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Summary. This study explores the principal modes of high-pressure transcritical channel
flow from direct numerical simulation data. The four cases investigated correspond to CO2 at
high-pressure conditions (P/Pc = 1.5) confined between a cold/bottom wall (T/Tc = 0.8− 0.95)
and a hot/top wall (T/Tc = 1.1 − 1.4). The bulk velocity ranges between Ub = 0.5 − 1.0m/s
with corresponding bulk Reynolds numbers of Reb ≈ 1000 − 2500. In laminar cases, energy is
predominantly concentrated in the initial modes, with approximately 95% of the energy captured
by the first mode. Conversely, turbulent cases exhibit a broader distribution of energy across
multiple modes, necessitating 50 to 100 modes to encapsulate the system’s key characteristics.
This disparity underscores the multiscale phenomena inherent in turbulent flows. Furthermore,
thermodynamic variables in turbulent regimes demonstrate slower energy decay, particularly
in later modes, indicating complex flow structures. These findings emphasize the necessity for
detailed thermodynamic modeling to accurately capture the flow dynamics in high-pressure
transcritical environments.

1 INTRODUCTION

Over the past decades, numerous research works have significantly contributed to the un-
derstanding of fluids surpassing their critical point, referred to as supercritical fluids. These
fluids naturally occur in environments like for example undersea flows when their thermody-
namic states reach critical values. While these conditions can be artificially replicated, leading
to various engineering applications in fields such as water-cooled reactors, gas turbines, and
liquid rocket engines [1, 2]. Although the study of supercritical fluids continues to be of cru-
cial importance due to their incomplete understanding. Moreover, recent studies have shown
that operating at high-pressure transcritical conditions enables the achievement of sustained
turbulence in microfluidic flows by leveraging the unique thermophysical properties of super-
critical fluids [3, 4, 5, 6]. In this context, it is crucial to distinguish between supercritical
gas-like and liquid-like fluids, which are separated by the pseudo-boiling line [7, 2]. Although
these studies are recent and do not completely detail the causality of the turbulent phenom-
ena observed, it is evident that the nature of supercritical fluids, which are characterized by
drastic thermophysical changes when crossing the pseudo-boiling line, introduce destabilizing
baroclinic-based instabilities that promote laminar-to-turbulent transition. These instabilities,
capable of altering the multiscale topology of wall-bounded turbulence, have been observed for
example by Barea et al. [8]. In this regard, extracting meaningful experimental data from such
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high-pressure transcritical systems is extremely complex, and for some variables, it may even
be impossible [9]. Moreover, computationally resolving all scales in this type of systems is chal-
lenging due to the non-linearity of turbulent flows combined with the substantial variations in
thermodynamic quantities. Therefore, identifying the most critical phenomena of these flows
is (i) essential for understanding the underlying principles governing them, and (ii) critical for
developing reduced-order models in the future.

In recent years, with the increase in computational power, large-scale high-fidelity simulations
have become essential for he comprehensive study, characterization and modeling of flow physics
problems. However, when studying significantly complex flows, like for example high-Reynolds-
number turbulence and/or high-pressure transcritical fluids, the complexity and computational
cost of the simulations increase exponentially [10, 11], making it impractical to rely solely on
high-fidelity models. Consequently, low-fidelity models are often employed to make the problem
tractable within reasonable time/cost frames. The POD methodology was first introduced to the
fluid mechanics community by Lumley et al. [12] to advance the understanding of coherent struc-
tures in turbulent flows. This method decomposes the original flow into a linear combination of
spatially dependent modes and their corresponding time-dependent coefficients, facilitating in
this manner the detailed analysis of complex flow patterns. Due to its versatility, POD has been
applied to a wide range of flow phenomena, including incompressible [13], compressible [14], two-
phase [15], and supersonic flows [16]. For instance, POD has been instrumental in identifying
which eddies contain the highest degree of energy [17, 18], and in providing a deeper energetic
understanding of lid-driven cavity flows [19, 20]. The popularity of the method has led to various
adaptations tailored to specific problems. Taira et al. [21] reviewed these variations, highlighting
methods like balanced POD (BPOD) for flow control problems and the snapshot POD method,
which solves a smaller eigenvalue problem and is well-suited for large datasets. The versatil-
ity of POD approaches and relatively straightforward implementation have contributed to its
widespread use. In particular, its ability to provide a set of orthogonal basis vectors that reduce
the dimensionality of complex flows by filtering out the effects from high-order modes makes it
particularly appealing for multiscale systems.

