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Summary. This work presents a finite element model of the contact between a flat rigid surface 

and a rough deformable elastoplastic body, enabling the micro-scale analysis of the contact 

conditions. To assure the computational efficiency a non-conforming mesh is adopted to 

describe the deformable body. The results show that the model can capture the main effects of 

the bulk material constitutive behaviour, which is known to have a significant impact on the 

problem, as well on local changes on the friction conditions. 
 

1 INTRODUCTION 

Contact problems are known for their high level of complexity, even when avoiding 

lubricated conditions. The behaviour of the contacting surfaces is dictated by parameters such 

as the elastoplastic properties of both solid surfaces and their surface characteristics, such as 

roughness or chemical bonding. Solid lubricants, which are materials that, despite being in the 

solid phase, can reduce friction between two surfaces sliding against each other, without the 

need for a liquid lubricant. In that case, during sliding contact, structural transformations and/or 

chemical reactions occurs, which generate locally a tribolayer (tribological layer) with low 

friction properties [1]. They are known as self-adaptive low friction coatings. Unfortunately, 

tribological tests indicate that the formation of the tribolayer is very sensitive to the sliding 

contact conditions, contributing to inconsistent results in industrial applications. Numerical 

models at the micro-scale can be used to try to improve the understanding about the conditions 

for the formation of the tribolayer, combined with an experimental approach.  

In this context, this work presents a preliminary work that focuses on evaluating the potential 

of using non-conforming meshes for the analysis of contact problems for rough surfaces, to 

reduce the computational time. The finite element model was built in DD3IMP finite element 

code [2]. The following section describes the main features of the model, which considers the 

contact between a flat rigid surface and a deformable body with a rough surface.  
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2 FINITE ELEMENT MODEL 

The selected Representative Contact Element (RCE) presents a rough surface, which is 

assumed to be in contact with a rigid flat surface, controlled with a prescribed displacement. 

The RCE opposite surface to the contact one has fixed displacements, while symmetry 

boundary conditions are assumed for the other surfaces, as schematically shown in Figure 1 (a). 

These boundary conditions are imposed as shown in Figure 1 (b), based on the principle of 

master and slave edges and nodes as suggested in [3]. 

 

Figure 1: (a) Numerical setup for the RCE and (b) Master-slave conditions of the RCE - master (continuous 

lines and circles); slaves (dashed lines and squares) (adapted from [3]) 

2.1 Constitutive model 

The RCE is considered homogeneous body with elasto-plastic behaviour. The elastic regime 

is assumed isotropic, described by the Hooke’s law, considering the Young modulus, E =100 

GPa, and the Poisson ratio,  =0.3. The plastic behaviour is assumed also has isotropic, 

described by the von Mises yield criterion: 

2 2 2 2 2 2 2

yy zz zz xx xx yy yz xz xy( ) ( ) ( ) 6 6 6 2Y        − + − + − + + + = , (1) 

written in function of the components of the Cauchy stress tensor, σ , in the coordinate system, 

Oxyz , and of the flow stress, Y . Moreover, for one example, the plastic behaviour is assumed 

to be transversely isotropic, described with the aid of the Hill’48 yield criterion [4]: 

2 2 2 2 2 2 2

yy zz zz xx xx yy yz xz xy( ) ( ) ( ) 2 2 2F G H L M N Y        − + − + − + + + = , (2) 

where F , G , H , L , M  and N  are material parameters. To consider the transversely isotropic 

behaviour F G=  , 1G H+ =  and the parameters L M N= =  assume the isotropic value of 1.5 

(see Eq. (1)). For decreasing values of F G=  the ratio between the flow stress along the 
Ox=Oy  orientation and the through-thickness one, Oz , increases. In the example considered 

0.32F G= = , which leads to an initial yield stress along the through-thickness direction 1.25 

times greater than the one along Ox=Oy  orientation. The material is assumed to be perfectly 

plastic, with a yield stress 0Y  of 1 GPa, as shown in Figure 2 (a). Figure 2 (b) presents the yield 

surfaces for biaxial stress conditions in the Oxy  plane, highlighting that for the transversely 
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isotropic material the equibiaxial yield stress is equal to the through-thickness one, i.e., 1.25 

GPa.  

