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Abstract. In this paper we present the formulation of a solid-shell element with 24 dof (the 
three cartesian components of displacement at the eight nodes of a solid hexahedron element), 
taking into account previous contributions to avoid shear, trapezoidal and thickness locking. 
But we also enhance the 3D displacement field by incomplete quadratic terms to improve the 
bending and transverse shear energies as was done for the performing DKMQ plate bending 
element proposed by Katili. After the formulation aspects, we present the results for some 
classical benchmark problems and for the linear analysis of a particular shallow foundation 
system called “spider net system footing” used in Indonesia.  
 

1 INTRODUCTION 

Since 1985 a significant number of researchers have contributed to the development of finite 
element models (FEM) for the analysis of shell type structures (situation where one 
dimension, the thickness, is smaller than the two other characteristics of the middle surface), 
where the dofs are only the nodal displacements, and without using generalized stress and 
strain resultants quantities. Those FEM are called Solid-Shell elements, mainly based on 8 
nodes brick (hexahedron) and 6 nodes prism elements. The displacements are linear through 
the thickness (as in the “first order shell theories”), but 3D constitutive (stress-strain) relations 
can be considered if the strain field is enhanced at the element level. Compared to the 
formulation of classical 3D solid elements, the formulation involves a strain description in 
local orthogonal curvilinear coordinates where the thickness direction plays a particular role 
(as in shell theories) in order to take into account the existing knowledge of performing shell 
FEM (for example to avoid shear locking for thin plates and shells). Additional modifications 
are needed to obtain efficient elements in various situations (thin to thick bodies, 
representation of curved geometries) but the solid-shell elements allow efficient non-linear 
geometrical analysis, modeling of complicated geometries with stiffeners and branches, 
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modeling of soil structure and fluid structure interactions due to the direct possibility of 
surface contact between domains and nodal variables compatibility.  
We will not propose an exhaustive review of publications dealing with the development of 
Solid-Shell (SS) elements, and we will restrict our discussions to hexahedron (H8) elements. 
Most of the elements are sharing the same theoretical aspects: C° continuity of the geometry, 
linear variation through the thickness, assumed natural strains (ANS) for transverse shear to 
avoid shear locking, linear variation of the normal strain to use full 3D stress strain relations 
to avoid Poisson thickness locking, enhanced normal strain distribution in curved geometries 
to avoid curvature trapezoidal locking [12-13]. The H8-SS elements found in the literature 
differ by their detailed formulation aspects and target applications (like linear or non-linear 
analysis, static or dynamic analysis, etc), see [5-13] among others between 2000 and 2020. 
In the present paper we propose the development of two H8 solid-shell elements, with 
classical (known) modifications avoiding shear locking and trapezoidal locking and with 
enhanced normal thickness strain for full use of the 3D constitutive relations. The first 
element can be viewed as a 3D extension of the so-called MITC4 shell element [1], (also 
called Q4!24 in [2]), therefore we call the new solid-shell element MITC4-SS. The second 
element is a modification of the previous one taking into account the formulation of the 
DKMQ plate/shell element [3]. The comparison between MITC4 and DKMQ plate bending 
element was done in [4]. These two elements are quite easy to program, without adjusting 
parameters and were found to be both precise and efficient for plate and shell analysis. After 
the formulation aspects presented in section 2, we present some numerical results for classical 
linear benchmark tests. 

2 GENERAL SPECIFICATIONS 

2.1 Geometry 

The DKMQ-SS element is based on the classical isoparametric 8 nodes brick element. Hence 
the position vector at any point q is given by (figure 1):  

                                        (1)  
   −1 ≤ ξ, η, ζ ≤ 1       2D  reference coordinates ;    ζ    thickness reference coordinate 
  
and  

X<<⃗ >? and X<<⃗ >   coordinates of the top "+$and bottom nodes"−$. 
        V<<⃗ > = X<<⃗ >? − X<<⃗ >     thickness "director or fiber$ vectors 