The aim of this work, therefore, is to thoroughly study and characterize the energy decay
of high-pressure transcritical fluid system using the POD method for various channel flow con-
figurations. These configurations are first categorized into two typical fluid flow regimes: (i)
laminar-like, and (ii) turbulent-like, all maintained under high-pressure transcritical conditions.
To that end, the paper is organized as follows. Section 2 provides a detailed description of the
flow physics modeling utilized to study high-pressure transcritical fluids, including the equa-
tions of fluid motion, real-gas thermodynamics, high-pressure transport coefficients, and the
numerical methods utilized. In Section 3 the specific POD methodology employed to reduce the
dimensionality and characterize the complex flow physics is detailed. Next, Section 4 presents
an exhaustive description of the computational setup, followed by a comprehensive overview
and characterization of the different cases considered in the study, classifying them as either
laminar-like or turbulent-like. Section 5, discusses the results of the eigenanalysis. Where a
deep study about the energy decay of the eigenvalues of velocity, temperature and specific heat
will be done, in order to, understand if the thermodynamic variables need a bigger data sam-
ple to converge over hydrodynamic quantities. Finally, conclusions and future directions are
proposed in Section 6.
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2 FLOW PHYSICS MODELLING

The framework utilized for studying supercritical fluids turbulence in terms of (i) equations
of fluid motion, (ii) real-gas thermodynamics, (iii) high-pressure transport coefficients, and (iv)
numerical method is described below.

2.1 Equations of Fluid Motion

The flow motion of high-pressure transcritical fluids is described by the conservation of mass,
momentum, and total energy, which in dimensionless form are written as

∂ρ⋆

∂t⋆
+∇⋆ · (ρ⋆u⋆) = 0, (1)

∂(ρ⋆u⋆)

∂t⋆
+∇⋆ · (ρ⋆u⋆u⋆) = −∇⋆P ⋆ +

∇⋆ · τ ⋆

Reb
, (2)

∂(ρ⋆E⋆)

∂t⋆
+∇⋆ · (ρ⋆u⋆E⋆) =

∇⋆ · (κ⋆∇⋆T ⋆)

RebBrb
−∇⋆ · (P ⋆u⋆)

+
∇⋆ · (τ ⋆ · u⋆)

Reb
, (3)

where superscript ⋆ denotes normalized quantities, t is the time, u is the velocity vector, ρ is
the density, P is the pressure, τ = µ(∇u +∇⊺u) − (2µ/3)(∇ · u)I is the viscous stress tensor
with µ the dynamic viscosity and I the identity matrix, E = e + |u|2/2 and e are the total
and internal energy, respectively, T is the temperature, and κ is the thermal conductivity. The
obtention of these dimensionless equations is fundamented on the following set of inertial-based
scalings [22, 23]

x⋆ =
x

Dh
, u⋆ =

u

Ub
, ρ⋆ =

ρ

ρb
, T ⋆ =

T

Tb
, (4)

P ⋆ =
P

ρbU
2
b

, E⋆ =
E

U2
b

, µ⋆ =
µ

µb
, κ⋆ =

κ

κb
,

with subscript b indicating bulk quantities, x the position vector, Dh the hydraulic diameter,
and U the time-averaged streamwise velocity. The resulting set of scaled equations includes
two dimensionless numbers: (i) bulk Reynolds number Reb = ρbUbDh/µb characterizing the
ratio between inertial and viscous forces; and (ii) bulk Brinkman number Brb = µbU

2
b /(κbTb),

where cP is the isobaric heat capacity, relating heat produced by viscous dissipation and heat
transported by molecular conduction. The Brinkman number can be also expressed as Brb =
PrbEcb containing the bulk Prandtl number Prb = µbcP b/κb, where cP is the isobaric heat
capacity, quantifying the ratio between momentum and thermal diffusivity, and the bulk Eckert
number Ecb = U2

b /(cP bTb) ≈ U2
b /(cP b∆T ) accounting for the ratio between advective mass

transfer and heat dissipation potential.

