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Summary. This study investigates the advantages of integrating physics knowledge to 

enhance traditional data-driven methods for damage detection and early warning in a monitored 

structure. The implemented method combines the ability to predict variations in modal 

properties (such as natural frequencies) under changing temperatures, using a highly reliable 

Finite Element (FE) model calibrated to the experimental response of the structure, with a 

robust anomaly detection strategy to process new monitoring data and classify it as damaged or 

undamaged. The relationship between temperature and modal properties, as evaluated through 

the FE model, is used to normalise the monitoring data. This process filters out the effects of 

the environmental variation, potentially magnifying the effects of damage, which are then 

investigated through machine learning algorithms for classification purpose. The procedure is 

validated by analysing a real case study, the Mogadouro clock tower in Portugal. Several 

scenarios of available knowledge during the training of the damage detection strategy are 

simulated, discussing advantages and identifying areas for future improvement. 
 

1 INTRODUCTION 

Vibration-based methods have demonstrated their effectiveness and cost-efficiency in 

identifying damage and informing the preventive conservation of complex existing buildings, 

including heritage structures. These techniques involve the continuous monitoring and analysis 

of the dynamic behaviour of the structure over time. By examining its modal properties (i.e. 

natural frequencies, mode shapes, damping ratios), these methods can detect changes that 
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indicate the progression of damage, allowing for timely interventions [1,2]. Many well-

established damage detection methodologies are data-driven and develop behavioural models 

of the monitored structure based solely on the acquired experimental data [3-8]. Among data-

driven methods, statistical control charts are gaining popularity due to their ability to provide 

rapid and reliable automated damage detection irrespective of the structural typology. These 

charts assess the health condition of a structure over time by continuously monitoring a 

predefined statistical distance. Damage is detected when new data present values of the 

statistical distance that exceed a pre-established threshold. Successful applications to heritage 

buildings can be found in [9-12]. However, data-driven methods may lack interpretability 

regarding the underlying phenomena, as they do not account for a physical description of the 

structure and the events affecting it. Moreover, they have demonstrated a tendency to overfit 

and a poor capability to generalise to out-of-sample scenarios [13,14]. This is particularly 

relevant since the extracted modal properties, such as natural frequencies, are significantly 

influenced by variations in environmental parameters like temperature, humidity, wind speed 

and direction [1,15-19]. These factors may mask data anomalies caused by damage, leading to 

substantial delays in detection and warning. Notwithstanding, filtering out the effects of 

environmental parameters from vibration-based data of historic masonry structures is very 

challenging, as the underlying phenomena are not yet fully understood [20]. This study explores 

the advantages of integrating physics-based modelling with data-driven anomaly detection, an 

approach which has recently emerged in structural health monitoring applications [13, 21]. To 

this end, the natural frequencies variations under changing temperatures is anticipated through 

a highly reliable FE model calibrated to the experimental response of the structure. The 

identified relationship between temperature and modal properties is used to filter out the effects 

of the environmental variation from the monitoring data, aiming at magnifying the effects of 

damage, which is evaluated through a control chart. The procedure is validated by analysing 

data from a real case study, i.e. the Mogadouro clock tower in Portugal, and the influence of 

the components of the procedure on the final detection performance is assessed aiming at 

identifying areas of possible improvement. 

 

2 METHODOLOGY 

The main steps of a traditional black-box vibration-based data-driven approach for damage 

detection is presented in Figure 1a. This requires a division of the acquisitions into an initial set 

of records for training followed by the actual monitoring stage. During the training, acceleration 

(or velocity) records are collected from the structure under ambient sources of vibration. 

Records are firstly processed to select and extract one or more features sensitive to damage 

onset and evolution. In the present work natural frequencies are used for the purpose. 

Afterwards, a regression model is fitted to the features over the training period and the residuals 

r(X) are estimated as the difference between the measured (X) and predicted features (X̂):  

r(X) = X - X̂ (1) 

Investigating the residuals instead of the natural frequencies as damage sensitive features is 

a practical solution to reduce the variability in the monitoring data, by filtering out the effects 

of non-damage related factors (i.e. operational and environmental variations) to magnify the 

effects of damage itself. In the present work, a Gaussian Process regression algorithm [22] is 

adopted to define the frequencies as functions of the temperature due to the well-known 
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influence of environmental variation on modal properties. 