From equation 1, we can define the covariant basis vectors a<⃗ >+ at any point q (figure 2): 

 
and the gradient coordinate tensor ,-./:   
{ } { }q ζdx = F dξé ùë û                                                                          (2)  
 〈12〉 =  〈12   14   15〉 
An orthogonal curvilinear basis defined by matrix ,Q+/ can be defined such that: 

N> =  
9
: "1 + ξ> ξ$"1 + η>η$ 
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;1<⃗=> = ,Q+/ ;1<=?>   @ABℎ   ,Q+/ = ,B9.<<<<<⃗     BD.<<<<<⃗     E.<<<<⃗ /     FE1.    B9.<<<<<⃗ =
GHI<<<<<<<⃗
JGHI<<<<<<<⃗ J

                           (3) 

   with E.<<<<⃗ =
GHI  <<<<<<<<<⃗ ∧ GLI<<<<<<<<⃗
JGHI  <<<<<<<<<⃗ ∧ GLI<<<<<<<<⃗ J

 

 

                
Figure 1: Geometry of the 8 nodes solid-shell DKMQ-SS element. 

 
The local coordinates are x, y, z’ (figure 2), so that:     〈1<=?〉 =  〈1< 1M 1N′〉 
 

 
Figure 2. Covariant basis vectors at point q and coordinate z’. 

 
Hence the derivatives of f with respect to the local orthogonal directions x, y, z’ are:   

P QR
QSTU

V = ,C+/
X YQR

QZ
[         or.       \dξ] =  ,C+/ ;dx_`>        with.        ,C+/ = ,F+/

 9,Q+/          (4) 

2.2 3D Displacement field 

For a “conventional H8 solid-shell element”, here called MITC4-SS element, the 
displacement field is given by: 

u<⃗ _ = ∑>e9:  N> fu<⃗ g> + ζ∆u<⃗ _>i 
 
 

 

with      u<⃗ g> =  HL f u<⃗ _>
? +  u<⃗ _> i        and         Δu<<<<⃗ _> =  HL f u<⃗ _>

? −  u<⃗ _> i                      (5a) 
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The nodal displacements at the upper and lower nodes are U, V and W along X, Y, Z in a 
global cartesian coordinate system. We can define the 24 components nodal displacement 
vector as U, V, W at nodes -1, -2, -3, -4, 1, 2, 3, 4 (figures 1 and 3): 
 
   〈kl〉 =  〈   "m n o n p n$  A = 1,4      "m?n o?n p?n $ A = 1,4 〉 = 〈  mn on pn   A = 1,8〉     "5s$  
  

u<⃗ g>  are the mid surfaces displacements and Δu<<<<⃗ _> are the increments of displacements at ζ=1. 
u<⃗ _>?  are the nodal displacements U+, V+, W+ at the node i on the upper surface ζ=1;  
u<⃗ _>  are the nodal displacements U-, V-, W- at the node i on the lower surface ζ=-1. 

     
Figure 3.  Nodal variables of the solid-shell element MITC4-SS and DKMQ-SS. 

 
For the present DKMQ-SS element, the 3D displacement field is enhanced by 4 parameters 

Δβu defined at the lateral faces and by 4 quadratic interpolation fonctions Pk. The above 
proposal is in agreement with the formulation of the DKMQ element [3, 4]: 
 

                                       u<⃗ _ = ∑>e9:  N> fu<⃗ g> + ζ ∆u<⃗ _>i + ∑uevw  Pu  fHLhuyi ζ Δβu t<⃗ u                       (6) 

 

ℎzk is the thickness at node k.  t<⃗ u is the unit tangent vector along the side k between corner 
nodes i and j on the mid surface ζ = 0. We can define the four components vector 

 〈∆|l〉 = 〈∆|v    ∆|}    ∆|~    ∆|w〉                                                 "7$ 

                    
Figure 4. Mid surface ζ=0 and mid-points 5, 6, 7, 8. 