2.2 Real-Gas Thermodynamics

The thermodynamic space of solutions for the state variables pressure P , temperature T , and
density ρ of a monocomponent fluid is described by an equation of state. One popular choice for
systems at high pressures is the Peng-Robinson [24] equation of state. In general form, it can
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be expressed in terms of the compressibility factor Z, which in dimensionless form is written as

P ⋆ =
Zρ⋆T ⋆

γ̂bMa2b
, (5)

where γ̂ ≈ Z(cP /cV )[(Z + T (∂Z/∂T )ρ)/(Z + T (∂Z/∂T )P )] is an approximated real-gas heat
capacity ratio [25] with cV the isochoric heat capacity. As it can be noted, the dimensionless bulk
Mach number Mab = Ub/cb appears, where cb is the bulk speed of sound, which represents the
ratio of flow velocity to the local speed of sound. In addition, real-gas equations of state need to
be supplemented with the corresponding high-pressure thermodynamic variables (e.g., internal
energy, heat capacities) based on departure functions [26] calculated as a difference between
two states. In particular, their usefulness is to transform thermodynamic variables from ideal-
gas conditions (low pressure - only temperature dependant) to supercritical conditions (high
pressure). The ideal-gas parts are calculated by means of the NASA 7-coefficient polynomial [27],
while the analytical departure expressions to high pressures are derived from the Peng-Robinson
equation of state as detailed, for example, in Jofre & Urzay [2].

2.3 High-Pressure Transport Coefficients

The high pressures involved in the analyses conducted in this work prevent the use of sim-
ple relations for the calculation of dynamic viscosity µ and thermal conductivity κ. In this
regard, standard methods for computing these coefficients for Newtonian fluids are based on
the correlation expressions proposed by Chung et al. [28, 29]. These correlation expressions are
mainly function of critical temperature Tc and density ρc, molecular weight W , acentric factor
ω, association factor κa and dipole moment M, and the NASA 7-coefficient polynomial [27];
further details can be found in dedicated works, like for example Poling et al. [30] and Jofre and
Urzay [2].

3 DATA-DRIVEN ANALYSIS FRAMEWORK

POD is a MOR technique capable of extracting the most dominant modes in a field variable.
Conceived by Lumley [31] as a mathematical tool to extract coherent structures from turbu-
lent flow fields, POD soon became a prominent method for studying turbulent flow phenomena.
The basis of this method predates its specific application, being fundamentally a matrix diag-
onalization technique. Today, various names, such as principal component analysis (PCA) and
empirical component analysis, are used for different applications, which are based on a similar
approach. The procedure to obtain POD modes involves decomposing the field into a linear
combination of space-dependent eigenvectors and time-dependent coefficients as follows

x(t) = q(ξ, t)− q̄ (ξ) =
∑
j

aj(t)ϕ(ξ), (6)

where q(ξ, t) is the vector field of the chosen variable with its temporal mean q̄ (ξ), ϕ(ξ) corre-
sponds to the spatially-orthogonal modes, and the temporal coefficients are represented as aj(t).
For channel flow configurations, the temporal mean q̄ (ξ) is only dependant on the values in the
wall-normal direction due to the symmetries in the streamwise and spanwise directions, similar
to the process followed by Nikolaidis et al. [32]. Each j corresponds to a time instant, repre-
senting a specific snapshot of the database generated [33]. Finally, the solution to the proposed
problem is found by determining the eigenvalues λj and eigenvectors ϕj of Eq. 6.
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The purpose of the following method is to determine the minimum set of basis functions
capable of describing a flow field q(ξ, t) with a selected accuracy. The way to obtain a solution
to this problem is to find the eigenvalues λj and eigenvectors ϕj of an associated covariance
matrix R, defined in Eq. 8, or through the use of a singular value decomposition (SVD) of the
snapshot matrix X, presented in Eq. 9, in the form

Rϕj = λjϕj , (7)

R =
m∑
j=1

q(ξ, tj) q
T (ξ, tj) = XXT ∈ Rn×n, (8)

X = [ q(ξ, t1) q(ξ, t2) . . . q(ξ, tm) ], (9)

where subindexes m and n correspond, respectively, to the total number and size of the flow
snapshots considered and number of degrees of freedom of the data. In detail, the snapshot
matrix is constructed by gathering in columns the fluctuations of the desired variable as defined
in Eq. 6. The eigenvectors of this snapshot matrix are the so-called POD modes, whose inner
product, defined as an integral over the spatial domain Ω, satisfies the orthonormality condition
⟨ϕj , ϕk⟩ =

∫
Ω ϕj · ϕk dΩ such that j, k = 1, . . . , n.

