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Abstract. Nonlinear constraints are crucial in modeling various problems in computational
mechanics. Among other things, they can be used for the subsequent consideration of rigid
inclusions in a body originally modeled as deformable, without requiring a remeshing of the
considered domain and thus contributing to a rapid modeling building. Unlike Lagrange mul-
tipliers and the penalty method, the master-slave elimination reduces the problem dimension
but is limited to linear constraints. We introduce a new master-slave elimination method for
arbitrary nonlinear multi-point constraints. It is compared to existing methods through anal-
ysis of the resulting equations and numerical examples. Results indicate that the method is as
accurate, robust, and flexible as Lagrange multipliers, with improved efficiency due to reduced
degrees of freedom, which is particularly advantageous when a large number of constraints
have to be considered.

1 INTRODUCTION

The modeling of nonlinear constraints plays an important role in various problems in com-
putational solid mechanics, especially in the context of large elastic and inelastic deformations.
Among other things, they can be used for the subsequent consideration of rigid inclusions in
a body originally modeled as deformable, without requiring a remeshing of the considered do-
main and thus contributing to a rapid modeling building. Further examples are the modeling of
shear force release in frame structures under large displacements and rotations, or the modeling
of deformation-dependent Dirichlet boundary conditions. In the context of the finite element
method, the constraints refer to the nodal degrees of freedom; if several nodes are involved,
they are referred to as multi-point constraints. One method for considering constraints is the
master-slave elimination, which, in contrast to Lagrange multipliers and the penalty method,
offers the advantage of reducing the dimension of the problem. However, the existing master-
slave elimination method is limited to linear constraints. Therefore, an extension to nonlinear
constraints is of great interest.
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The master-slave elimination was originally introduced by Green [10] in finite element anal-
ysis for linear constraints. Subsequent research primarily focused on efficient implementation
but not on extending the method to nonlinear constraints. Notable studies include Szabo and
Tsai [16], Curiskis and Valliapan [8], Abel and Shephard [1], Shephard [15], Chang and Lin [7],
and Ainsworth [2]. However, few studies have explored master-slave elimination for nonlinear
constraints: Naraswayamy [14] and Dhondt [9] proposed formulations for nonlinear constraints,
both with assumptions on the structure of constraints as well as missing consistent linearization.
Jelenić and Crisfield [12] presented a method solely capable of handling joints with large rota-
tions, while Areias et al. [3] emphasized efficient sparse system access.

The authors of this contribution introduced an extension of the method to arbitrary nonlinear
constraints [6]. In the following, the derivation of this new method is presented and it is com-
pared to existing constraint methods both on the basis of the equations as well as a numerical
example involving a large number of constraints. Additionally, both the challenge of selecting
the slave dofs as well as the handling of redundant constraints are addressed.

2 GOVERNING EQUATIONS

Starting point is an arbitrary nonlinear boundary value problem (BVP). It is solved by using
the finite element method. In the spatial discretization of the weak form of the BVP, the degrees
of freedom (dofs) V ∈ Rndof are introduced. To obtain the solution for the dofs V, the minimum
of the discretized functional of the BVP, denoted as W (V) ∈ R, has to be found

min
V

W (V) (1)

which can be interpreted as an optimization problem without constraints. Eq. (1) is solved by
finding a set of unknowns V with a gradient equal to zero, leading to the following nonlinear
system of equations with the residual vector R ∈ Rndof:

R(V) :=

(
∂W (V)

∂V

)T

= 0 (2)

The nonlinear system Eq. (2) cannot be solved analytically in general. For the numerical solu-
tion, the Newton-Raphson method can be used. Then, Eq. (2) has to be linearized, which leads
to the following linear system for solving for the unknown increment of the dofs ∆V ∈ Rndof

KT∆V = −R ; with KT (V) :=
∂R(V)

∂V
=

∂2W (V)

∂V∂V
(3)

with the tangential stiffness matrix KT ∈ Rndof×ndof .
The dofs of the initial BVP are now restricted by a set of nc constraints c ∈ Rnc depending

nonlinearly on the dofs:
c(V) = 0 (4)
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With the nonlinear constraints in Eq. (4), the optimization problem without constraints Eq.
(1) is transformed in the following optimization problem with constraints:

min
V

W (V) subject to c(V) = 0 (5)

The numerical solution of Eq. (5) involves an effective nonlinear system which is solved
using the Newton-Raphson method. For this purpose, the Jacobian G := ∂c

∂V
∈ Rnc×ndof and

Hessian H = [H1, . . . ,Hi, . . . ,Hnc ] with Hi :=
∂2ci

∂V∂V
∈ Rndof×ndof of the constraints are intro-

duced.