 
The quadratic functions Pu are:  
 
 
 

   Pu =
9
:
"1 − ξD$"1 + ηu η$   for  k = 5, 7  and Pu =

9
:
"1 − ηD$"1 + ξu ξ$   for  k = 6,  8        
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2.3   Displacement gradients, strains and stresses  
 
The cartesian displacement gradients are obtained using equations 1 to 5: 
 
   
The curvilinear displacement gradients are: 
   
    

with                      ,L+/ =  , u<<<⃗ _,Z    u<⃗ _,Ç    u<⃗ _,+    / 
 
From the above we can define the curvilinear strain components: 
    
 
        with the in-plane strains:    〈ℇÑ〉 =  〈εSS    εÜÜ   γSÜ〉  
        the normal thickness strain:            ℇàâ      with z’ along  n+<<<⃗  

        the assumed independent transverse shear strains are defined simply as: 〈γÑ〉 
The local conjugate curvilinear stresses components are:  
      
 
        with the in-plane stresses:   〈σÑ〉 =  〈σSS    σÜÜ   σSÜ〉  
        the normal thickness stress:           σàãàâ     
        the transverse shear stresses:        〈åç〉 =  〈éSàã      éÜàã〉 
 
2.4.  Internal virtual work expressions 
 
The internal virtual work on an element is thus given by: 
   

W>ê`
ë = í 〈δε`〉

î
\σ`] dV = í 〈δεÑ〉

î
\σÑ] dV + í δεàâ σàãàã

î
 dV + í 〈δγÑ〉

î
\τÑ] dV.        

 
     
 
the first term is the membrane-bending internal work contribution (mb superscript), the 
second term is the thickness stress-strain contribution and the third term is the transverse 
shear contribution. 
We consider here 3D constitutive relations for linear elasticity represented in a matrix form 
using the 6x6 symmetric matrix  ñóò  such that: 
     
 
In the case of isotropy, we can partition matrix ñóò and define sub-matrices ñó9ò (3x3), ñóDò 
(3x3) and ñôò (2x2) such that: 
 
  

;du<⃗ _> = ñLò ;x<⃗ _>  with    ñLò = ,L+/ ,F+/
 9  and  ,L+/ =  , u<<<⃗ _,Z    u<⃗ _,Ç    u<⃗ _,+    /    "8$ 

;du<⃗ _>` = ñL`ò ;dx<⃗ _`>  with        ñL`ò = ,Q+/
X,L+/,C+/                                                      "9$ 

                              〈ℇõ〉 = 〈〈ℇÑ〉   ℇàâ     〈γÑ〉〉                                                                                    "10$ 
 

                                〈σ`〉 = 〈〈σÑ〉   σàãàã     〈τÑ〉〉                                                                               "11$ 

\σ`] =  ñΗò \ε`]                                                                                      (13) 

\éç] =  ñó9ò \ùç] ; \éû] =  ñóDò \ùûã] ;  
\åç] =  ñôò Y!ç[ ;  ⟨ùû⟩ = 〈ù°°  ù¢¢   ùûâ   〉 

           W>ê`
ë = W>ê`

£§                       + W>ê`
•à                       + W>ê`

Ñ                                  (12) 
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                                    〈éû〉 = 〈é°°  é¢¢   éûâûâ 〉 
and     

  ñó9ò = F ¶
1 − ß ß 0
ß 1 − ß 0
0 0 9 D®

D

©  ;  ñóDò = F ™
0 0 ß
0 0 ß
ß ß 1 − ß

´   ;    ñôò = ô ¨1 0
0 1Í        "14$ 

   

   with    F =  Æ
"9?®$"9 D ®$

   and.   ô = Æ
D "9?®$

 

With these constitutive equations, the different contributions of the internal virtual works can 
be written as: 
 
  
                                                                                                                                                (15) 
2.5.  Enhancement of the normal thickness strains 
 
For proper use of the 3D constitutive equations and possibility to converge to the plane stress 
solution in bending for any Poisson coefficient, the thickness normal strains must be enriched 
by a linear term in ζ ñ13ò: 
 

    εàãÐê± =  εàâ +  α  ζ.                                                                   (16) 
where  Ó is an independent internal parameter.  

