a mesh-agnostic dimensionality reduction paradigm of
spatio-temporal data. arXiv preprint arXiv:2204.03216,
2022.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. Deepsdf: Learning continuous signed distance
functions for shape representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 165–174, 2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. arXiv preprint arXiv:2010.03409, 2020.

Popov, G. M., Baturin, O., Goriachkin, E., Kolmakova,
D. A., Volkov, A., and Egorov, I. Optimization algo-
rithm for axial multistage compressor workflow. In AIAA
Propulsion and Energy 2020 Forum, pp. 3683, 2020.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene repre-
sentation networks: Continuous 3d-structure-aware neu-
ral scene representations. Advances in Neural Information
Processing Systems, 32, 2019.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and
Wetzstein, G. Implicit neural representations with peri-
odic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Skorokhodov, I., Ignatyev, S., and Elhoseiny, M. Adversarial
generation of continuous images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10753–10764, 2021.

Spurek, P., Winczowski, S., Tabor, J., Zamorski, M., Zięba,
M., and Trzciński, T. Hypernetwork approach to gen-
erating point clouds. arXiv preprint arXiv:2003.00802,
2020.

Stanley, K. O. Compositional pattern producing networks: A
novel abstraction of development. Genetic programming
and evolvable machines, 8(2):131–162, 2007.

Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,
J. T., and Ng, R. Fourier features let networks learn high
frequency functions in low dimensional domains. arXiv
preprint arXiv:2006.10739, 2020.

Thuerey, N., Weißenow, K., Prantl, L., and Hu, X. Deep
learning methods for reynolds-averaged navier–stokes
simulations of airfoil flows. AIAA Journal, 58(1):25–36,
2020.

Toal, D. J. Some considerations regarding the use of multi-
fidelity kriging in the construction of surrogate mod-
els. Structural and Multidisciplinary Optimization, 51(6):
1223–1245, 2015.

Ukai, K., Matsubara, T., and Uehara, K. Hypernetwork-
based implicit posterior estimation and model averaging
of cnn. In Asian Conference on Machine Learning, pp.
176–191. PMLR, 2018.

Vinuesa, R. and Brunton, S. L. The potential of machine
learning to enhance computational fluid dynamics. arXiv
preprint arXiv:2110.02085, 2021.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

White, C., Ushizima, D., and Farhat, C. Fast neural network
predictions from constrained aerodynamics datasets. In
AIAA Scitech 2020 Forum, pp. 0364, 2020.

Wilcox, D. C. Reassessment of the scale-determining equa-
tion for advanced turbulence models. AIAA journal, 26
(11):1299–1310, 1988.

Xiao, X., Zhou, Y., Wang, H., and Yang, X. A novel cnn-
based poisson solver for fluid simulation. IEEE trans-
actions on visualization and computer graphics, 26(3):
1454–1465, 2018.

Zhang, Y., van Rozendaal, T., Brehmer, J., Nagel, M., and
Cohen, T. Implicit neural video compression. arXiv
preprint arXiv:2112.11312, 2021.

Zhao, H., Gallo, O., Frosio, I., and Kautz, J. Loss functions
for image restoration with neural networks. IEEE Trans-
actions on computational imaging, 3(1):47–57, 2016.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

A. Compressor stator and rotor
Table 3. Summary of hyper-net training on the compressor dataset. A dataset is a set of simulations.

DATASET Dh−netCOMP-STATOR Dh−netCOMP-ROTOR

DIM. DESIGN SPACE 13 6
#SURFACE TRIANGLES/K 61 42
#SURFACE NODES/K 31 21
#TRAINING SAMPLES 135 128
#TEST SAMPLES 264 316
#EPOCHS 400 400
TRAINING LOSS 1.9E-3 ± 5.7E-5 3.3E-3 ± 7.8E-5
VALIDATION LOSS 3.7E-3 ± 1.3E-3 4.2E-3 ± 3.5E-4
TEST LOSS 3.8E-3 ± 1.5E-3 4.3E-3 ± 1.3E-4
TRAINING TIME/HOURS 23 18
PEAK MEMORY/GB 14 12



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 15. Aerodynamic characteristics of the samples randomly generated from the blade comp-stator.

Figure 16. Correlation plots for the samples randomly generated from the blade comp-stator. r designates the Pearson product-
moment correlation coefficient. In the top row of each figure, training samples are in black whereas validation samples are in green.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 17. Aerodynamic characteristics of the samples randomly generated from the blade comp-rotor.

Figure 18. Correlation plots for the samples randomly generated from the blade comp-rotor. r designates the Pearson product-moment
correlation coefficient. In the top row of each figure, training samples are in black whereas validation samples are in green.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

B. Turbine stator and rotor
Table 4. Summary of hyper-net training on the turbine dataset. A dataset is a set of simulations.

DATASET Dh−netTURB-STATOR Dh−netTURB-ROTOR

DIM. DESIGN SPACE 17 13
#SURFACE TRIANGLES/K 42 42
#SURFACE NODES/K 21 21
#TRAINING SAMPLES 132 129
#TEST SAMPLES 497 459
#EPOCHS 400 400
TRAINING LOSS 2.4E-3 ± 3.2E-5 2.7E-3 ± 3.1E-5
VALIDATION LOSS 3.3E-3 ± 2.8E-4 3.7E-3 ± 2.3E-4
TEST LOSS 3.3E-3 ± 8.4E-5 3.7E-3 ± 1.3E-4
TRAINING TIME/HOURS 18 18
PEAK MEMORY/GB 18 18



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 19. Aerodynamic characteristics of the samples randomly generated from the blade turb-stator.

Figure 20. Correlation plots for the samples randomly generated from the blade turb-stator. r designates the Pearson product-
moment correlation coefficient. In the top row of each figure, training samples are in black whereas validation samples are in green.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

Figure 21. Aerodynamic characteristics of the samples randomly generated from the blade turb-rotor.

Figure 22. Correlation plots for the samples randomly generated from the blade turb-rotor. r designates the Pearson product-moment
correlation coefficient. In the top row of each figure, training samples are in black whereas validation samples are in green.



Implicit Neural Representation For Accurate CFD Flow Field Prediction

C. Embedding Dimension
The dimension of the embedding for a given dataset has to be set greater than the intrinsic dimension of the dataset that is
unknown. However, it is less than or equal to the number of degrees of freedom of the blade parameterization that is known.
In our experiments it is usually less than 16 except for the dataset turb-stator for which it is 17. So we carried out
a study to find out a reasonable minimum embedding dimension as follows: From the blade embeddings, the blades are
reconstructed and the quality of the reconstruction is assessed by the Chamfer loss. To generate a point cloud with variable
number of points, we sample a vector of dimension 3 from the normal distribution, append it to the blade embedding and
push it through a small MLP that outputs the spatial coordinates. Figure 23 shows that an embedding dimension of 12 is
sufficient for a good reconstruction.

Figure 23. Reconstruction loss for the samples in turb-stator. The blade parameterization has 17 degrees of freedom.


