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Summary. In this work we discuss a topological derivative-based strategy to address state-
constrained problems in shape and topology optimization. Specifically, we investigate the design
of optimal heat-sink structures under steady-state heat conduction and subject to temperature
constraints. A quadratic penalty functional is formulated to realize the constraint and its first-
order topological asymptotic expansion is derived. A difficulty that arises in the asymptotic
analysis is exposed and handled using level-set representations of the subdomains in which
the constraints are violated. The topology optimization problem is addressed with an efficient
algorithm based on the topological derivative method, combined with a level set representation
of the design domain, and numerical results are presented.

1 INTRODUCTION

State-constrained problems in shape and topology optimization arise in many practical appli-
cations. In heat transfer problems, for instance, temperature control is frequently important to
avoid overheating of components or even unwanted phase transitions. In the context of additive
manufacturing techniques, pointwise temperature constraints have been considered recently in
path planning optimization for powder bed fusion [4], in casting process [8] and as an artificial
strategy to impose connectivity constraints [7]. In the multi-physics setting, they have also been
considered for the design of battery packs [5, 12]. In structural optimization, pointwise stress
constraints are also important to avoid structural failure, although in this case the constraints
are imposed on the gradient of the state, rather than directly on the state solution [1].

In general, realizing pointwise constraints is known to be a delicate issue. The strategy we
adopt in this work is to formulate a quadratic penalty shape functional, so that the original
optimization problem can be restated with a single equality constraint. Similar strategies have
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been considered in the shape sensitivity framework. In topological-derivative based methods,
smooth penalty functionals have been introduced to mimic pointwise constraints on the gradient
of the state [1]. Following a similar strategy, but in a multidimensional setting, Von Mises stress
constraints in linear elasticity have been considered [3]. In such cases, the classical quadratic
penalty is prohibited due to regularity issues (see [1, Remark 4.4]).

The main purpose of this work is to demonstrate that, in the specific case of constraints
on the state, we can guarantee existence of the topological derivative of the quadratic penalty
function. Then, we apply the topology design algorithm proposed by Amstutz and Andrä [2],
which combines a level-set representation of the domain with the use of the topological derivative
of the cost functional as a steepest-descent direction. The strategy is illustrated by a simple
benchmark problem: the design of heat-sink structures under steady state heat conduction with
temperature constraints.

This work is organized as follows. The problem statement is presented in Section 2. Then,
the topological sensitivity analysis is discussed in Section 3 and the topological-derivative based
algorithm is briefly described in Section 4. Finally, the methodology is illustrated by a simple
benchmark problem in Section 5 and some concluding remarks and perspectives are given in
Section 6.

2 PROBLEM STATEMENT

Let us consider a piecewise smooth, open and bounded set D ⊂ R2 and define P(D) as a set
of subsets of D. For the present application, D represents a fixed domain which is split into
two subdomains with different material properties: Ω ∈ P(D) and its complement D\Ω. We
are interested in obtaining the optimal material distribution in the domain such that a certain
shape functional J (Ω), depending on the solution uΩ of a partial differential equation (PDE),
is minimized, while satisfying pointwise inequality constraints on uΩ. Namely, we consider the
following shape and topology optimization problem

min
Ω∈P(D)

J (Ω), subject to uΩ(x) ≤ u∗(x), ∀x ∈ Ω∗, (1)

where Ω∗ is a fixed subset of D in which the constraint is prescribed and u∗ is a given positive
function. In order to realize the pointwise constraint on the state, we define the following
quadratic penalty functional

G(Ω) :=

∫
Ω∗

(uΩ − u∗)2+, (2)

with (uΩ − u∗)+ := max{uΩ − u∗, 0}. With this choice, the constraint is satisfied almost every-
where in Ω∗ if and only if G(Ω) = 0. Therefore, the optimization problem can be restated with
a single equality constraint as

min
Ω∈P(D)

J (Ω), subject to G(Ω) = 0. (3)

In addition, we adopt a classical penalization scheme to impose the equality constraint, so that
the final version of our optimization problem reads

min
Ω∈P(D)

L(Ω), with L(Ω) = J (Ω) + ΛgG(Ω). (4)

in which we introduce the positive parameter Λg → ∞, see [9].
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2.1 Heat-sink design formulation

As a model problem, we consider the design of an optimal heat-sink structure. The domain D
is subjected to a heat source q : D → R and is assumed to be under steady state heat conduction.
The fixed boundary ∂D is partitioned into two fixed subsets, Γn and Γd. A homogeneous
Neumann boundary condition is imposed on Γn and a fixed temperature u is prescribed on the
boundary Γd, which corresponds to a Dirichlet boundary condition, see Figure 1.