The remedy to avoid trapezoidal locking when the thickness vectors  V<<⃗ >  are not parallel, is to 
modify (enhance) the definition of the thickness strain using a bilinear interpolation in terms 
of the thickness strain values at the four vertices on the mid surface: 
 
  
 
2.6.  Assumed transverse shear strains  
 

The transverse shear strains are assumed constant through the thickness. Therefore, the 
shear strains on the mid-surface are γSà "ξ, η$  and  γÜà "ξ, η$ . To avoid transverse shear 

locking we adopt the method of assumed natural strain of the MITC4 element where the 
covariant shear strain γZ+ is linear in η and γÇ+ is linear in ξ. The cartesian components of 

transverse shear strains are then given by [1-4] (figure 5): 

                                                 \!ç] = P
γSà 
γÜà V = ñµÖò ,×Ø/\!çl]                                                          "18$ 

with               ,×Ø/ =
9
w
Ù
"1 − 4$ ℎvÚv 0

0 "1 + 2$ ℎ}Ú}
  −
"1 + 4$ ℎ~Ú~ 0

0 −"1 − 2$ ℎwÚw
ª 

   
   〈!çl〉 = 〈!çû9D    γÑàDº    !Ñàº:    !Ñà:9〉 = 〈γv   γ}    γ~    γw  〉                          (19) 
 

W>ê`
£§= Ý 〈δεÑ〉ñH9òî \εÑ] dV;  W>ê`

•à  Ý 〈δεàã〉ñH9òî \εàã] dV;  W>ê`
Ñ  Ý 〈δγÑ〉 ñH9òî YγÑ[  dV  

               εàâ
Ðø¿"ξ, η$ =  ∑>e9:  N> "ξ, η$    εàâ"ξ>,  η>$                                              (17) 
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    Figure 5: Shear strains on sides  
 

ñµÖò  is a 2x2 matrix involving the components of ,C+/ for ζ = 0. Lv =  L9D ; L} = LDº ;  L~ =
Lº:; Lw = L:9 ;  Lij is the length of side ij. h5 is the thickness at node 5, etc. The constant 

values  γçû
n¡ = !¬  are obained considering :  

              γu =  
9
ãƒ
 Ý γÑà
ãƒ
å  ds            with    γÑ = u<⃗ g,Ñ n<⃗ +

9
æ
 ∆u<⃗ _,à  t⃗u 

Leading to: 

  γu =
9
ãƒ
fk<⃗ «¡  E<⃗ ¡  −  k<⃗ «n  E<⃗ ni +

9
D»
 f ∆u<⃗ _> + ∆u<⃗ _… i B<<⃗ ¬  +

D
º
Δβu                        "20$  

 
2.7.  Independent transverse shear strains 
 
As in the DKMQ element [3-4], the assumed independent transverse shear 〈γÑ〉 are chosen as 
four constant shear strains on the sides on the middle surface 5 = 0, taking into account local 
static equilibrium with incomplete expressions of the shear force Ts and bending moment Ms. 
If the displacement field includes quadratic terms as in equation 6, then we obtain on each 
side ij:  

γu =  
D§
DÑ
 β,ÑÑ =  −

2
3 ϕu Δβu        with.      ϕu =

D§
DÑ
 
12
LuD
=

2
k "1 − ν$  

hD

LuD
                                 "21a$ 

where    D§= 9D æ
Ã

9 ÕL
        and       DÑ =

uŒæ
D"9?Õ$

       k is the shear correction factor (=5/6).  
Hence the independent shear strains are: 

                              Y!çl[ =  ,œ–/\Δβl] = −
2
3 —

“v
0

0
“}

0
0

0
0

0
0

0
0

“~
0

0
“w

” \Δβl]                              "21b$ 

    〈Δβl〉 =  〈Δβv   Δβ}   Δβ~   Δβw〉 
 
2.8.  Elimination of the internal variables Δβu 
 
The link between the independent shear strain γu (eqs. 21a,b) and the constant assumed shear 
strain γu resulting from the displacement field (eq. 20) is simply the following: 
                                                                      γu = !¬                                                             (22) 
leading to: 
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            −
2
3 ϕu Δβu =