3 MASTER-SLAVE ELIMINATION FOR NONLINEAR MULTI-POINT CONSTRAINTS

3.1 Derivation of the master-slave elimination for nonlinear constraints

In this section, the extensive and rigorous derivation of the new method presented in [6]
is briefly recalled. The central idea of the new approach is based on the calculation of the
constraint forces C = [C1, . . . , Ci, . . . Cndof ] ∈ Rndof resulting from the constraints c introduced
in Section 2. The constraint forces have to be taken into account in the equilibrium equations
Eq. (2) resulting in the modified nonlinear system of equations with the modified residual vector
Rmod:

Rmod := R−C (6)

In Figure 1, this modification of the equilibrium and the residual vector is illustrated. Here,
a simple one-dimensional distance constraint between nodes i and k in form of c(Vi,Vk) =
ui − uk = 0 is employed.

i k
ui uk

Ri Rk

Ci Ck

=

Rmod,i Rmod,k

Figure 1: Illustration of the constraint forces

The degrees of freedom are partitioned into ndof − nc master dofs, denoted with m, and nc

slave dofs, denoted with s

V
partition−−−−→

[
VT

m VT
s

]T (7)

with the subvectors of the master dofs Vm ∈ Rndof−nc and the slave dofs Vs ∈ Rnc . For each
constraint, one slave dof can be identified. For the minimal example in Figure 1, the slave dof
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could either be the horizontal displacement ui at node i or the horizontal displacement uk at
node k. The dofs, that are not a slave dof, are denoted as master dofs.

Since the constraints c are a function depending on both the master dofs Vm as well as the
slave dofs Vs, the constraint forces C and, in turn, all quantities in Eq. (6) depend on both
master and slave dofs. In order to perform the master-slave elimination and derive a function
solely depending on the master dofs, a formula for the slave dofs Vs depending on the master
dofs Vm is derived based on the implicit function theorem.

In order to apply the implicit function theorem, a selection of slave dofs Vs must exist, that
fulfills the regularity condition

det (Gs) ̸= 0 ; Gs :=
∂c

∂Vs

(8)

Using the implicit function theorem leads to the following nonlinear system:

Rmod :=

[
Rm −GT

m G−T
s Rs

c

]
=

[
0
0

]
; Gm :=

∂c

∂Vm

;RT
m :=

∂W

∂Vm

;RT
s :=

∂W

∂Vs

(9)

The nonlinear system Eq. (9) is solved using the Newton-Raphson method. This results
in the following linear system to calculate the increments of the master and slave degrees of
freedom ∆Vm and ∆Vs[

Kmod,mm Kmod,ms

Gm Gs

] [
∆Vm

∆Vs

]
= −

[
Rmod,m

c

]
; Kmod∆V = −Rmod ; Kmod :=

∂Rmod

∂V
(10)

In a next step, one obtains the linearized, reduced system of equations for the master-slave
elimination with the reduced dimension ndof − nc by static condensation:

(Kmod,mm −Kmod,msG
−1
s Gm)︸ ︷︷ ︸

=:Kred

∆Vm = −Rmod,m +Kmod,msG
−1
s c︸ ︷︷ ︸

=:−Rred

(11)

with the reduced stiffness matrix Kred ∈ R(ndof−nc)×(ndof−nc) and the reduced residual vector
Rred ∈ Rndof−nc . If the tangential stiffness matrix of the unconstrained problem KT is symmet-
ric, the resulting reduced matrix Kred is symmetric too. For the special case that all constraints
depend linearly on the unknowns V, Eq. (11) coincides with the equations on existing master-
slave elimination schemes for linear constraints.