 

 
(a) 

 
(b) 

Figure 1: Damage detection strategy: (a) traditional black-box data-driven approach; (b) physics enhanced 

approach.  

Finally the residuals over the training period are used to set the anomaly detection problem 

as a one-class or binary classification. Here, a Hotelling T2 control chart is employed for 

classification. The Hotelling T2 control chart formulates the classification based on the 

Mahalanobis statistical distance between the matrix of the new monitored features and the 

matrices of the mean values and covariance of the training features. For more details on the 

Hotelling T2 control chart and the statistical formulation of the threshold, namely the Upper 

Control Limit (UCL), the interested reader is referred to [23,24]. During the actual monitoring 

stage, new records are acquired and new features are extracted. The new residuals are estimated 

by considering the regression model generated over the training data and then are processed by 

the control chart to conduct the damage detection. 
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In Figure 1b, the enhancement of this data-driven approach through physics knowledge is 

pursued by relying on a highly reliable model calibrated upon an initial dynamic identification 

of the structure. The effect of temperature variations in the expected operational range of the 

structure (i.e. yearly variations) is estimated on the model and a formulation of the natural 

frequencies as functions of the temperature is derived from these simulations. The residuals 

between extracted and predicted frequencies are then used as damage sensitive features in the 

control chart.   

 

3 MOGADOURO CLOCK TOWER 

3.1 Case-study overview 

The Mogadouro Clock Tower is a relevant landmark of the homonymous ancient castle in 

Portugal, built after 1559 to serve as bell tower. It features a 4.7×4.5 m2 external cross section, 

a 2.5×2.3 m2 internal space and 20.4 m of height. The masonry walls present large granite 

blocks with dry joints in the corners and rubble stones with thick lime mortar joints in the central 

part of each façade [25]. The belfry is composed by eight masonry pillars forming the only large 

openings of the tower (Figure 2). 

 

   
(a) (b) (c) 

Figure 2: Mogadouro Clock Tower: (a) south view and castle; (b) north-east view; (c) north view.  

Due to lack of maintenance, the visual inspection carried out in 2004 highlighted the 

presence of severe damage and deterioration. Vertical cracks were affecting east, north and west 

façades, from the base of the belfry, down along the shaft. The most significant ones, in east 

and west façades, were passing through the wall thickness reaching the base of the tower and 

separating the cross section into two U-shaped halves [25]. Therefore, an urgent restoration was 

conducted in 2005 to ensure the safety of the heritage building. The interventions encompassed 

lime injections, substitution of degraded and lost materials, and installation of lightly pre-

stressed external steel belts at the level of the two cornices, namely in the upper part of the shaft 

and at the base of the belfry [25]. 
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3.2 Dynamic identification and monitoring data 

A non-continuous long-term monitoring through three uniaxial piezoelectric accelerometers 

was conducted between April 2006 and December 2007, after the implementation of the 

strengthening measures. Ten test series, each one composed of about ten-minute-long hourly 

acquisitions at 100 Hz of sampling rate were collected during this period [25]. In parallel, 

ambient temperature and air humidity were recorded as well. The automatic dynamic feature 

extraction process was carried out through the SSI/Ref method [26]. 

Figure 3 shows the frequency-temperature relationships for the first two bending modes 

identified across the monitoring period. Mode 3 and mode 4, torsion and second bending in 

north-south direction (y direction), respectively, were also identified with sufficient reliability. 

The results highlighted a non-linear transition from rainy/low-temperature records to dry/high-

temperature records, with a shift of about 4% in the natural frequency values, for modes 1 and 

2. This reflected in two emerging clusters in their frequency-temperature scatter plots. This 

peculiar trend has been explained as the result of the water absorption and consequent mass 

change during the raining season, and the following cycles of wet and dry [25]. 

