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ABSTRACT  

Soil boundary delineation is an important task in geotechnical site characterization. It can be achieved by either 

extracting borehole samples, conducting laboratory tests, and classifying them according to a soil classification system 

such as the Unified Soil Classification System (USCS) or utilizing multiple cone penetration test (CPT) soundings, and 

identifying soil boundaries at the soundings from the Ic (soil behavior type index) profiles. However, most soil-layer 

delineation methods can only take a single type of test result as the input. For instance, the well-known Markov random 

field (MRF) method can only take soil-type data such as sand, silt, or clay at boreholes as the input. Recognizing that soil 

classifications and soil properties are correlated, this paper proposes a novel coupled MRF-Bayesian framework to infer 

the spatial variation of USCS classifications (e.g., sand, silt, and clay) as well as soil properties by integrating both CPT 

and borehole data. This integrated approach leverages both CPT and borehole data to address some main challenges e.g., 

uncertainties and multivariate soil data input in underground stratification problems by simultaneous sampling of soil 

properties and soil types. The new unified framework can accommodate multivariate data, hence the new framework is 

compatible with the geotechnical engineering practice. The uncertainties for the spatial variation of USCS classification 

at sounding locations are quantified through a “layer-specific” Bayesian updating i.e., updating posterior cross-correlation 

behaviors for different layers (such as sand, silt, and clay), independently. In this Bayesian updating, soil-type data can 

provide some information about the soil properties according to the unified soil classification system. Further, the soil 

boundaries can be identified across the entire domain by the realization of conditional random fields of soil properties 

once the spatial variation of USCS classification is inferred at sounding locations, followed by a 3-dimensional Markov 

random field process.  

 

Keywords: site characterization; clustered Bayesian analysis; soil boundary delineation; Markov random field; CPT 
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1. Introduction 

In geotechnical practices, soil boundary delineation 

stands as an important task, given the sparse and spatially 

variable soil types/properties. Various approaches have 

been developed for the soil boundary delineation 

problem (e.g., Phoon et al. 2003; Houlsby and Houlsby 

2013; Wang et al. 2014; Ching et al. 2015; Depina et 

al.2016; Xiao et al. 2017; Hu and Wang 2020; Wu et al. 

2021; Wei and Wang 2022). However, most existing soil 

delineating methods can take only one type of soil data 

such as soil types or soil properties/indices as the input. 

For instance, the well-known Markov random field 

(MRF) can only take soil-type data as the input. This is 

incompatible with typical site investigation programs 

where multi-type soil data, including soil properties (e.g., 

Atterberg limits, CPT data, etc.) and soil-type data in 

borehole logs, are provided. Consequently, a significant 

challenge in soil delineation lies in integrating all 

available site-specific data into the underground 

stratification process. This research aims to address this 

challenge by proposing a novel Bayesian approach 

capable of accommodating multivariate soil data for a 

comprehensive underground stratification, leveraging the 

entirety of available site-specific soil data for the soil 

boundary delineation problem.  

Inferring soil properties and soil types are not two 

separate problems, nevertheless, they are correlated. 

Building on this correlation, Kamyab Farahbakhsh and 

Ching (2023) suggested transforming the soil boundary 

delineating problem into the delineation of USCS-

classifications (Unified Soil Classification System) 

boundaries. This involves distinguishing between sand, 

silt, and clay based on borehole data (e.g., liquid limit 

(LL), plasticity index (PI), fines content (FC)) through a 

probabilistic framework. However, borehole data in a site 

are sparse i.e., statistical uncertainty. Other soil 

properties can also produce relevant information about 

soil types. In this paper, the Ic index (Robertson 2009), 

which are more abundant in space, is adopted as the 4th 

soil property to assist borehole data.  

The proposed MUSIC-3X framework (Ching et al. 

2021; Ching et al. 2022) is employed in this research for 

a Bayesian updating process of integrated soil data in a 

site. The adopted MUSIC-3X framework assumes (LL, 

PI, FC, Ic) follow a single multivariate normal 



 

distribution with a specific mean and covariance matrix 

for all layers. On the contrary, it is more likely that the 

(LL, PI, FC, and Ic) distribution for a multi-layered site 

cannot be represented by a single multivariate normal 

distribution i.e., the means and covariance matrices for 

different layers may vary significantly.  