3.2 Automatic selection of slave dofs and redundancy handling

In the master-slave elimination, there is the challenge of the selection of an admissible set
of slave dofs. Additionally, redundant constraints have to be identified and eliminated to fulfill
the regularity condition in Eq. (8). It can be shown that both aspects can be considered by the
transformation of the augmented system [G|c] in its row-echelon form:

G∆V = −c ⇔
[
Ḡs Ḡm

0 0

] [
∆Vs

∆Vm

]
= −

[
c̄
ē

]
; m̄ = rank(Ḡ) = rank(G) (12)
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with the submatrices Ḡs ∈ Rm̄×m̄ and Ḡm ∈ Rm̄×(ndof−m̄), the subvectors c̄ ∈ Rm̄ and ē ∈
Rnc−m̄. The incorporation of this in the new method is presented in detail in [5].

3.3 Properties and comparison of methods

In the following, the new master-slave elimination scheme is compared to penalty and mul-
tiplier methods. For this, their advantages and disadvantages are briefly recalled. An excellent
overview for such methods can be found in the textbook by Belytschko et al. [4].

The penalty method (PM) is easy to implement because the structure of its effective linear
system does not differ from an unconstrained problem Eq. (3). In addition, the method does not
need any modifications for redundant constraints but can handle them inherently. However, it
is well known that the method suffers from two major drawbacks related to the choice of the
additional penalty factor: The constraints are never satisfied exactly and small penalty factors
violate them heavily, while large penalty factors approximately satisfy the constraints. However,
large penalty factors worsen the condition number of the resulting matrix.

It is well known that Lagrange multipliers (LM) satisfy the constraints exactly but the intro-
duction of additional dofs enlarges the dimension of the problem. Moreover, the saddle point
structure of the resulting system poses an additional challenge to the equation solver, leading to
numerical problems in some relevant cases requiring special pre-conditioners [13].

Augmented Lagrange multipliers (ALM) exhibit the same advantages and disadvantages as
the Lagrange multipliers. However, they improve the conditioning of the resulting system of
equations if an appropriate penalty factor is chosen [4].

Since using perturbed Lagrange multiplier with elimination of the multipliers (PLM with
elim.) is equivalent to the penalty method, the method exhibits the same advantages and dis-
advantages. Using perturbed Lagrange multiplier without elimination of the multipliers (PLM
without elim.) has not been discussed in the literature. It inherits the advantages of the penalty
method and the disadvantages of the penalty method and the Lagrange multipliers. Further-
more, the numerical studies performed in [6] indicate a more robust behavior as an additional
advantage, see Section 4.

Like the existing master-slave elimination schemes for linear constraints, the new master-
slave elimination scheme for nonlinear constraint satisfies the constraints exactly and reduces
the dimension of the resulting linear system by the number of constraints, see Eq. (11). As
mentioned above, the master-elimination requires the selection of an appropriate set of slave
dofs. This poses a challenge but can be done with minor additional cost which is illustrated
in [5]. The master-slave elimination changes the structure of the resulting linear system funda-
mentally. For the implementation in a finite element code, this requires resizing and reallocation
of the arrays. Since all matrices involved in the method are sparse, they can be stored efficiently
in compressed sparse row format (CSR). In turn, calculations as well as reallocation of these
matrices can be carried out very efficiently with external libraries such as MKL (Intel) [11].
Numerical examples show that the change of size and the need for reallocation only have minor
impact on the overall computation time. The method presented in this paper operates at the
global level of a FE-code, not on local level. This has the huge advantage of being independent
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to the underlying finite element formulation. This allows for an easy implementation of new
types of constraints because no modification of existing element types has to be performed, in
contrast to the local formulation. The comparison shows that the different methods have dif-
ferent dimensions of the resulting linear system. This, combined with additional computational
operations, results in different computational complexity of the methods. Section 3.4 provides
an in-depth analysis of this.

Additionally, the positive-definite respectively the indefinite structure has a strong impact on
the ease of solution of eigenproblems which is discussed in detail in [6].