 
 

Figure 2: Plastic behaviour: (a) True stress versus strain evolution and (b) Yield surface: isotropic (von Mises), 

yield stress of 1.0 and 1.25 GPa, and transversely isotropic (Hill’48) 

2.2 Spatial discretization 

The flat surface is assumed rigid, and it is described as a single Nagata patch [5]. The RCE 

is discretized with solid elements, i.e. 8 node linear hexahedron finite elements, combined with 

a selective reduced integration technique. The RCE considered in this work is a cube with 4 m 

× 4 m, based on the reference results that consider that dimensions should be a function of the 

topography roughness [3]. The cube is initially discretized with a uniform mesh and then the 

top layer finite element density is increased, using a non-conforming mesh as transition scheme, 

as shown in Figure 3 (a). This approach assures an accurate description of the roughness 

characteristics while maintaining admissible computation times. The use of a non-conforming 

mesh leads to the presence of hanging nodes, whose degrees-of-freedom are defined as linear 

combinations of degrees-of-freedom of neighbouring regular nodes. The treatment of these 

hanging nodes is performed considering the Lagrange Multiplier method. For the example 

adopted in this study, the cube has a total of 152,916 elements (220,506 nodes), corresponding 

to a total of 66,049 nodes (257 x 257) in the contact surface, i.e., ~30% of the total. The contact 

with the rigid flat surface is assumed to be frictionless or described by the Coulomb friction 

model, which is solved using the Augmented Lagragian Method.  

The quantitative characterization of the surface topography was performed using Power 

Spectral Decomposition (PSD), with the surface generator code proposed in [6], for artificial 

randomly rough Gaussian surfaces [7]. The input parameters considered were: (1) the root-

mean-square roughness ( qR ), i.e. standard deviation of surface heights ( ); (2) the Hurst 

exponent ( H ), which is related to the fractal dimension of a surface topography 3D H= − ; (3) 

the length of final topography/image, xL  in the Ox  direction; (4) m  and n , which are the 

number of pixels in the Ox / Oy  direction of final topography/image, respectively, and (5) the 

roll-off wavevector, rq . The values selected for the examples discussed in the following section 

are summarized in Table 1 and correspond to typical values found in literature. Since the surface 

under study has isotropic roughness characteristics, the derived radial average on the calculated 
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discrete Fourier transform of the surface topography was used to obtain its 2D power spectrum, 

as shown in Figure 3 (c). 

 

Figure 3: Mesh adopted for the representative contact element including detail of the surface: (a) before and (b) 

after including the roughness description. (c) Radially averaged 2D PSD of the surface presented in (b) [6] 

Table 1: Parameters adopted in the surface generator code proposed in [6, 7] 

Root-mean-square roughness ( qR ) 35 10− [m] 

Hurst exponent ( H ) 0.7 

Length of final topography (
xL )  4 m] 

Number of pixels in the Ox / Oy  directions ( m n= ) 257 

Cut-off wavevector (
rq ) 10 [1/ m] 

 

2.3 Contact area and pressure evaluation 

The Augmented Lagrangian method adopted to solve the contact problem calculates the 

contact force for each node. This variable is evaluated in a local frame associated with the 

contact node, based in the normal direction to the contact surface. Thus, the node normal contact 

force defined in the local frame, n , is known for each increment. To estimate the contact 

pressure, it is necessary to evaluate the area of influence of the node, 
 node

finalA .  

In this work, the real contact area is evaluated based on geometrical considerations, 

considering the contact status of neighbouring nodes, as suggested by [8], but also considering 

the normal distance of the node to the contact surface. The first step is to identify all the finite 

elements sharing the node in contact, as well as all potential contact nodes of those finite 

elements. Figure 4 (a) presents, in a two-dimensional scheme, all potential contact nodes 

associated with four finite elements, which share node 4. These are the nodes necessary to 

evaluate the contact area associated with node 4 in the same figure. The facet area of each 

element, 
( )e

A , can be evaluated from the nodal coordinates of the four vertex nodes. A value 
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corresponding to a quarter of this facet area is assigned to each node of the element, 
  ( )node

0.25
e

A A= . For instance, considering that the facet area of element 1 is ( )1
A , then 

( )1
0.25A  corresponds to the apparent contact area of node 4, if all nodes of element 1 are in 

contact with the surface (grey area in Figure 4 (b)). However, if every node of element 1 are 

not in contact it is necessary to introduce a correction factor to this area, as presented by the 

dark area in Figure 4 (b). This correction function should consider the distance of neighbouring 

nodes (gap status) to the surface. Figure 4 (c) and (d) exemplifies two situations for which nodes 