One possible solution for this issue is to classify 

observed data at ith location into the one of independent 

clusters e.g., sand, silt, clay based on the soil type at that 

location and analyze them in parallel through the 

MUSIC-3X framework.  This clustered MUSIC-3X 

framework is a more realistic approach compared to the 

original one, where all clusters are assumed to share same 

statistical properties.  

The clustered MUSIC-3X framework raises another 

challenging issue i.e., transformation models (or cross-

correlation) for different layers. Namely, the soil-

properties simulation must be done in a “layer-specific” 

manner. That is, layer-specific transformation models are 

required to transform non-borehole data, e.g., Ic index in 

this research, at ith depth to (LL, PI, FC) according to the 

soil type at that depth. Although layer-specific 

transformation models are precise, they require abundant 

layer-specific Ic vs. (LL, PI, FC) data, which are usually 

not available in a typical site investigation program. One 

possible option is to adopt a generic cross-correlation 

model as a prior for all target soil layers, and let this prior 

is further updated by the sparse layer-specific data into a 

posterior model through the clustered Bayesian process. 

The outcome is a layer-specific cross-correlation model 

i.e., posterior means and covariance matrices for different 

layers. 

For this purpose, a soil database for (LL, PI, FC, Ic) is 

required to learn the intra-site and inter-site variability of 

the cross-correlation behaviors among these 4 parameters 

in different layers. The hierarchical Bayesian model 

(HBM) developed by Ching et al. (2021) is employed in 

this paper to learn the cross-correlation behaviors of these 

4 soil indices in the soil database. The learned model, 

already absorbed the intra-site and inter-site cross-

correlation information for different layers in the soil 

database, can serve as the prior model for the subsequent 

clustered Bayesian updating. 

Once the posterior layer-specific cross-correlation 

models are identified, namely the “inference stage”, it is 

still challenging to simulate conditional random fields 

(CRFs) of soil properties, the “CRF stage”, at unexplored 

locations. In other words, it is unclear which layer-

specific cross-correlation parameters should be adopted 

to simulate soil properties at an unexplored location 

without the knowledge of soil type at that location. The 

missing link between the inference and CRF stages in 

HBM-MUSIC-3X framework is a 3-dimensional MRF 

analysis proposed by Wei and Wang (2022). Given the 

inferred USCS-classifications at sounding locations, the 

soil-type samples can be simulated at unexplored 

locations through an MRF analysis first. Further, the 

layer-mannered CRFs of soil properties can be simulated 

at these locations. 

This coupled MRF-HBM-MUSIC-3X framework not 

only can accommodate multivariate soil data e.g., soil 

type (to be elaborated later) and soil properties through a 

simultaneous sampling of soil types and soil properties, 

but also can probably address key sources of uncertainty 

associated with soil delineation problems, including 

statistical, transformation, and lithological uncertainties. 

It is noteworthy to mention that soil types are sampled 

at unobserved borehole locations through independent 

1D-MRFs in the Bayesian updating, whereas at CPT 

locations soil types are sampled based on the simulated 

soil properties (LL, PI, FC).   

2. Learning of HBM 

The previously compiled generic database (Kamyab 

Farahbakhsh and Ching 2023) consisting of four soil 

indices (Y1 = log(LL), Y2 = log(PI), Y3 = FC, Y4 = Ic) has 

been expanded to incorporate 188 sites, as depicted in 

Fig. 1. In this figure, site-specific data are represented 

with different colors and markers.  

Given this extended database (Yo), a Johnson family 

transformation (Johnson 1949; Ching and Phoon 2014) is 

first adopted to convert the database into the standard 

normal space (Xo), and then the hierarchical Bayesian 

model (HBM) analysis is performed to learn the intra-site 

and inter-site cross-correlation behaviors of these 

parameters. For this purpose, the HBM assumes that the 

ith site in the database follows its own site-specific model 

characterized by (μi, Ci), where μi  R41 and Ci  R44 

denote the mean vector and covariance matrix of the ith 

site, respectively. The technical details for the HBM can 

be found in Ching et al. (2021).  