Let us define the function spaces U = {v ∈ H1(D) : v = u on Γd} and V = {v ∈ H1(D) : v =
0 on Γd}. Then, the state problem consists in the following two-phase Poisson problem with
mixed boundary conditions

Find u ∈ U :

∫
D
κ∇u · ∇φ =

∫
D
qφ, ∀φ ∈ V, (5)

in which u represents the domain’s temperature and κ is the following piecewise constant function

κ = κΩχΩ + κD\ΩχD\Ω,

where κΩ and κD\Ω denote the thermal conductivities of phases Ω and D\Ω, respectively, and χΩ,
χD\Ω are the characteristic functions associated to each subdomain. The boundary conditions
and normal vector orientation are illustrated in Figure 1. For the optimization problem, we

Figure 1: Representation of the domain D and its subset Ω ⊂ D, along with the problem’s boundary
conditions and normal vector orientation.

consider the minimization of the volume of phase Ω with a thermal compliance regularization
term. Namely, we take

J (Ω) = V (Ω) + ΛcC(Ω), (6)

where Λc is a positive parameter and the volume and thermal compliance shape functionals are
defined, respectively, as

V (Ω) :=

∫
D
χΩ, and C(Ω) :=

∫
D
qu. (7)

In this formulation, the pointwise inequality constraint in (1) stands for a temperature constraint
and the choice of Ω∗ depends on the application.
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3 TOPOLOGICAL SENSITIVITY ANALYSIS

The topological sensitivity analysis aims at studying the sensitivity of a given shape func-
tional with respect to an infinitesimal singular perturbation of the geometry. For the current
application, the topologically perturbed domain is obtained by nucleating a circular hole Bε(x̂).
The hole produced by Bε(x̂) is then filled with a material distinct from the background. In
particular, if the hole is nucleated in phase Ω, it is filled with a material corresponding to phase
D\Ω. Conversely, if it occurs in D\Ω, then the converse is true. The thermal conductivity of

Figure 2: Representation of the topologically perturbed domain and normal vector orientation. Note
that we take as a convention that the normal vector on Bε(x̂) is orientated towards the interior of the
ball.

the perturbed domain is then characterized by the piecewise constant function κε := γεκ, with
the contrast γε defined as

γε(x) :=

{
1 if x ∈ D\Bε(x̂),

γ(x) if x ∈ Bε(x̂),
with γ(x) :=

{
(κD\Ω/κΩ) if x ∈ Ω,

(κD\Ω/κΩ)−1 if x ∈ D\Ω.
(8)

The variational formulation of the topologically perturbed state problem reads

uε ∈ U :

∫
D
κε∇uε · ∇φ =

∫
D
qφ, ∀ φ ∈ V. (9)

Note that, due to the inclusion, an interface condition holds on the border of Bε. Also, the shape
functionals J (Ωε) and G(Ωε) evaluated on the perturbed domain are expressed, respectively, as

J (Ωε) =

∫
D
χΩε + Λc

∫
D
quε. (10)

and

G(Ωε) =

∫
Ω∗

(uε − u∗)2+. (11)

The topological sensitivity analysis of the volume and compliance shape functional is well
known, see for instance [10]. Relying on these results and considering the linearity of the
derivative operator, one obtains that the shape functional J (Ω) admits the topological expansion

J (Ωε(x̂)) = J (Ω) + f(ε)DTJ (x̂) + o(ε2), (12)
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with f(ε) = πε2 and the topological derivative

DTJ (x̂) = α(x̂) − 2Λc (1 − γ)

(1 + γ)
κ∇u(x̂) · ∇v(x̂), (13)

in which α := −χΩ + χD\Ω and v is the solution of the adjoint problem

v ∈ V :