3 and 6 present gap contact status. However, in the case of Figure 4 (c) although the nodes have 

no contact force, since the normal contact distance is null, no correction should be performed 

to the contact area. On the other hand, the contact area must diminish for increasing values of 

the normal distance value of the adjacent nodes (Figure 4 (d)). The correction function used 

was proposed in [9] and is given by: 
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, (3) 

where nct  corresponds to the total number of potential contact nodes of the finite element, 

containing the node for which the correction function is being calculated. For hexahedral finite 

elements nct  is equal to 3. This procedure is repeated for each finite element to which the node 

belongs. At the end the contact area of the node is calculated as: 

   node node

final corr1

el

i
A A

=
=  , (4) 

where el  is the total number of finite elements to which the node belongs. The contact pressure 

is calculated as the ratio between the normal contact force and the estimated contact area: 

   noden
final

node
p A= . (5) 

 
Figure 4: Schematic representation of the geometrical evaluation of contact area for node 4: (a) neighbouring 

elements, (b) contact area for element 1, (c) neighbouring nodes with gap status but null normal distance and (d) 

neighbouring nodes with gap status and non-null normal distance [9] 
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3 RESULTS ANALYSIS AND DISCUSSION 

Numerical simulations were conducted with the RCE submitted to compression by the flat 

surface, until attaining a displacement of 0.1 m. Table 2 presents the summary of the test 

conditions considered, which will be analysed in this section. 

Table 2: Resume of the test conditions and labels 

Label Yield stress [GPa] Friction coefficient [-] Yield criterion 

Y1 1.0 0.0 von Mises 

Y1_0.1 1.0 0.1 von Mises 

Y1.25 1.25 0.0 von Mises 

Y1_1.25 1.0 0.0 Hill’48 

 

3.1 Contact area and average pressure 

Figure 5 (a) presents the evolution of the normalized contact area, i.e., the ratio between the 

effective contact area, A , evaluated using Eq. (4), and the apparent contact area, 0A . The 

evolution is presented in function of the average pressure, p , which corresponds to the total 

force applied by the flat surface divided by 0A . This evolution is almost linear, until a 

normalized contact area of ~0.3, followed by a non-linear behaviour, as reported in previous 

works [10]. Both the regimes are affected by the plastic behaviour of the material, mainly the 

yield stress. 

 

Figure 5: (a) Evolution of the normalized contact area in function of the average pressure and (b) Evolution of 

the average pressure in function of the imposed displacement. 

The isotropic material with a higher yield stress leads to a smaller normalized contact area 

when submitted to the same average pressure. This is related with the fact that the asperities 

will enter the plastic regime for higher values of average pressure, which also explains the fact 

that a higher average pressure is attained at the end. Interestingly, the average contact pressure 

as a similar evolution with the displacement of the flat surface for the isotropic material with 

the higher yield stress and the transversely isotropic material (see Figure 5 (b)), confirming the 

influence of the yield stress for the normal (compression) direction. The same occurs for the 
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tests performed with the same material properties, with or without friction. Nevertheless, the 

normalized contact area evolves differently for the transversely isotropic material, highlighting 

also the impact of the yield stress for the biaxial (compression) direction, while the presence of 

friction has a negligeable effect. Figure 5 (a) confirms that, at the end of the test, the transversely 

isotropic material (Y1_1.25) presents a normalize contact area more like the one observed for 

the isotropic material with a smaller yield stress (Y1), related with the higher average pressure 

(see Figure 5 (b)). 

3.2 Pressure distribution 

Figure 6 presents the pressure distribution on the RCE surface for the total displacement of 

the flat surface of 0.1 m, for the four test conditions under analysis. The figure highlights the 

similarities for the tests performed considering only different values of the friction coefficient. 

Nevertheless, it is possible to confirm the influence of the contact with friction in the slightly 

smaller values of equivalent plastic strain attained when considering the friction coefficient 

value of 0.1, when compared with the frictionless condition (see Figure 7, Y1 maximum value 

of 0.31 and Y1_0.1, 0.25). On the other hand, higher local contact pressures are attained for the 

isotropic material with the higher yield stress, which correspond to smaller values of equivalent 

plastic strain (maximum value of 0.27) when compared with Y1, as shown in Figure 7. This is 

a consequence of assuming the same elastic behaviour, as shown in Figure 2. Figure 6 also 

shows that the material with transversely isotropic behaviour presents local contact pressure 

values higher than the isotropic with a yield stress of 1 GPa and lower than the one with 1.25 

GPa. This is associated with slightly higher values of equivalent plastic deformation for the 

transversely isotropic material (maximum value of 0.32) than the isotropic ones (see Figure 7). 