3.4 Estimation of computational costs

Compared to other constraint methods, the master-slave elimination relies on heavy manip-
ulation of the residual vector and the tangential stiffness matrix. In order to assess the overall
computational costs, the reduction of the dimension also has to be taken into account. In the
following, the overall computational cost is estimated. This is done by a computation of the
computational complexity (denoted with the Landau symbol O). Here, three computational
procedures are considered: First, the calculation of the inverse of the Jacobian related to the
slave dofs Gs

−1 which is used many times in the master-slave elimination scheme, see Eq. (11).
Second, the calculation of modified and reduced quantities. Third, the solution of the reduced
linear system Eq. (11). For the exact computation of the computational complexity, the use of
direct solvers is assumed. The complexity of the three computational procedures is discussed
in the following:

1. Considering the worst case scenario, the inversion of Gs is of order O ((nc)
3), i.e. com-

putationally expensive. However, in many practical cases, the special structure of con-
straints leads to a reduction of the actual computational costs. Additionally, for systems
with very few constraints, the calculation of the inverse Gs

−1 is computationally inex-
pensive. If the automatic detection of slave dofs and redundancy analysis discussed in
Section 3.2 is used, the inversion is replaced by Gauß-Jordan elimination. For ndof > nc,
this algorithm is of order O ((nc)

2(ndof)). However, in many practical cases, the Jaco-
bian has a large number of zero column associated to dofs that are not involved in any
constraints. Hence, the actual computational complexity is smaller.

2. Only the matrix-matrix multiplications are taken into account because other operations
are of neglectable costs. Here, the following products are of interest, see Eq. (11):

Product Computational complexity O

Gs
−1Gm (nc)

2(ndof − nc)
GT

mG
−T
s Kss (nc)

3

GT
mG

−T
s Ksm (nc)

2(ndof − nc)
Kmod,ms Gs

−1Gm (nc)
2(ndof − nc)

Thus, the total complexity of all matrix-matrix multiplications in the master-slave elim-
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ination is O (max((nc)
2(ndof − nc), (nc)

3)). In the penalty method and for augmented La-
grange multipliers, the only product to consider is GT G which is of complexity O ((ndof)

2nc).
The actual computational costs are lower in practice due to sparsity of the matrices in-
volved. In addition, there exist efficient, parallelized implementations in libraries like the
Math Kernel Library (MKL) by Intel [11].

3. The computational cost of the solution of the effective linear system, see e.g. Eq. (11),
depends primarily on its dimension. In the master-slave elimination, the dimension is
(ndof − nc). Therefore, the computational complexity is O ((ndof − nc)

3).

Two variants of the method have to be distinguished: (a) manual selection of slave dofs, re-
dundancy analysis; (b) automatic selection of slave dofs and redundancy analysis. The com-
putational complexity of the three aspects as well as the overall computational complexity are
summarized in Table 1. For primarily mathematical reasons for the exact computation of the
total computational complexity, two cases for the number of constraints nc have to be distin-
guished for (a) respectively for (b): For (a), case I, nc < ndof/2, and case II, nc ≤ ndof/2 have
to be distinguished. For (b), case III, nc < 0.43 · ndof, and case IV, nc ≤ 0.43 · ndof have to be
distinguished. For all cases, the overall computational complexity is determined.

Table 1: Overall computational complexity O of constraint methods for direct solvers

Method matrix-matrix mult. Gs
−1 Keff∆V = −Reff overall

Penalty method (ndof)
2nc – (ndof)

3 (ndof)
3

Lagrange mult. – – (ndof + nc)
3 (ndof + nc)

3

Perturbed Lagrange mult. – – (ndof + nc)
3 (ndof + nc)

3

Augmented Lagrange mult. (ndof)
2nc – (ndof + nc)

3 (ndof + nc)
3

MS elim. (a), case I, I⋆ (nc)
2(ndof − nc) (nc)

3 (ndof − nc)
3 (ndof − nc)

3

MS elim. (a), case II, II⋆ (nc)
3 (nc)

3 (ndof − nc)
3 (nc)

3

MS elim. (b), case III, I⋆ (nc)
2(ndof − nc) (nc)

2(ndof) (ndof − nc)
3 (ndof − nc)