To validate the HBM model, one can consider a 

hypothetical future site for which the learned HBM 

model can be employed to simulate its site-specific (μi, 

Ci). This site-specific (μi, Ci) can be further used to 

simulate site-specific soil properties (Y1, …, Y4) as 

shown in Fig. 2.  The simulated data-points are depicted 

with different colors representing sand, silt, and clay 

Figure 2. Simulated (LL, PI, FC, Ic) vs generic database 

Figure 1. Generic database of 4 soil indices (LL, PI, FC, Ic) 



 

cases. Although some sand data-points with relatively 

large Ic values (e.g., exceeding 3.0) are generated, 

simulated sand data-points are more likely to have lower 

Ic values compared to silt/clay data-points. Moreover, 

there is a region with low LL and PI in Fig. 2 in which 

there are lots of hypothetical data (e.g., the majority of 

them are simulated sand data-points and some are 

simulated silt data-points) with PI values less than 7.0, 

but real data are rare. This may be because (LL, PI) 

values for either real sandy or non-plastic silty soil cases 

are usually not reported, but (LL, PI) for a hypothetical 

sandy/silty soil case are still simulated. 

 

3. Clustered Bayesian updating by site-
specific data 
 
3.1. A target site 

A target site (885 Colombo Street project, project No: 

PNZ2032) in Christchurch, New Zealand, has been 

selected to demonstrate the implementation of the 

proposed method in this paper. The target-site data are 

extracted from the website of the New Zealand 

Geotechnical Database (NZGD 2023). The plan view of 

in-situ test locations is presented in Fig. 3(a). The dataset 

comprises 26 CPT–sounding logs with different 

penetration depths and 9 borehole logs. Figs. 3(b) & 3(c) 

provide a perspective on the subsurface decomposition, 

probably indicating that the upper half and lower half of 

the subsurface are predominantly composed of silt and 

sand, respectively. While (LL, PI, FC) values are not 

documented in borehole logs, USCS-classifications at 

certain depths are available.  

3.2. Auto-correlation function 

It is noteworthy to mention that the MUSIC-3X 

framework necessitates the identification of the 

parameters for the auto-correlation function (ACF). In 

this study, the two-parameter Whitle-Matérn (WM) 

model (Stein 1999; Guttorp and Gneiting 2006) is 

employed as the ACF. For the target-site data (i.e., Ic 

values at CPT soundings), the vertical ACF parameters 

θz = (δz, z) are identified as (0.76 m, 1.16) through the 

Gaussian process regression proposed by Ching et al. 

(2023). Here, “δ” and “” denote the scale of fluctuation 

and smoothness parameters, respectively. Although the 

horizontal ACF parameters θh = (δh, h) are not 

identifiable due to the considerable distance between 

CPT locations, these parameters are assumed to be θh = 

(5.2m, 0.32) for demonstration.  

3.3. Clustered Bayesian updating 

The clustered Bayesian framework proposed in this 

research operates in a layer-specific manner i.e., it 

assumes different layers may have different cross-

correlation parameter values. Compared to the original 

MUSIC-3X framework, this is a more realistic approach 

where the statistical parameters e.g., mean, standard 

deviation, and coefficient of correlation are allowed to 

vary layer by layer, independently. More specifically, the 

HBM model serves as the prior cross-correlation model 

for different layers, and it is subsequently updated to a 

posterior model by sparse layer-specific data of the target 

site. Fig. 4 illustrates the posterior layer-specific 

statistical parameters (e.g., the mean, standard deviation, 

and the coefficient of correlation) of 4 soil indices in the 

X-space. Figs. 4(a) & (d) depict the layer-specific 

posterior samples of the mean for fines content (X3) vs Ic 

Figure 3. Target-site data in Christchurch, New Zealand: (a) site plan; (b) Ic-heat map at CPT locations;  
and (c) observed USCS-classifications at borehole locations 



 

(X4) and liquid limit (X1) vs plasticity index(X2) in the 

standard normal space for different clusters, respectively.  