∫
D
κ∇v · ∇φ = −

∫
D
qφ, ∀ φ ∈ V. (14)

3.1 Topological derivative of the quadratic penalty shape functional

In this subsection, we seek for a topological expansion in the form of (12) for the shape
functional G(Ω). For a given function Φ ∈ H1(D), we denote as ωΦ the sublevel set ωΦ := {x ∈
Ω∗ : Φ < 0}. Then, the subsets of Ω∗ where the pointwise constraint on u and uε are violated
are ωϕ and ωϕε , with the auxiliary level-set functions

ϕ := −(u− u∗) and ϕε := −(uε − u∗). (15)

Based on such definitions, the variation of the cost function reads

G(Ωε) − G(Ω) =

∫
Ω∗

(uε − u∗)2+ −
∫
Ω∗

(u− u∗)2+

=

∫
ωϕε

(uε − u∗)2 −
∫
ωϕ

(u− u∗)2. (16)

Next, we shall perform algebraic manipulations to collect the terms contributing to the topolog-
ical derivative and residual norms. The main difficulty arising at this point is the dependence
of ωϕε on ε. The impact of the perturbation on the active set ωϕ needs to be analyzed carefully
using the asymptotic behavior of the solution uε with respect to the parameter. For this pur-
pose, we can use the fact that ωϕ and ωϕε are level sets to compute an asymptotic expansion
of (16), using results from [6]. Before discussing these ideas, let us first proceed with some
manipulations in order to group terms which will be estimated in a similar manner. In fact, by
summing and subtracting the terms∫

ωϕε

(u− u∗)2 and 2

∫
Ω∗

(uε − u)(u− u∗)+, (17)

from (16), one obtains that G(Ωε) − G(Ω) = I(ε) + E1(ε) + E2(ε) with

I(ε) := 2

∫
Ω∗

(uε − u)(u− u∗)+, (18)

E1(ε) :=

∫
ωϕε

ϕ(2hε + ϕ) −
∫
ωϕ

ϕ(2hε + ϕ), (19)

and

E2(ε) :=

∫
ωϕε

h2ε, (20)
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in which we have introduced the notation hε := ϕε − ϕ. Note that from definitions of the level
set functions (15), we have that hε = −(uε − u).

We will see that only the term I contributes to the topological derivative, whereas E1 and E2
are remainders. With this strategy, the issue of studying the behavior of the sets ωϕε and ωϕ is
concentrated in term E1. The rest of the development is analogous to the one presented in [10,
Chapter 3] for the compliance shape functional, for instance. Therefore, we describe the main
ideas here and refer to [10] for more details.

Asymptotic behavior of the term I(ε)

In order to expand the term I(ε) and extract its contribution to the topological derivative, we
proceed as follows. Firstly, we introduce the adjoint state p ∈ H1(D), solution of the following
variational problem

Find p ∈ V :

∫
D
κ∇p · ∇φ = −2

∫
Ω∗

(u− u∗)+φ, ∀ φ ∈ V. (21)

Then, the weak formulations (5) and (9) of the original and perturbed state problems are used
to express I as an integral defined over the ball Bε. Namely,

I(ε) = −(1 − γ)

∫
Bε

κ∇uε · ∇p. (22)

Next, we study the asymptotic behavior of the function uε with respect to the parameter ε by
introducing the ansatz uε(x) = u(x) + wε(x) + ũε(x), where wε is the solution of

−div(κε∇wε) = 0, in R2,

wε → 0, for |x| → ∞,

[[wε]] = 0, on ∂Bε(x̂),

[[κε∇wε]] · n = v̂, on ∂Bε(x̂),

(Pwε)

with v̂ = −(1 − γ)(κ∇u(x̂)) · n, and ũε is the solution of

−div(κε∇ũε) = −(1 − γ) div(κ∇u)|Bε
, in D,

ũε = −wε, on Γd,

(κε∇ũε) · n = −(κ∇wε) · n, on Γn,

[[ũε]] = 0, on ∂Bε(x̂),

[[κε∇ũε]] · n = −(1 − γ) [(κ∇u) · n− (κ∇u(x̂)) · n] , on ∂Bε(x̂).