Once the eigenvalues and eigenvectors are calculated, the next step is to determine the number
of eigenvalues needed to “accurately” represent the entire flow field. A popular approach is to
consider r first eigenvalues such that [21]

∑r
j=1 σj/

∑n
j=1 σj ≈ 1, this process is known as

truncation. After performing it correctly, a much smaller dimension of the original data is
obtained, enabling the flow to be represented as a truncated series expressed as

q(ξ, t)− q̄ (ξ) =

r∑
j

aj(t)ϕ(ξ). (10)

Finally, the temporal coefficients from the high-dimensional data are determined by

aj(t) = ⟨q(ξ, t)− q̄(ξ), ϕj(ξ)⟩. (11)

Moreover, the obtention of the eigenvalues and eigenvectors can be performed in several ways,
such as using (i) the “Method of Snapshots”, which is designed for problems where the data is
too large to be handled by the usual method, and (ii) the “SVD method”, which utilizes the
snapshot matrix X decomposed as

X = ΦΣΨT , (12)

where Φ and Ψ correspond, respectively, to the left and right singular vectors, and Σ is a diagonal
matrix containing the singular values of X. It is important to highlight that this method is only
valid for rectangular matrices.

Particularly to this work, the intricate configuration of the flow system studied may pose
challenges when solely examining velocity fluctuations. Therefore, the modal analysis will incor-
porate also temperature and specific isobaric heat capacity as additional variables to account for
thermodynamic variations within the system. In addition, correlations between hydrodynamic
(velocity) and thermodynamic (temperature and specific isobaric heat capacity) variables will
be analyzed with the aim to discern whether the corresponding modes are interconnected.
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Figure 1: Channel flow schematics.

4 PROBLEM SETUP & DATABASE

This section delves into two pivotal aspects of the study: (i) description of the computa-
tional configuration, and (ii) characterization of flow regimes. The first part entails an intricate
examination of the computational setup across the four distinct cases considered, highlighting
both the common and differing aspects of each case. Subsequently, the second part presents an
analysis of the first- and second-order flow statistics for each case.

4.1 Computational Configuration

The four cases studied in this work are part of an open-access dataset [33], which features
different high-pressure transcritical channel flows as schematically represented in Fig. 1. In
particular, the fluid selected is CO2, whose critical pressure and temperature are Pc = 7.4MPa
and Tc = 304.1K, respectively. The fluid system operates at a supercritical bulk pressure of
Pb/Pc = 1.5 and is confined between cold (cw) and hot (hw) isothermal walls, separated by a
distance of H = 2δ with δ = 100µm representing the channel half-height. The temperature
ranges from Tcw/Tc = 0.8 − 0.95 on the cold wall to Thw/Tc = 1.1 − 1.4 on the hot wall, as
detailed in Table 1. This setup causes the fluid to undergo a transcritical trajectory, operating
within a thermodynamic region across the pseudo-boiling line [3, 8]. Finally, the flow moves
from left to right in the streamwise direction, with a bulk velocity ranging between Ub = 0.5
and 1m/s.

The computational domain is 4πδ × 2δ × (4/3)πδ in the streamwise (x), wall-normal (y),
and spanwise (z) directions, respectively. The streamwise and spanwise boundaries are set
periodic, and no-slip conditions are imposed on the horizontal boundaries (x-z planes). The
grid is uniform in the streamwise and spanwise directions with resolutions in wall units (based
on cw values) equal to ∆x+ ≈ 0.5 and ∆z+ ≈ 0.15, and stretched toward the walls in the
vertical direction with the first grid point at y+ = yuτ,cw/νcw ≈ 0.1 and with sizes in the range
0.15 ≲ ∆y+ ≲ 1.65. Thus, based on preliminary studies, this grid arrangement corresponds to
a DNS of size 96 × 96 × 96 grid points. The simulation strategy starts from a linear velocity
profile with random fluctuations [34], which is advanced in time to reach turbulent steady-state
conditions after approximately 5 flow-through-time (FTT) units; based on the bulk velocity Ub

and the length of the channel Lx = 4πδ, a FTT is defined as tb = Lx/Ub ∼ δ/uτ . Finally, flow
statistics are collected for roughly 10 FTTs once steady-state conditions are achieved.

The series of cases analyzed in this study is detailed in table 1, denoted by letters A, B, C, and
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Pb/Pc Tcw/Tc Thw/Tc Ub [m/s] Reb Prb Ecb Brb Mab

A 1.5 0.95 1.1 0.5 1050 2.7 2.0e-7 5.7e-7 3.0e-2
B 1.5 0.95 1.1 1.0 2363 2.8 8.0e-7 2.3e-6 1.6e-2
C 1.5 0.9 1.2 1.0 2109 2.3 1.0e-6 2.3e-6 7.3e-2
D 1.5 0.8 1.4 1.0 2022 2.4 1.0e-6 2.5e-6 6.6e-2

Table 1: Case setup and its dimensionless parameters.