 

 By comparison, the posterior silt clouds of (μX3, μX4) 

and (μX1, μX2) are relatively positioned in the top right of 

the sand clouds. This observation aligns with 

expectations, considering that Ic values for silts are 

typically anticipated to be larger than those for sands (see 

Fig. 1 for reference), and fines content values for silts 

should be larger than those for sands. In addition, 

plasticity index values for clays are usually larger than 

silt and sand. Figs. 5 & 6 illustrate the USCS-

classifications probability and 95% confidence intervals 

(95%CIs) of soil properties variation with depth at CPT 

#20 and BH#2 locations, respectively.  

In Figs. 5(a) & 5(b), it is evident that silt is the most 

probable USCS-classification between depths 3m to 7m, 

where the Ic values at CPT#20 for these depths are 

relatively large e.g., it exceeds 3.0 at some depths. 

Similarly, the most probable classification from a depth 

of 3m to 10m at BH#2 is silt (Figs. 6(a) & (b)), where 4 

observed silt depths are available. At these depths, the 

probabilities of observed USCS-classifications are 

100%.   Fig. 6(f) shows the median profile of simulated 

Ic values at these depths are relatively large, compared to 

other depths.   

 

 

 

It has been highlighted that the proposed framework 

in this research can accommodate multivariate soil data 

including the soil-type data. This type of information is 

employed in the Bayesian updating process by 

incorporating USCS-wise constraints, as outlined in 

Table 1, on simulated LL, PI, and FC at observed 

borehole depths. Fig.7 illustrates the simulated (LL, PI, 

FC, Ic) at depths of 1m and 4m, where sand and silt 

classifications, respectively, are observed at BH#2.  

 

4. Markov random field 

Given the layer-specific posterior cross-correlation 

parameters samples of soil properties, MUSIC-3X 

framework is unable to simulate the CRFs of soil 

properties at unexplored locations, where soil types are 

unidentified in advance i.e., it is unclear which layer-

specific cross-correlation parameters are deployed to 

simulate the soil properties. An MRF analysis can fill this 

gap i.e., before the CRF stage, an MRF analysis can be 

conducted to simulate the USCS-classifications at 

unexplored locations.   

 

Table 1. USCS-wise constraints for (LL, PI, FC) 

Soil 

type 
LL PI FC 

Sand - - FC<50 

Silt 
- PI  A-line for L29.6% 

PI  7% for LL < 29.6% 

FC50 

Clay 
- A-line < PI  U-line 

PI > 7% 

FC50 

Figure 5. Probability of USCS-classifications and 95% CIs at CPT#20: (a) realization of USCS-classifications; (b) 

probability of USCS-classifications; (c) 95%CI for LL;  (d) 95%CI for PI; (e) 95%CI for FC; and (f) Actual profile of Ic.  

Figure 4. Clustered Bayesian updating: (a) the means of X3 

and X4; (b) the standard deviations of X3 and X4; (c) the 

coefficients of correlation between X3 and X4 ; (d) the means 

of X1 and X2; and (e) the coefficients of correlation between 

X1 and X2   



 

A necessary step for MRF analyses is a “pre-test”, 

where an informative prior (a multivariate normal PDF) 

of granularity coefficients i (i=1, 2, …, 7) is constructed. 

Fig. 8 illustrates the effective directions of different i in 

3-dimension.  

To reduce the computational cost, the pre-test can be 

performed once instead of Ninfer-times (Ninfer =1000 

denotes the number of inferences stage samples). For this 

purpose, the most probable profiles at sounding locations 

are considered as shown in Fig. 9.  The mean vector (μi) 

and covariance matrix (i) for the prior PDF of ~MVN 

(μi, i) are set to μi = [0.08, 3.16, 0.00, -0.07, 3.86, -

1.29, -1.72] and i =diag(0.10, 0.41, 0.08, 0.29, 0.18, 

0.43). Further, Ninfer samples of USCS-classification can 

be inferred at unexplored locations. The details have been 

elaborated in Wei and Wang (2022).   

 

5. Conditional random fields  

Given the USCS-classification samples at unexplored 

locations, the CRFs of soil properties can subsequently 

be realized. Fig. 10 illustrates the silt probability at a 

depth of 8.2m. Borehole locations are marked by red 

lines in this figure, in addition to 3 CPT locations. Fig. 10 

indicates that the silt probability distribution is sharp 

(e.g., displaying either a peak or minimum) near borehole 

locations, probably due to 2 reasons: (a) at borehole 

locations, there are observed USCS-classifications i.e., 

no uncertainties, and (b) USCS-classifications at 

unobserved borehole locations are simulated based on the 

independent 1D-MRF during the inference stage.  

