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Summary. This paper presents three-dimensional finite element simulations of wood speci-
mens and dowel embedment tests using an elastic-plastic and damage model in order to simulate
the nonlinear behaviour of wood interacting with a metal connection. The wood constitutive
law relies upon orthotropic material parameters, associated plasticity and continuum damage
mechanics (CDM) to take into account the following properties of wood : anisotropy, brittle
failure in tension, plasticity and ductile failure in compression. The model used in this paper
is implemented as a user subroutine of the finite element software ZSoil. The material parame-
ters of the model are determined through a Bayesian inversion analysis based on experimental
and numerical data from uniaxial compression tests on glulam samples. The constitutive model
with the calibrated material parameters are used to numerically simulate dowel embedment
experimental tests on glulam. The results demonstrate the model’s capability to reasonably
approximate embedment tests and the nonlinear behaviour of wood, opening up interesting
prospects for engineers to better understand and optimize structures.

1 INTRODUCTION

Wood is a material increasingly used in the construction field for its interesting mechanical
properties and environmental benefits. Most wooden structures use a variety of joining methods,
from contact joints (dowel) to friction techniques (threaded rods). Modelling these structures
remains challenging due to the non-linear and anisotropic behaviour of wood coupled with the
complex phenomenon of wood-steel interaction, which leads to applying high security factors
when designing structures. Simulating the complex mechanical properties of wood is then key to
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predict the behaviour of wooden structures. Do to its fibrous structure, wood is an anisotropic
material that can develop, depending on the load direction, plasticity or failure.

Finite element method provides interesting tools to model nonlinear material. Through the
implementation of plastic theory or Continuum Damage Mechanics (CDM) in FE-models, several
constitutive laws have been developed specifically for wood. To trigger nonlinear behaviour,
various criteria have been employed including Hill criterion [1] which does not take into account
the asymmetry between tension and compression. This can be solved by using other criteria such
as Hoffman [2] or Tsai-Wu [3]. Besides the aforementioned polynomial criteria, another approach
is to use several failure criteria to detect different failure modes. Sandhaas et al. [4] proposed an
orthotropic model using four damage modes and a damage variable to imitate plasticity. Other
models [5, 6, 7] introduced plasticity algorithm in addition to continuum damage mechanics to
perform cyclic loading of the material.

In this paper, a constitutive 3D model for wood is developed taken into account a plastic
behaviour in compression initiatied by the Hoffman criterion. Four damage variables are also
incorporated to captures different failure modes. The constitutive model was implemented as
a user-subroutine in the finite-element software ZSoil [8]. This constitutive law involves a lot
of material parameters to calibrate the non-linear behaviour. These parameters are usually not
provided by standard wood characterization, that is why this article proposes a method using
metamodels and Bayesian inversion to calibrate the material parameters on basic tests. This
analysis is performed using the uncertainty quantification software UQLab [9]. The constitutive
law and its calibrated parameters are then employed in dowel-embedment tests to reproduce
experimental results.

2 THE CONSTITUTIVE MODEL FOR WOOD

2.1 Stress-strain relationship

Wood is assumed to be an orthotropic material with three principal directions defined with
respect to grain direction and growth rings. Fig. 1 shows these three directions: longitudinal
(L), radial (R) and tangential (T). Considering wood has quite similar mechanical behaviour
along the radial and tangential directions by comparison to the longitudinal direction, same
material properties are set for directions R and T in this paper even if the implemented law is
orthotropic.

Continuum damage mechanics (CDM) has been used to model cracks in material matrix and
thus, nonlinear brittle failure. Some models for wood have been developed using this theory [4,
6]. CDM introduces an effective stress tensor to quantify undamaged material matrix stress state
while the Cauchy tensor quantifies the stress state of the damaged material. Then, according
to the concept of strain equivalence [10, 11], the effective stress tensor σ̄ can be related to the
strain tensor using the fundamental Hooke equation:

σ̄ = D0 : εe (1)

With D0 being the stiffness tensor for the undamaged wood. The Cauchy stress tensor σ is
related to the effective stress tensor by means of a damage tensor M(d) which depends on the
damage state d. Consequently, the Cauchy stress tensor can be related to the strain tensor by
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Figure 1: Definition of material directions in wood matrix

use of a tensor noted Ddam using equations (2):