1
Lu
fk<⃗ «¡  E<⃗ ¡  −  k<⃗ «n  E<⃗ ni +

1
2ℎ f ∆u<⃗ _> + ∆u<⃗ _… i B

<<⃗ ¬  +
2
3Δβu                 "23$  

or  

1
Lu
"
U<<⃗ …? + U<<⃗ … 

2 n<⃗ … −
U<<⃗ >? + U<<⃗ > 

2 n<⃗ >$ +
1
2hu

"U<<⃗ …? − U<<⃗ … + U<<⃗ >? − U<<⃗ > $. t⃗u +
2
3
"1 + ϕu$ ∆βu = 0 

 
The four variables ∆βu    for   ’ = 5,6,7,8  can be then expressed in terms of the 24 nodal 
displacements U, V, W at the 8 nodes of the DKMQ-SS element: 
 

\Δβl] = ñœò 9ñœ÷ò\kl]         with ñœò = ñ÷ò − ,œ–/                                                      "24$ 
ñœ÷ò is a 4 by 24 matrix in terms of L5 to L8, h5 to h8, the direction cosines of n<⃗ u at 

nodes 1 to 4 (of the middle surface) and the direction cosines of the tangent vectors t⃗u along 
mid side points. 

 
2.9.  Strain matrices 

 
From the above expressions and considering the approximations of the 3D displacement field 
in terms of the element dof, vectors 〈kl〉 and 〈∆|l〉, we can define the strain matrices for the 
membrane and bending strains ñB9ò and ñBDò: 
  \εÑ] =  ñB9"ξ, η, ζ$ò\uê] + \BD"ξ, η$]\∆βê]                                                  (25a)  
and using eq. 24 we can define: 
                     \εÑ] =  ñBã9"ξ, η, ζ$ò\uê]    with   ñBã9ò =  ñB9ò + \BD]ñAò 9ñA⁄ò                     "25b$ 
In terms of the nodal displacements and α parameter we can define the strain matrices 〈Bº〉 
and B: to define the thickness strain εàã (eq. 17):  

εàã = 〈Bº"ξ, η$〉\uê] + B: α          with   B: = ζ.                      "26$ 
The transverse shear strains are given by equations 18, 20-24: 

   \γÑ] = P
γSà 
γÜà V = ñBv"ξ, η$ò\uê]      with   ñBv"ξ, η$ò = ñcjò ,N‹/,A›/ñAò

 9ñA⁄ò                   "27$ 
Introducing equations 25 to 27 in the expression of the PVW (eq.15) we can define the 

elemnt stiffness matrix in terms of \uê] and α. The last internal dof can be eliminated by static 
condensation. 

3 SOME NUMERICAL RESULTS 

3.1.  Classical benchmark tests 
The stiffness matrix of the elements MITC4-SS or DKMQ-SS elements are both obtained 

using numerical integration considering a uniform 2x2x2 Gauss scheme leading to a proper 
rank of 18: no spurious modes and the evaluation of convergence rate can be done as usual by 
considering classical benchmark tests. We recall that the membrane performance of both 
elements should be the same. Regarding the behaviour in bending of plates, it was found in a 
recent comparative study [1] that DKMQ is slightly superior to MITC4 in s-norm tests for a 
large aspect ratio (from L/h= 2 to 104). The other improvements to avoid trapezoidal or 
thickness locking are the same in both MITC4-SS or DKMQ-SS hence the behaviour of both 
elements should be close in all tests we consider: square or circular plates, cylindrical panel 
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under self-weight (Scordelis-Lo), pinched cylinder with diaphragms, hemispherical shell with 
concentrated loads, helicoidal shells under concentrated loads for two length to thickness 
ratio. In all these tests we found overall very good results with small differences between the 
two elements. As an example, we present the convergence of the displacement under the load 
for the pinched cylinder (figure 6): 

 

 

L=6m; R=3m; h=0.03m; 
 ß = 0.3; E=3x1010 Pa 
U+ = U- =W+ = W- =0 on AD; 
 U+ = U- = 0 on CD  ; 
V+ = V-  =0 on BC 
 W+ = W- =0 on AB 
P= - 0.25 N at point C (for a quarter) 

Figure 6 . Pinched cylinder 

 

 
Figure 7. Convergence of displacement under the load using different elements 

 

The results show a fast convergence for both MITC-SS and DKMQ-SS towards the 
reference solutions, with a slight superiority for the new element DKMQ-SS. 