D. While all cases maintain the same pressure ratio, they differ in their temperature differentials
between walls, denoted as ∆T = [0.15, 0.15, 0.3, 0.6] for each respective case. Notably, the
Reynolds bulk number is largely contingent on the mean velocity, as exemplified in case A
where the velocity is 0.5, resulting in Reb ≈ 1000, while other cases range from Reb ≈ 2000 −
2350. Additionally, the bulk Prandtl number across all cases indicates that heat transfer is
predominantly influenced by fluid viscosity rather than system dynamics. The significance of
thermodynamic variables, particularly temperature and specific heat, is underscored by Eckert
number analysis, which highlights the dominance of enthalpy change in the boundary layer over
kinetic energy. The Brinkman number further elucidates that heat variation primarily stems
from differentially-heated walls. Despite variations in density, the low velocities characteristic
of these cases classify them as low-Mach, where shock waves are absent but thermodynamic
fluctuations persist.

5 ENERGY DECAY

Figure 2 shows the decay of energy accumulated in the eigenvalues of the most energetic modes
of velocity (a), temperature (b), and specific isobaric heat capacity (c). In detail, through an
SVD procedure, eigenvalues are systematically arranged according to their respective energetic
magnitudes. The initial modes are characterized by higher energy content, gradually diminishing
in significance as one progresses towards the last modes, which exhibit substantially reduced
energy levels spanning multiple orders of magnitude. In this regard, a general overview of the
plot shows that cases A/C decay several orders of magnitude faster than cases B/D. The former
group corresponds to the laminar cases, where most of the energy is allocated in the initial
modes, as it can be seen in Table 2 where, for example, the energy contribution of the first mode
is around 95%. However, this is not the case for the latter group, which corresponds to the
turbulent flow cases characterized by an intrinsic multiscale nature that impacts significantly
the energy decay of the modes. For the turbulent-like cases (B and D), the number of modes
required to represent the main energetics of the flow is roughly between 50 and 100. Moreover,
although the energy decay rate of velocity and thermodynamic modes for the turbulent cases is
similar, there is a difference in slope between them above index (approximately) 200 where the
latter decay at a slower rate.

In connection to the discussion above, Tables 2, 3 and 4 provide quantitative information of
the energy spectrum distribution. Particularly, the tables present the cumulative contribution
of the principal modes with respect to the first and more energetic ones, and the cumulative
energy earn from one mode to the other. The first observation to highlight is how fast the energy
of the first modes decreases for the laminar cases (A/C); viz. the fifth mode already gathers
97% of the total energy of the spectrum for both hydrodynamic and thermodynamic quantities.
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Case A Case B Case C Case D

Mode λ/λ1 (%) λ/λ1 (%) λ/λ1 (%) λ/λ1 (%)
1 1.0(38.7%) 1.0(23.1%) 1.0(96.5%) 1.0(18.6%)
5 1.4× 10−1(97.1%) 1.8× 10−1(48.0%) 1.2× 10−3(97.1%) 1.8× 10−1(41.1%)
10 7.0× 10−3(99.7%) 7.4× 10−2(61.8%) 5.9× 10−6(99.7%) 1.1× 10−1(52.7%)
50 8.0× 10−5(99.9%) 1.2× 10−2(90.6%) 1.0× 10−10(99.9%) 2.1× 10−2(87.0%)
100 4.5× 10−10(99.9%) 2.5× 10−3(97.5%) 2.2× 10−13(99.9%) 4.8× 10−3(96.1%)
200 7.5× 10−13(99.9%) 2.7× 10−4(99.8%) 6.8× 10−16(99.9%) 6.5× 10−3(99.7%)

Table 2: Eigenvalue energy decay of the velocity variation in streamwise direction. Eigenvalues
normalized by their maximum and energy contribution for each mode expressed as a percentage.

Case A Case B Case C Case D

Mode λ/λ1 (%) λ/λ1 (%) λ/λ1 (%) λ/λ1 (%)
1 1.0(63.5%) 1.0(21.7%) 1.0(98.8%) 1.0(8.0%)
5 8.9× 10−2(97.2%) 8.9× 10−2(38.6%) 1.5× 10−4(99.9%) 3.2× 10−1(24.2%)
10 4.2× 10−3(99.5%) 5.5× 10−2(45.3%) 4.4× 10−6(99.9%) 2.1× 10−1(33.5%)
50 4.2× 10−6(99.9%) 1.6× 10−2(66.4%) 1.1× 10−9(99.9%) 6.8× 10−2(68.1%)
100 3.9× 10−8(99.9%) 8.4× 10−3(78.4%) 4.9× 10−12(99.9%) 2.8× 10−2(85.1%)
200 3.0× 10−11(99.9%) 3.8× 10−3(90.5%) 1.7× 10−14(99.9%) 7.5× 10−3(97.9%)

Table 3: Eigenvalue energy decay of the temperature variation. Eigenvalues normalized by their
maximum and energy contribution for each mode expressed as a percentage.