σ = M(d) : σ̄ ; σ = Ddam : εe (2)

Since wood is considered an orthotropic material in this paper, the stiffness tensor in Voigt’s
notation is expressed as :

D0 =


EL(1−νRT νTR)

∆

EL(νRL+νTLνRT )

∆

EL(νTL+νRLνTR)

∆
0 0 0

ER(νLR+νTRνLT )

∆

ER(1−νLT νTL)

∆

ER(νTR+νLRνTL)

∆
0 0 0

ET (νLT+νRT νLR)

∆

ET (νRT+νLT νRL)

∆

ET (1−νLRνRL)

∆
0 0 0

0 0 0 GRT 0 0
0 0 0 0 GTL 0
0 0 0 0 0 GLR

 (3)

∆ = 1− νLRνRL − νRT νTR − νLT νTL − 2νRLνTRνLT

2.2 Effective stress tensor decomposition

Given the plasticity occurs in wood only by compression of the fibres, it is chosen to separate
the compressive (σ̄−) and the tensile (σ̄+) components of the effective stress using Eq. (4) [6]
to evaluate plasticity evolution on the compressive part only.

σ̄+ =
3∑

i=1

⟨σ̄i⟩pi ⊗ pi ; σ̄− = σ̄ − σ̄+ (4)

Where pi and ⟨σ̄i⟩ are the eigenvectors and eigenvalues respectively.

2.3 Plasticity algorithm

The plastic evolution is applied to the effective space and, as said in previous section, to
the compressive effective stress tensor σ̄− only. The plastic model here is taken from Sirumbal-
Zapata’s work [6]. The plasticity is triggered by Hoffman yield criterion [2] applied on the
compressive effective stress:

fp =
1

2
σ̄−⊺

Pσ̄− + σ̄−⊺
q(k)− σ̄2

y(k) ≥ 0 (5)
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with :

P =



χ1 −χ4 −χ5 0 0 0
−χ4 χ2 −χ6 0 0 0
−χ5 −χ6 χ3 0 0 0
0 0 0 χ7 0 0
0 0 0 0 χ8 0
0 0 0 0 0 χ9

 ; q(k) = σ̄y(k)



χ10

χ11

χ12

0
0
0

 (6)

and the following coefficients:
χ1 =

2
f+
L f−

L

χ2 =
2

f+
R f−

R

χ3 =
2

f+
T f−

T

χ4 = −1
2 (χ1 + χ2 − χ3) χ5 = −1

2 (χ1 − χ2 + χ3) χ6 = −1
2 (−χ1 + χ2 + χ3)

χ7 =
2

f2
LR

χ8 =
2

f2
RT

χ9 =
2

f2
TL

χ10 =
f−
L −f+

L

f+
L f−

L

χLL =
f−
R−f+

R

f+
R f−

R

χLR =
f−
T −f+

T

f+
T f−

T

(7)

The reference yield stress is defined as: σ̄y(k) = σ̄y,0(k)+hk where h is the hardening moduli
of the material and k is the isotropic hardening variable. The initial value of the reference yield
stress is σ̄y,0(k) = 1.

The associated plastic flow rule is given as:

ε̇p = λ̇n(σ̄−, k) ; n =

(
∂fp(σ̄

−, k)

∂σ̄−

)⊺

= Pσ̄− + q(k) (8)

and the isotropic hardening variable k is obtained with:

k̇ = λ̇
√
n⊺Tn ; T = diag[1, 1, 1, 1/2, 1/2, 1/2] (9)

2.4 Damage model

The failure of wood creates cracks and voids in the material matrix, leading to a degradation
of the material properties. Continuum Damage Mechanics proposes to degrade the material
through decrease of the parameters of the stiffness tensor. In order to take into account four
different failure modes, four damage function di,c/t and damage criterion Fi,c/t are introduced
[4, 5]:

σ̄LL ≤ 0, FL,c = − σ̄LL
f t
L

− 1 ≥ 0

σ̄LL ≥ 0, FL,t =
σ̄LL
f t
L

− 1 ≥ 0

σ̄RR ≥ 0, FR,t =

(
σ̄RR

f t
R

)2

+

(
σ̄LT
fs
LR

)2

+

(
σ̄RT

f s
RT

)2

− 1 ≥ 0

σ̄TT ≥ 0, FT,t =

(
σ̄TT

f t
T

)2

+

(
σ̄LT
fs
LT

)2

+

(
σ̄RT

fs
RT

)2

− 1 ≥ 0

(10)