 
3.2.  Application to the analysis of a shallow foundation cell 

 
Figure 8 is related to a shallow foundation system called “Spider Net System Footing” 
(SNSF) used for many years in Indonesia for construction of 5 to 8 floors buildings on soft 
soil. The foundation results from the assemblage of cells made of vertical ribs with different 
orientations. Those ribs are supported by the natural soil. Columns are situated at the 
intersection of the different ribs. The cells are filled by soil material and compacted before 
closure with a reinforced slab.   

Figure 9 shows a unit cell extracted from a real project. The horizontal dimensions of the 
slab are 8m by 7m with a thickness of 11 cm. The column of 5 m height with a square cross 
section 0.6mx0.6m is loaded on top by an horizontal force of 10 tons. The vertical ribs have a 
thickness of 10 cm and height of 1 m. We consider 4 external ribs and 4 internal ribs as 
shown. The cell is assumed simply supported on the natural soil level. On figure 9 we can see 
a typical mesh with H8 elements (N=8x8 on a quarter of the slab with 773 elements and 4264 
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dof). We consider only one element through the thickness. The column is also meshed with 
solid H8 elements. We assume linear elasticity with isotropy of the concrete structure. 
 

                   
Figure 8. The shallow foundation system called SNSF 

        
  Figure 9 . 3D view of a unit cell and view of a mesh with around 770 H8 elements 
 

On figure 10 we report the results of the horizontal displacement on top of the column 
considering different elements and for different meshes (obtained using Hypermesh [14]). The 
displacement due to the bending of the beam is 18 mm and the additionnal displacements are 
due to the flexibility of the SNSF cell (an increase of around 27 %). The results show that the 
best convergence rate is obtained using DKMQ-SS followed by MITC4-SS. They converge to 
the same value (around 23mm) as well as the SC8R element of Abaqus [5], a solid-shell 
element considering plane stress. We also report the results obtained with Optistruct [1]. They 
are the same as using the H8 solid element by Wilson and Taylor [2], based on quadratic 
incompatible modes. Those results are close to those of MITC4-SS and they are much better 
than those using the standard H8 solid element (Solid-H8 in the figure 10).  

On figure 11 we show isovalues of principal stresses (P1 on left and P3 on right) for a fine 
mesh (N=16), for a view from below the structure. On the left (in red) we can identify a 
localized area with tensile stresses reaching 7.7 MPa and on the right an area (in blue) located 
in the lower part of a central rib with -7.7 MPa as max compression stresses. 
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Figure 10. Convergence of the displacement under the load using different solid-shell elements. 

                  
    Figure 11. Isovalues of principal stresses. 

4 CONCLUDING REMARKS 

In this paper we present some formulation details regarding two solid shell elements, called 
MITC4-SS and DKMQ-SS with 8 nodes and 3 dof (the 3 cartesian components of 
displacements)  per node. Their formulations have several aspects in common: trilinear 
lagrangian approximations of the geometry and of the 3D displacement field, modifications to 
avoid transverse shear and trapezoidal locking, enhancements of the thickness strain to avoid 
thickness locking and for use of 3D constitutive equations. The main contribution of the 
present paper concerns the DKMQ-SS element with the enhancement of the bending 
behaviour by quadratic terms in the spirit of the DKMQ plate element, aperforming element 
valid for very thick to very thin plates. After the formulation we present some numerical 
results regarding classical benchmark tests (here the pinched cylinder with diaphragms) and 
then we propose an application of solid shell elements for the static analysis of a concrete 
structure which is a particular cell of a shallow foundation system called Spider Net System 
Footing. In all examples the good behaviour of both solid shell elements is observed with a 
faster convergence using the DKMQ-SS element. 
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