3

MS elim. (b), case IV, II⋆ (nc)
3 (nc)

2(ndof) (ndof − nc)
3 (nc)

2(ndof)

The master-slave elimination exhibits the lowest computational complexity. This is true for
an arbitrary number of constraints nc and both variants of the method. Both the penalty method
as well as the multiplier methods are computationally more complex. For case II and IV, the
reduction of the computational complexity in the master-slave elimination compared to other
methods is even larger compared to case I and III. The computational complexity gives a good
estimate of the actual computational cost. It has to be mentioned that the effective computational
cost depends heavily on the specific implementation. For a more practical estimation of the
computational costs, two modifications of case I and case II are introduced: Case I⋆, nc ≪ ndof,
and case II⋆, nc = O(ndof). For case I⋆, as mentioned above, the calculation of the inverse Gs

−1

is computationally inexpensive which renders the master-slave elimination to be very efficient.
For case II⋆, the master-slave elimination is also more efficient than existing methods since the
same arguments hold as for case II. In summary, the master-slave elimination can be estimated
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to be more efficient than the other methods, especially for systems with a larger number of
constraints.

4 EXAMPLE

The aim of the numerical example is to compare the results of the proposed master-slave
elimination scheme with existing constraint methods in the regime of a large number of con-
straints. Additionally, the dimension of the resulting linear systems are compared. For this
purpose, we analyze a slender plane elastic structure under shear condition (Young’s modulus
E, Poisson’s ratio ν and thickness t), see Fig. 2. It is clamped at the bottom and supported by
a sliding clamping at the top. The system is loaded at the top with load F . All geometry and
stiffness data are stated in Fig. 2.

F

L

10
L rigid

F F
L

L

1 2
L

1 2
L

F

2L
2L

F

5L
5L

4L
4L

α = 0% α = 10% α = 20% α = 40% α = 80%

E = 1× 104 kNm−2

ν = 0.3

t = 0.1m

L = 0.1m

Figure 2: Shear test: Geometry, parameters and mesh

To analyze the impact of the number of constraints, the middle part of the structure, marked
with dark gray in Fig. 2, is subsequently modified to be rigid by introducing constraints. Five
different ratios of the rigid part of the domain, indicated by parameter α, are analyzed: α =
{0%, 10%, 20%, 40%, 80%}, see Fig. 2.

For the numerical simulation, the system is discretized with 4× 40 geometrically nonlinear
quadrilateral EAS elements with 4 element nodes and 7 internal variables, see left side of Fig.
2, resulting in a total of ndof = 410 dofs. The load F is applied as a uniform distributed load at
the top edge. The load is increased incrementally in 10 steps.
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Two variants to model the rigid part of the structured mesh are analyzed: In model A, the
rigidity is modeled purely by the nonlinear distance constraints

c = ∆ℓik = Lik − ℓik = ∥Xi −Xk∥ − ∥xi − xk∥ = 0 (13)

preventing a change in length between two nodes i and k, with the initial length Lik and the
position vector X in reference configuration and length ℓik and position vector x in current
configuration. Here, the nodes of each edge in the finite element mesh are coupled with distance
constraints and, additionally, diagonal distance constraints are considered for the bottom and left
element rows of the FE-mesh, which act analogously to a bracing (visualized by red lines at the
left side of Fig. 3). The connectivity of the constraints is modeled deliberately in such a way that
the constraints are not redundant.In contrast, model B exhibits redundant constraints. Similarly
to model A, only nonlinear distance constraints are used. In this model, the constraints are
chosen for each element separately. The constraints related to a single element ensure that such
an element is rigid. In the total domain, this leads to redundancy which can be seen in Figure 3.

model A

i

k
∆ℓik = 0

model B

i

k

Figure 3: Shear test: Rigid domain modeled solely by non-redundant nonlinear distance constraints (model A)
and by redundant nonlinear distance constraints (model B)

It has to be mentioned that the rigid part can be modeled simply by constraints that directly
couple the lower edge of the upper elastic part with the upper edge of the lower elastic part.
Such a model exhibit fewer number of finite elements and constraints. However, this model is
not used here for two reasons: First, even in practice they are reasons to not remove the rigid
part, e.g. to enable certain areas of the FE-mesh to be modeled once as rigid and once as elastic
during the simulation without the need of re-meshing. Secondly, in this example, the worst case
for the master-slave elimination of many fully coupled constraints is examined deliberately.