When the damage criteria are met, damage functions are updated to weaken the wood.
Damage functions di,c/t take values between 0 and 1, 0 being the undamaged state and 1 the
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fully damaged state. The material is supposed to be undamaged at initial step : d0i,c/t = 0. The
three damage functions for tensile failure follow an exponential degradation model and are then
defined for each new time step n+ 1 as follows :

di,t = 1− 1

Fi,t
exp

(
(1− Fi,t)

Lcf
t
i
2

EiGf,i

)
with i = L,R, T

dn+1
i,t = max(di,t, d

n
i,t)

(11)

where the crack band method [12] is introduced to reduce mesh-dependency issues by using the
characterist length of the element Lc which is defined as the cubic root of the element’s volume:
Lc = 3

√
Ve. The discretized equation of damage is taking the maximum value at each step to

enforce the irreversibility of damage in the material matrix.
The compressive damage function is expressed as follows:

dLc = 1− 1

FL,c
(1−A)−A exp (B(1− FL,c))

dn+1
L,c = max(dL,c, d

n
L,c)

(12)

where parameters A and B are calibrated thanks to material tests.
The damage tensor M(d) is then expressed as follows [13] and induces a degradation of the

stiffness tensor D0 into Ddam according to Eq. (2).

M(d) = diag([ (1− dL), (1− dR), (1− dT ),√
(1− dR)(1− dT ),

√
(1− dL)(1− dT ),

√
(1− dL)(1− dR) ])

(13)

2.5 Viscous regularization

The constitutive law can encounter convergence issues because of the introduction of damage
variables. To improve the convergence of the algorithm, a viscous regularization is applied to the
damage variables, following the technique proposed by Duvaut and Lions [14] and discretized:

ḋv =
1

η
(d− dv) ; dvn+1 =

η

η +∆t
dvn +

∆t

η +∆t
dn+1 (14)

3 NUMERICAL IMPLEMENTATION

The subroutine is implemented on the finite element software ZSoil [8] through the user
development module which allows the user to implement new constitutive laws. The algorithm
is taking an increment of strain as input along with the values of the previous step. Fig. 2 shows
the flow diagram of the material subroutine.

The algorithm first calculates a trial effective stress by Hooke’s law (Eq. (1)) using the
previous effective stress tensor and the increment of strain. Then, this trial effective stress
tensor is decomposed to extract the compressive part (Eq. (4)) which will be used to evaluate
the value of the yield function (Eq. (5)). If the yield function signals plasticity, a Newton-
Raphson algorithm is run to determine the compressive effective stress tensor and the plastic
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Figure 2: Flowchart of the material subroutine

strain increment. Otherwise, the trial effective stress tensor is considered the effective stress
tensor.

The effective stress tensor is then used to calculate the Cauchy stress tensor (Eq. (2)). In
order to build the damage tensor M(d), the algorithm checks the four failure criterion (Eq. (10))
and calculate the corresponding damage variables if necessary (Eq. (11) and Eq. (12)). The
damage variables are slightly modified thanks to viscous regularization (Eq. (14)) to improve
numerical convergence. The damage tensor is then calculated (Eq. (13)) and is used to find the
Cauchy stress tensor.

The subroutine keeps in memory the following material parameters for next step : the effective
stress tensor σ̄n+1, the Cauchy stress tensor σn+1, the total plastic strain εpn+1, the damage
variables di,n+1,the viscous damage variables dvi,n+1, the plastic multiplier λn+1, the isotropic
hardening variable kn+1.