(Pũε)

Further, we can prove that (Pwε) admits the explicit unique solution

wε(x)|Bε
=

(1 − γ)

(1 + γ)
∇u(x̂) · (x− x̂), (23)

wε(x)|R2\Bε
=

(1 − γ)

(1 + γ)

ε2

∥x− x̂∥
∇u(x̂) · (x− x̂), (24)

6
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so that, by replacing the ansatz for uε in (22), we obtain

G(Ωε) − G(Ω) = −2
(1 − γ)

(1 + γ)
κ∇u(x̂) · ∇p(x̂)πε2 +

5∑
i=1

Ei(ε), (25)

with the additional remainders

E3(ε) = −(1 − γ)

∫
Bε

κ∇ũε · ∇p, (26)

E4(ε) = −(1 − γ)

∫
Bε

κ∇wε · (∇p−∇p(x̂)), (27)

and

E5(ε) = −(1 − γ)

∫
Bε

κ [∇u · ∇p−∇u(x̂) · ∇p(x̂)] . (28)

Asymptotic behavior of the remainders Ei(ε), for i = 2, . . . 5

Note that the estimates ∥uε − u∥H1(D) ≈ ε and ∥ũε∥H1(D) ≈ ε2 hold true (see [10, Lemma
3.1 and Lemma 3.2] for a complete proof of analogous estimates for a similar problem, with an
additional first order term in the PDE). Then, considering the explicit expression (23) of wε

inside Bε and the interior elliptic regularity of u and p, we obtain that the remainders E3, E4
and E5 are of order o(ε2), see [10, Section 3.4]. For term E2, defined in (20), observe that

|E2(ε)| = ∥hε∥2L2(wϕε )
≤ ∥hε∥2L2(D). (29)

An estimate for hε in L2(D) can be obtained based on the ansatz proposed for uε. In fact, based
on the explicit expression for wε, given by (23) and (24), one can show that ∥wε∥L2(D) ≈ ε2

√
ln |ε|

(see [10, Chapter 3]), so that
∥hε∥L2(D) ≈ ε2

√
ln |ε|. (30)

Thus, we obtain that the remainder E2 is of order o(ε3).

Asymptotic behavior of the remainder E1(ε)

Finally, we study the more involved case of E1. First, let us notice that this term can be
restated as E1(ε) = F(ωϕε) −F(ωϕ) introducing the shape functional

F(ω) :=

∫
ω
ϕ(2hε + ϕ). (31)

In order to prove that this term is a remainder, we will verify that E1 can be expressed in terms of
the shape derivative of F . Recall that, for a given vector field θ ∈ C∞(D,Rd) and its associated
flow T θ

t : D → Rd, t ∈ [0, τ ], the shape derivative of F at a certain set ω ⊂ D in direction θ is
given by

dF(ω)(θ) := lim
t↘0

F(ωt) −F(ω)

t
, (32)

where ωt := T θ
t (ω) is a perturbation of ω, see for instance [11]. Next, we introduce the family

of parameterized level set functions ϕs := ϕ + shε, for s ∈ [0, 1], and the associated sublevel set
ωϕs . Then, we have the following lemma.

7
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Lemma 1. For each s ∈ [0, 1], assume that ωϕs is sufficiently smooth with ∂ωϕs ∩ ∂Ω∗ = ∅ and
|∇ϕs| > 0 on ∂ωϕs. Then,

E1(ε) =

∫ 1

0
dF(ωϕs)(θs)ds =

∫ 1

0

[∫
∂ωϕs

ϕ(2hε + ϕ)θs · ns

]
ds, (33)

where θs := −hε|∇ϕs|−2∇ϕs on ∂ωϕs and ns is the outward unit normal vector to ωϕs.