To verify the implementation of the proposed method as well as the slave dofs identification
and redundancy treatment and to examine its accuracy, the load-displacement curve is computed
for both models with α = 80% using the master-slave elimination and other constraint methods
for model A. For model A, no automatic slave dof identification and redundancy treatment
was performed. For model B, the automatic selection of slave dofs as well as an automatic
identification and elimination of redundancy is employed. The resulting load-displacement
diagram is depicted on the top left of Figure 4. All methods lead to the same results.

To examine the influence of the proposed slave dofs identification and redundancy treat-
ment on the convergence behavior, the Euclidean norm of the residual vector ∥R∥ within the
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iterative process is computed for all models with α = 80% using the master-slave elimina-
tion. It is depicted on top right of Figure 4 (representative for 2 of the 10 load steps). For a
comparison, a curve representing the optimal convergence rate of p = 2 is also shown. In the
numerical simulation, the Newton-Raphson scheme is aborted as soon as the relative criterion
∥R∥(k)/∥R∥(1) ≤ 10−12 is satisfied (the superscripts indicating the iteration step). The diagram
shows that the master-slave elimination exhibits optimal, quadratic convergence.

To study the influence of the proposed slave dof identification and redundancy treatment
on the condition number κ of the resulting matrix, the condition number was computed for a
parameter α = 80%. The results are depicted at the bottom of Figure 4. Here, the strong
influence of the slave dof identification and redundancy treatment on the condition number κ
can be obtained. For model B, the condition number κ is identical and of the same order than the
unconstrained system. The condition number is 2 orders of magnitude smaller in comparison
to model A without slave dof identification and redundancy treatment.
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model B, MS. elimination with redundancy elimination

Figure 4: Load-displacement diagrams (top left), residual norm (top right) and condition number of resulting
matrix (bottom) (model A and B)

To examine the influence of the parameter α and, thus, the number of constraints on the
dimension of the problem, the dimension of the resulting matrix ndim for the both the new
method as well as with the other constraint methods is computed. The number of degrees of
freedom is ndof = 410 identical for all cases. The results are summarized in Table 2. Here,
the clear advantage of the master-slave elimination compared to penalty method but especially
to multiplier methods in form of the reduction of the dimension can be seen. The dimension
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reduction is significant for the master-slave elimination and increases with parameter α.

Table 2: Dimension of resulting system ndim depending on the method and parameter α

α = 10% α = 20% α = 40% α = 80%
Method ndim

ndim
ndof

ndim
ndim
ndof

ndim
ndim
ndof

ndim
ndim
ndof

PM 410 100% 410 100% 410 100% 410 100%
LM 456 111% 496 121% 576 140% 736 180%
MS. elim. 364 89% 324 79% 244 60% 84 20%

To examine the influence of the parameter α on the redundancy of the constraints in model
A and B, the number of input constraints nc as well as the number of non-redundant constraints
m̄ obtained from the redundancy identification are listed in Table 3. In addition, the ratio of
non-redundant to the total number of constraints m̄

nc
is given.

Table 3: Redundancy depending on the model and parameter α

α = 10% α = 20% α = 40% α = 80%
Model nc m̄ m̄

nc
nc m̄ m̄

nc
nc m̄ m̄

nc
nc m̄ m̄

nc

Model A 47 47 100% 87 87 100% 167 167 100% 327 327 100%
Model B 80 47 59% 160 87 54% 320 167 52% 640 327 51%

5 CONCLUSIONS

We presented a new master-slave elimination scheme for arbitrary nonlinear multi-point con-
straints. It satisfies the constraints exactly and leads to a beneficial reduction of the problem
dimension. This results in a reduced computational complexity compared to existing constraint
methods which makes the method more efficient, especially for a large number of constraints.
Additionally, numerical results indicate that the method is as accurate, robust, and flexible as
Lagrange multipliers.
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