However, for the turbulent cases as it can be seen in Table 2, the energy contribution does
not reach 90% until accumulating the first fifty velocity modes. Moreover, when observing the
three variables at once for cases B/D, it is clear that they show a similar decay for the velocity
eigenvalues (see Fig. 2; at least for the first 200 modes. However, as quantified in Tables 3
and 4, the thermodynamic variables exhibit a significantly slower energy decay in the first 50
modes. Notably, the specific isobaric heat capacity presents the slowest decay among the three
variables. Specifically, as shown in Table 4 for cases B/D, only 90% of the energy is accumulated
after collecting approximately 200 modes of the specific isobaric heat capacity. These results
highlight several points: (i) increasing ∆T between walls makes the energy distribution between
modes to be more spread (case D); (ii) maintaining the cold and hot wall temperatures closer
to the pseudo-boiling temperature propitiates a slower energy decay at high eigenvalue indexes
(case B), making it more challenging to gather the complete energy spectrum as depicted in
Fig. 2; and (iii) initial modes of the thermodynamic variables contain important structures that
are crucial for characterizing/modeling this type of problems as it is further discussed in the
subsections below. In conclusion, to reduce the high dimensionality of such flow systems, while
retaining meaningful information, modeling approaches should focus on considering the velocity
modes but (especially) also the thermodynamic ones.

6 CONCLUSIONS

This study aimed to investigate the energy decay in four different wall-bounded high-pressure
transcritical channel flow setups using eigenanlaysis via the SVD method. Initially, has been
characterized the computational domain and briefly detailed the computational setup of each
case. Subsequently, singular value decomposition (SVD) was performed to examine the energy
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Figure 2: Eigenvalue decay for the velocity, temperature and specific heat vector field.
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Case A Case B Case C Case D

Mode λ/λ1 (%) λ/λ1 (%) λ/λ1 (%) λ/λ1 (%)
1 1.0(88.3%) 1.0(17.4%) 1.0(99.4%) 1.0(4.6%)
5 1.8× 10−2(97.4%) 1.3× 10−1(34.2%) 1.6× 10−4(99.9%) 3.4× 10−1(16.0%)
10 2.1× 10−3(99.5%) 6.6× 10−2(41.0%) 5.4× 10−6(99.9%) 2.8× 10−1(22.6%)
50 3.6× 10−6(99.9%) 2.1× 10−2(63.6%) 8.8× 10−10(99.9%) 1.2× 10−1(53.4%)
100 3.3× 10−8(99.9%) 1.1× 10−2(76.7%) 7.2× 10−12(99.9%) 7.0× 10−2(74.4%)
200 4.6× 10−11(99.9%) 5.1× 10−3(89.9%) 2.8× 10−14(99.9%) 2.5× 10−3(93.7%)

Table 4: Eigenvalue energy decay of the specific heat variation. Eigenvalues normalized by their
maximum and energy contribution for each mode expressed as a percentage.

decay of the selected variables (u, T , cP ) by plotting and analyzing the eigenvalue decay for over
500 modes.

The results of this study revealed distinct energy decays for each variable. Firstly, two
different groups can be discerned from the eigenanalysis: (i) the laminar-like cases, which decay
rapidly as expected with just five modes; and (ii) the turbulent-like cases, which require between
50 to 200 modes to reach similar levels of accumulated energy, depending on whether they are
hydrodynamic or thermodynamic variables. Secondly, it is notable that cases with a smaller
∆T , closer to the pseudo-boiling temperature, exhibit faster decay in both hydrodynamic and
thermodynamic variables at the initial modes, indicating that the pseudo-boiling region might
be easier to model.

Future research should focus on: (i) study the spatial and temporal structures to see if there
are any coherent structures in high-pressure transcritical setups; (ii) determining whether the
results observed are strictly related to spatial decomposition or if the main features exhibit
frequency dependency; and (iii) developing a model capable of representing the pseudo-boiling
region in low-fidelity simulations.
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