 

Figure 6: Distribution of the local contact pressure for a displacement of the flat surface of 0.1 m 
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Figure 7: Distribution of the equivalent plastic strain for a displacement of the flat surface of 0.1 m 

Figure 8 presents the evolution of the distribution of the local pressure values with the 

displacement of the flat surface. To facilitate the analysis, the total number of nodes of the 

surface with a certain value of local contact pressure was normalized by the total number of 

nodes of the surface (66,049), to present the frequency percentage. Moreover, the nodes with 

no contact pressure are also separated. The analysis of this figure highlights that, even for a 

small displacement of the flat surface of 0.2 m, there are already some nodes submitted to 

pressure values higher than the yield stress, even though approximately 85% of the contact 

surface nodes are not in contact. With the increase of the displacement of the flat surface, the 

number of nodes not in contact reduces, until attaining approximately 15%, except for the 

isotropic material, which present approximately 20%. In fact, when analysing the distribution 

for the isotropic material Y1, for a displacement of 1 m, approximately 35% of the nodes 

present a local pressure value between 3.0 and 3.5 GPa. The trend is quite similar for the test 

conditions considering a friction coefficient of 0.1 and the frictionless case. Nevertheless, it is 

possible to confirm that by restraining the material movement, a higher number of nodes tends 

to present higher values of local contact pressure. The influence of the yield stress is clearly 

visible not only in the contact pressure range (see Figure 6), but also on its distribution. Note 

that for Y1.25 there is a more even distribution of the number of contact nodes with a certain 

value of contact pressure, when compared with the Y1 case. This also correlates with the lower 

values of maximum equivalent plastic strain, reported for Y1.25, when compared with Y1. On 

the other hand, the transversely isotropic material, is the one presenting a more uneven 

distribution of the number of nodes submitted to a certain local contact pressure value, which 

can help to explain the highest values of maximum equivalent plastic strain.  
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Figure 8: Frequency percentage of pressure values in function of the displacement of the flat surface  

3.2 Roughness evaluation 

In this section, the evolution of the contact surface roughness is discussed only for the 

isotropic materials with a yield stress of 1 GPa. Figure 9 presents the height distribution for the 

original surface, highlighting the maximum value for the peaks and the valleys of 0.02 m. This 

correlates well with the fact that for a displacement of 0.02 m of the flat surface there is already 

plastic deformation of the asperities, leading to contact pressure values higher than the yield 

stress (see Figure 8). As shown in Figure 9, for a displacement of 0.05 m of the flat surface 

the peaks become negligible, and the surface becomes even more uniform with the increase of 

the displacement. In fact, the tensile stress in the through-thickness direction, induced on the 

valleys by the plastic deformation of the asperities, also contribute to the reduction of their 

height.  
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Figure 9: Evolution of the surface height in function of the flat surface displacement, for the isotropic material 

with a yield stress of 1 GPa  

 

Figure 10: Abbott-Firestone curve evaluated for the original surface and for the ones obtained after a fixed 

displacement of the flat surface, for the isotropic material with a yield stress of 1 GPa  
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of 85%, for the final displacement of 0.1 m. It should be mentioned that the surfaces were 

extracted for the loaded RCE. Nevertheless, for the final displacement of 0.1 m, the surface 

was also unloaded. Figure 11 (a) presents the distribution of the Cauchy stress components zz  

before the unloading, highlighting the uniform value of -2.42 GPa away from the top surface, 

which correlates with the results shown in Figure 5. After unloading, the RCE presents a null 

zz  component, except on the top surface were the former peaks still present compressive 

residual stresses and the valleys tensile ones, as shown in Figure 11 (b). The plastic deformation 

induced on the surface leads to a negligible effect of the unloading on the predicted contact 

surface topography. 

 

Figure 11: Distribution of the zz  stress component on the RCE: (a) for a flat surface displacement of 0.1 mm 

and (b) unloaded, for the isotropic material with a yield stress of 1 GPa  

4 CONCLUSIONS 

The finite element model resorting to a non-conforming mesh enables capturing the main 

effects of the bulk material constitutive behaviour, with the saturation character on the material 

stress response being reflected on the contact pressure, changing the contact pressure 

distribution, and the rate of change of the contact area fraction. The changes on the friction 

coefficient have a slight impact on the local contact pressure but a more relevant one on the 

level of equivalent plastic strain. The fact that the material is restrained from deforming due to 

the “stick” contact status leads to smaller values of the maximum equivalent plastic strain. 