Proof. For a fixed s ∈ [0, 1] the functional F is shape differentiable at ωϕs . Furthermore, for a
given vector field θ ∈ C∞(D,Rd), the shape derivative is given by

dF(ωϕs)(θ) =

∫
∂ωϕs

ϕ(2hε + ϕ)θ · ns, (34)

in which ns is the outward unit vector to ωϕs , see for instance [11]. Next, let us introduce the
functional F (Φ) := F(ωΦ), for Φ ∈ H1(D). With this definition, note that E1 = F (ϕε) − F (ϕ).
Then, it follows from [6, Theorem 3] that we can establish a link between the shape derivative
of F and the Gâteaux derivative of F . Namely, we obtain that the application F is Gâteaux
differentiable at ϕs and

dGF (ϕs)(hε) = dF(ωϕs)(θs), (35)

where dGF (ϕs)(hε) denotes the Gâteaux derivative at ϕs in direction hε, and

θs := −hε|∇ϕs|−2∇ϕs on ∂ωϕs . (36)

Now, let η : [0, 1] → R be the map η(s) := F (ϕs) = F (ϕ + shε). Then, it follows from the chain
rule that η is differentiable at each s ∈ [0, 1] and

η′(s) =
d

ds
F (ϕs) = dGF (ϕs)(hε). (37)

Also, note that η is absolutely continuous and that the application [0, 1] ∋ s 7→ dGF (ϕs)(hε)
belongs to L1(0, 1). Therefore, it follows from the Fundamental Theorem of Calculus that

E1(ε)
(37)
=

∫ 1

0
dGF (ϕs)(hε)ds

(35)
=

∫ 1

0
dF(ωϕs)(θs)ds. (38)

Then, considering the expression of the shape derivative (34), we obtain the desired result.

Note that the previous result is only possible because ωε and ω have level-set representations,
which allow the definition of the functional F , defined on usual vector spaces. Next, based on
expression (33), we estimate E1. In fact, note that

E1(ε) =

∫ 1

0

[∫
∂ωϕs

ϕs(2hε + ϕ)θs · ns

]
︸ ︷︷ ︸

=0

ds +

∫ 1

0
s

[∫
∂ωϕs

(−hε)(2hε + ϕ)θs · ns

]
︸ ︷︷ ︸

=:L

ds, (39)

8
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where we have used the fact that ϕs = 0 on ∂ωϕs by definition. Now let us study the term L.
Considering the definition (36) of θs and ns = ∇ϕs|∇ϕs|−1, we have that

L =

∫
∂ωϕs

h2ε(2hε + ϕ)

|∇ϕs|
. (40)

Next, we assume that there exist constants c1 and c2, independent of s and ε, such that |∇ϕs| > c1
and ∥2hε + ϕ∥L∞(∂ωϕs )

< c2. Then, if follows from (40) that |L| ≤ C∥hε∥2L2(∂ωϕs )
. Furthermore,

this norm can be bounded by the estimate of hε in L2(D), obtained in (30). Hence, we obtain

|E1(ε)| ≤
∫ 1

0
s
c2
c1
ε4 ln |ε|ds ≤ 1

2

c2
c1
ε4 ln |ε|, (41)

which means that E1 is of order o(ε3). Thus, we have obtained the following result.

Theorem 1. The quadratic penalty functional (2) admits the following first-order topological
asymptotic expansion

G(Ωε(x̂)) = G(Ω) + f(ε)DTG(x̂) + o(ε2),

with f(ε) = πε2 and

DTG(x̂) = −2
(1 − γ)

(1 + γ)
κ∇u(x̂) · ∇p(x̂),

in which p is the solution of the following adjoint problem

Find p ∈ V :

∫
D
κ∇p · ∇φ = −2

∫
Ω∗

(u− u∗)+φ, ∀ φ ∈ V. (42)

4 TOPOLOGY DESIGN ALGORITHM

The topological-derivative based algorithm we employ here was initially proposed by Am-
stutz and Andrä [2] and designed specifically to work with domains perturbed by ball-shaped
inclusions, such as the ones described in the previous section. The domain D is fixed and the
subdomain Ω is represented as the negative sublevel set of an auxiliary function Ψ : D → R.
For each iteration n, the algorithm basically consists in the following steps. First, we identify
the domain Ωn implicitly described by the level set function Ψn. Then, the corresponding state
problem and the cost functionals are evaluated. Next, the topological derivative of the cost func-
tional is computed and is used as a steepest descent direction to update the level set function
Ψn. If this step decreases the cost function, then it is accepted, otherwise we perform a line
search. If the step size becomes too small, a mesh refinement is tried, whereas if the stopping
criteria is satisfied, then the algorithm is interrupted. The seeked criteria in this algorithm is a
local sufficient optimality condition, which, for the class of perturbations under consideration,
can be stated as DTL(x̂) > 0, for all x̂ ∈ D. For more details, see [2].