Fig. 11 illustrates the sand probability distribution 

through a section that crosses at y=50m. It is noteworthy 

to mention that to construct the soil-type probability 

distribution in this figure, the Ninfer USCS-classification 

Figure 6. Probability of USCS-classifications and 95% CIs at BH#2: (a) realization of USCS-classifications; (b) probability 

of USCS-classifications; (c) 95%CI for LL;  (d) 95%CI for PI; (e) 95%CI for FC; and (f) 95%CI for Ic.  

Figure 7. Simulated soil properties at observed borehole 

locations 

Figure 8. The most probable USCS-classification profiles at 

sounding locations 

Figure 9. Most probable profile at soundings locations 



 

samples are obtained based on the simulated CRFs of 

(LL, PI, FC). Moreover, the Ic profiles of close-by CPTs 

are overlaid in this figure for comparison. Some 

consistency can be observed in Fig. 11. For instance, the 

probability of sand decreases where the Ic values increase 

at CPT locations.  

 

Moreover, Ic values near CPT#4 between a depth of 

6m to 10m are relatively low, anticipating the probability 

of sand is high. On the contrary, Fig. 11 indicates that the 

sand probability is relatively low. This inconsistency 

probably can be explained by the nearby BH#2 (see Fig. 

6 for the reference) whereas the silt is highly probable at 

these depths.  

As has been highlighted earlier, site-specific data e.g., 

Ic profiles and borehole logs suggest that the lower half 

of the underground is predominated by sand. The 

illustrated sand probability in Fig.11 aligns with this 

engineering perception. One realization of soil properties 

has been illustrated for the cross-section at y = 50m in 

Fig. 12. It is clear that the realized FC and Ic values in 

shallow depths are relatively larger than those in deeper 

depths.  

 

6. Conclusions  

Soil properties and soil types simulation problems are 

correlated. Based on this correlation, the soil delineating 

problem can be converted to the USCS-classification 

boundaries problem. In the current paper, a novel 

probabilistic framework has been introduced to address 

one important challenge e.g., considering taking the 

advantage of all available soil data contribution for soil 

boundary delineating problems. For this purpose, a 

supporting generic database of liquid limit, plasticity 

index, fines content, and Robertson soil behavior type 

index has been compiled, and the HBM is adopted to 

learn the inter-site and intra-site cross-correlation 

behaviors of these parameters for different layers e.g., 

sand, silt, and clay. The learned HBM model, which has 

absorbed the intra-site and inter-site cross-correlation 

information in the soil database, further serves as the 

prior model for target layers in the subsequent Bayesian 

updating. Conditioning on the layer-specific data, this 

prior model is updated into a layer-specific posterior 

model i.e., discernible layer-specific cross-correlation 

parameters for different layers through the clustered 

MUSIC-3X Bayesian updating framework proposed by 

Ching et al. (2022).  

 

Moreover, the HBM-MUSIC-3X method, as the core 

engine for layer-manner simulating of soil properties, is 

coupled with the MRF framework, proposed by Wei and 

Wang (2022), to simulate soil classifications and soil 

Figure 10. Silt probability surface at z = 8.2m 

Figure 11. sand probability distribution at y = 50m plane 

 and probabilistic USCS-classifications profiles near close-by CPT soundings  

Figure 12. One realization of soil properties 

 at the section y = 50m 



 

properties simultaneously at unexplored locations. 

Further, the CRFs of soil properties (LL, PI, FC, Ic) are 

sampled based on the inferred 3D-MRF results and 

posterior layer-specific cross-correlation parameters.  

Essentially, these coupled frameworks are 

implemented to infer the 3-dimensional spatial variation 

of USCS classifications (e.g., sand, silt, and clay) as well 

as soil properties for a real site in Christchurch, NZ. The 

analysis outcome seems reasonable e.g., there are some 

consistency between the outcome of analysis and the 

input data. For instance, probability of sand increases 

with the increase of Ic values at CPT locations.  
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