The relationship between the applied pressure (average) and the effective contact area is not 

linear, as reported in previous works. The effective contact area is evaluated based on a strategy 

that considers the nodes contact status and their distance to the flat rigid surface. The results 

shown that the effective contact area attains values close to about 50% of the apparent contact 

area when the applied pressure (average) is approximately the yield stress, Finally, the analysis 

of the deformed rough surface shows that the contact with the rigid surface eliminates the peaks 

while reducing the void volume in the valleys zone. 

 [GPa]zz

0.50

0.00

-0.50

-1.00

-1.50

-2.00

-2.50

-3.00

-3.50

-4.00
(a) (b)



Marta C. Oliveira, Diogo M. Neto, Pedro J. Costa and Luís F. Menezes 

 12 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the financial support of the Portuguese Foundation for 

Science and Technology (FCT) under projects with reference UIDB/00285/2020, 

LA/P/0112/2020 and Sim2Adapt: Development of multiscale approaches to improve the 

application of self-adaptive coatings in low friction mechanical systems 

(https://doi.org/10.54499/2022.08459.PTDC). Pedro J. Costa also thanks the support of FCT 

through the PhD grant with reference 2022.11478.BDANA. 

REFERENCES 

[1] Yaqub, T. Bin, Bruyere, S., Pierson, J. F., Vuchkov, T., and Cavaleiro, A. 2020, “Insights 

into the Wear Track Evolution with Sliding Cycles of Carbon-Alloyed Transition Metal 

Dichalcogenide Coatings,” Surf Coat Technol, 403, p. 126360. 

https://doi.org/10.1016/J.SURFCOAT.2020.126360 

[2] Menezes, L.F., Teodosiu, C. 2000, “Three-dimensional numerical simulation of the deep-

drawing process using solid finite elements”, J Mater Process Technology, 97(1-3), p. 100–

106. https://doi.org/10.1016/S0924-0136(99)00345-3 

[3] Pinto Carvalho, R., Couto Carneiro, A. M., Andrade Pires, F. M., and Doca, T. 2022, “An 

Efficient Multiscale Strategy to Predict the Evolution of the Real Contact Area between 

Rough Surfaces,” Tribol Int, 165. https://doi.org/10.1016/j.triboint.2021.107255 

[4] Hill, R. 1948, “A Theory of the Yielding and Plastic Flow of Anisotropic Metals,” 

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering 

Sciences, 193(1033). https://doi.org/10.1098/rspa.1948.0045 

[5] Neto, D. M., Oliveira, M. C., Menezes, L. F., and Alves, J. L. 2014, “Applying Nagata 

Patches to Smooth Discretized Surfaces Used in 3D Frictional Contact Problems,” Comput 

Methods Appl Mech Eng, 271. https://doi.org/10.1016/j.cma.2013.12.008 

[6] Mahboob Kanafi, M. 2024. “Surface generator: artificial randomly rough surfaces” 

https://www.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-

artificial-randomly-rough-surfaces, MATLAB Central File Exchange. 

[7] Mahboob Kanafi, M., and Tuononen, A. J. 2017, “Top Topography Surface Roughness 

Power Spectrum for Pavement Friction Evaluation,” Tribol Int, 107, pp. 240–249. 

https://doi.org/10.1016/j.triboint.2016.11.038 

[8] Tanner, J. A. 1996, “Computational Methods for Frictional Contact With Applications to 

the Space Shuttle Orbiter Nose-Gear Tire Development of Frictional Contact Algorithm”. 

https://ntrs.nasa.gov/api/citations/19960017561/downloads/19960017561.pdf 

[9] Oliveira, M. C., Alves, J. L., and Menezes, L. F. 2008, “Algorithms and Strategies for 

Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep 

Drawing Process,” Archives of Computational Methods in Engineering, 15(2), pp. 113–

162. https://doi.org/10.1007/s11831-008-9018-x 

[10] Persson, B. N. J. 2022, “Functional Properties of Rough Surfaces from an Analytical 

Theory of Mechanical Contact,” MRS Bull, 47(12), pp. 1211–1219. 

https://doi.org/10.1557/s43577-022-00472-6 

[11] ISO 25178-2 (GPS) — Surface Texture: Areal — Part 2: Terms, Definitions and Surface 

Texture Parameters. 

 