5 NUMERICAL EXPERIMENTS

Let us consider a square domain D = [0, 1] × [0, 1] subject to a unit heat source and with
a Dirichlet boundary condition prescribed in the central portion of the bottom boundary with

9
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length |Γd| = 0.2. Also, we take Ω∗ = D in (2), which means that the temperature value is
constrained on both phases of the domain. The thermal conductivity of phase Ω is set as κ = 1.0,
whereas for phase D\Ω we experiment with three different values κD\Ω = 0.5, κD\Ω = 0.1 and
κD\Ω = 0.05. For numerical purposes, the volume and compliance have been normalized by the
corresponding shape functionals evaluated on the initial domain. For the thermal compliance
regularization term we set Λj = 0.4, whereas the penalty factor of the temperature constraint
shape functional is fixed as Λg = 9 × 103. Indeed, from a mathematical point of view, problems
(3) and (4) are equivalent only when Λg → ∞. Therefore, it was chosen based on preliminary
experiments as the largest possible value for which numerical errors did not appear.

Let us first observe that Ω is the phase filled with the best conductor, so that Ω = D (full
domain) is the case which best conducts heat. Therefore, if u∗ is set as any value lower than
the maximum temperature reached in this case, then the constraint u(x) ≤ u∗(x) in (1) will
certainly be violated. On the other hand, the unconstrained problem gives an idea of an upper
bound for the choice of u∗ in order for it to actually have an effect on the optimal design. In
Table 1, we exhibit the solution of the state equation in the full domain and the unconstrained
optimal designs obtained with three different choices of κD\Ω. Based on these considerations,
we choose for the present benchmark problem three different values of u∗, namely u∗ = 1.0,
u∗ = 1.2 and u∗ = 1.4.

Table 1: Solution of the state equation in the full domain (Ω = D), and in the unconstrained optimal
designs obtained with different values of κD\Ω. The optimal designs and the temperature field are
presented together in the same figure.
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In Table 2, the optimal designs obtained with different choices of u∗ and κD\Ω are presented.
The yellow region indicates the portion of the domain for which the temperature constraint

10



Giovanna C. Andrade, Antoine Laurain and Antonio A. Novotny

is violated. In the worst case obtained, it corresponds to 3.34% of the domain. For a fixed
value of κD\Ω, we observe that when a smaller value of u∗ is chosen, the volume of phase Ω
increases, which is consistent with the fact that more conductive material is needed in order to
dissipate the heat and satisfy the constraint. The area of the region in which the constraint is
violated also increases as u∗ decreases, indicating that the constraint becomes more difficult to
satisfy. On the other hand, as the value of κD\Ω decreases, it is interesting to observe that not
only the volume of phase Ω increases, but the design also tends to become more spread in the
domain. Indeed, as we decrease κD\Ω, phase Ω increasingly becomes the primary conductor of
heat, making its presence essential for extracting heat from the extremities of the domain.

Table 2: Optimal designs obtained with different values of κD\Ω and u∗.

u∗ = ∞ u∗ = 1.4 u∗ = 1.2 u∗ = 1.0

κ
D
\Ω

=
0.

5
κ
D
\Ω

=
0.

1
κ
D
\Ω

=
0.

05

6 CONCLUSIONS AND PERSPECTIVES

We have investigated a simple quadratic penalty formulation to realize pointwise constraints
in the solution of the state problem, in the framework of topological-derivative based methods.
Specifically, we have shown existence of the topological derivative in a continuous setting. Nu-
merical experiments have confirmed the expected trade-off between the optimal domain’s volume
and the temperature constraint, revealing the need of allocating more conductive material as
tighter constraints are imposed. For future works, we will apply the same strategy to more com-
plex problems, such as problems posed in a multi-physics setting. Additionally, we will study
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the case Ω∗ = Ω, i.e., when the constraint is imposed on only one phase of the domain.
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