4 EXPERIMENTAL VALIDATION

In this section, the implemented constitutive law is evaluated on experimental tests from
Karagiannis et al. [15]. First, thanks to the material characterization tests (see Fig. 3), the
material parameters of wood are calibrated with help of a Bayesian analysis. Then, the output
parameters from the calibration are injected in the finite element models of Fig. 5 to try to
reproduce the experimental results.
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(a) Compression tests
parallel to the grain

(b) Compression tests
perpendicular to the grain (c) Shear test

Figure 3: Finite-element wood samples loaded in compression in three different directions

4.1 Parameter calibration

The material characterization tests are performed using ZSoil finite element models simulating
three types of loading to test the material in three directions (Fig. 3): parallel to the grain
(Fig. 3a), perpendicular to the grain (Fig. 3b) and with a 14° angle with respect to the grain
direction (Fig. 3c). To calibrate the material parameters for each of the three characterization
tests, a Bayesian inversion is performed using as observation data 4 points of the experimental
stress-strain curves. To reduce the computational costs, a PCE approximating the ZSoil model
response is created and then used in the Bayesian inversion process. As shown in Fig.4, the
calibrated material parameters match the stress-strain curve for each of the chosen observation
point.

The resulting material parameters from the Bayesian calibration are listed below in Table. 1.

Table 1: Calibrated material parameters’ value

Young’s moduli [MPa] EL = 2022.8 ER = 165.4 ET = 165.4
Shear moduli [MPa] GLR = 167.8 GRT = 58.3 GTL = 167.8
Poisson’s ratio νLR = 0.31 νRT = 0.42 νTL = 0.06
Tensile strength [MPa] f+

L = 21.93 f+
R = 0.79 f+

T = 0.79
Compressive strength [MPa] f−

L = 38.88 f−
R = 1.78 f−

T = 1.78
Shear strength [MPa] fLR = 6.05 fRT = 0.46 fTL = 6.05
Fracture energy density [N/mm] Gf,L = 68.6 Gf,R = 7.5 Gf,T = 7.5
Hardening modulus h = 1.8
Softening parameter A A = 0.58
Softening parameter B B = 0.86

4.2 Results on dowel-embedment tests

The material’s constitutive law and the calibrated parameters summarized in Table. 1 are
used as inputs for dowel-embedment tests experimentally performed by Karagiannis [15] with
the same spruce glulam as the characterization tests on Fig. 3.
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(a) Compression parallel to the
grain

(b) Compression perpendicular to
the grain

(c) Shear test

Figure 4: Stress-strain results of the characterization tests with the calibrated parameters com-
pared to experimental results

(a) Embedment of
the dowel in the di-
rection of the grain

(b) Embedment of the dowel in the direction perpen-
dicular to the grain

Figure 5: Finite element models for dowel-embedment tests

Fig 5b and Fig. 5a show the finite element models used for the calculations. Boundary
conditions are applied on the bottom steel plate. A vertical displacement-controlled load is
applied on the ends of the dowel. The steel material for dowel follows a perfectly elastic-plastic
rule with parameters E = 210GPa, ν = 0.3 and fy = 200MPa. An interface is set with coefficient
of friction µ = 0.25 on contact surfaces between wood and steel.

The resulting displacement-force curves are displayed on Fig. 6. Results show the model
ability to reproduce the behaviour of experimental embedment tests. For both parallel and
perpendicular loading, the numerical model qualitatively reproduces the experimental tests. The
constitutive law combined with the calibrated material parameters give acceptable quantitative
results for the parallel loading while the perpendicular loading does not quantitatively agree
with the experimental results.
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(a) In the direction parallel to the grain with a
12mm dowel

(b) In the direction perpendicular to the grain with
a 12mm dowel

Figure 6: Force-displacment curves for the embedment tests

5 CONCLUSION

This paper presented a constitutive model for wood combining plastic theory and continuum
damage mechanics. These nonlinear behaviours were implemented in the law to account for the
ductile and brittle failure of wood. The law was implemented in a commercial software and
validated on experimental results from the literature.

The calibration of the model parameters by means of a Bayesian inversion on results of
compression of wood specimens was able to find a set of material parameters resulting in a good
agreement between the numerical models and the experimental tests. Thus, it demonstrated
the ability of the constitutive law to model the various non-linear behaviours of wood.

The material model and the calibration also succeeded in giving reasonable results for dowel-
embedment test. This study suggests a method to combine constitutive model for wood with
a parameter calibration method based on simple tests to simulate more complex wooden struc-
tures. Some further development on an additional failure mode in compression are to be pursued
in order to improve the numerical models for a loading perpendicular to the fibres.
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