 

   
(a) (b) (c) 

Figure 3: Long term monitoring: (a) first natural frequency and linear regression from numerical simulations; (b) 

second natural frequency and linear regression from numerical simulations; (c) FE model of the tower with 

different materials. 

3.3 Numerical model 

The FE model of the Mogadouro clock tower was generated in NOSA-ITACA software [27] 

comprising 18,024 isoparametric 8-node brick elements for masonry and 352 thick shell 

elements for the roof (Figure 3c). Five distinct material properties were considered: (1) South 

and North façades; (2) East and West façades; (3) walls’ corners; (4) belfry; (5) roof;  material 

1 and 2 were considered linear elastic, while 3, 4 and 5 were modelled as masonry-like materials 

[27]. A fixed base boundary condition was introduced and a thermal expansion coefficient α 

equal to 5·10-6(°C)-1 was assumed for the whole structure. The FE model was calibrated 

following a nonlinear approach (linear perturbation analysis), by updating one value of the 

tensile strength (equal for the three masonry-like materials) and three values of the Young’s 

modulus (different for the three masonry-like materials). The calibration consisted in the 

minimisation of the difference between numerical and experimental modal properties for the 

first four modes in a reference scenario  taken at 17°C, corresponding to the average temperature 

during the monitoring period. This reference temperature falls in the overlapping area between 

the two clusters, therefore the calibration was carried out considering a set of target values in 
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the lower range of cluster 1 and another one in the upper range of cluster 2. Finally, uniform 

thermal loads were applied to the calibrated models to estimate the modal properties of the 

tower in distinct expected scenarios between 2°C and 29°C. The numerically estimated 

frequencies were used to derive the linear regression model as functions of the temperature, for 

mode 1 and mode 2, as shown in Figure 3a-b. More details on the numerical model and the 

nonlinear calibration are provided in [20].  

3.3 Anomaly detection 

For anomaly detection purposes, the acquired dataset is divided into 4 subsets:  

• Training data: initial 18 days  

• S0: 74 days in cluster 2 data  

• S1: 16 days in the transition interval between clusters 1 and 2  

• S2: 116 days in cluster 1 data 

This division allows for the investigation of the damage detection strategy performance 

against samples with similar (S0 samples), different (S2 samples) and intermediate (S1 

samples) behaviour with respect to the training data. The subdivision is based on the existing 

non-continuous sets of acquisitions, and all samples are considered as belonging to undamaged 

conditions. The control charts of the analysed damage detection approaches are presented in 

Figure 4.  

First, a data-driven approach, without support of the numerical model, is tested. Here, the 

Gaussian process regression is trained on the first and second natural frequency values and the 

residuals are processed for the classification. The control chart is shown in Figure 4a. 

Subsequently, a second approach is tested. In this case, the information provided by the 

numerical model is leveraged to estimate the natural frequencies as functions of the temperature 

and calculate the residuals before training the Gaussian process regression. This approach 

assumes that only the linear regression for cluster 2 is known, as the training data belong to this 

cluster. The control chart for this approach is shown in Figure 4b. Comparing these two 

scenarios, it is evident that both fail to correctly classify the samples belonging to S2 and most 

of the samples belonging to S1. The number of true negatives (correct classifications) and false 

positives (wrong classifications) is the same for both scenarios. This is because, in the first case, 

the Gaussian process, despite being trained on a very short period, identifies a trend that largely 

corresponds to the linear regression derived from the numerical model, in the second case. 

Moreover, in the second case, the Gaussian process applied to the residuals does not provide 

any further improvement in classification. 

Therefore, a third scenario is analysed, assuming the same approach as the second scenario, 

but with the linear regression known for both clusters. In a real-world application, this 

knowledge may result from previous testing on the structure. However, it is worth noting that 

the non-linear trend exhibited by the tower is uncommon for similar structures and, thus, hard 

to anticipate in a real fieldwork. Therefore, such extensive knowledge would require an 

investigation of the tower beyond the short training period considered here. As confirmed by 

the control chart provided in Figure 4c, the a-priori availability of both linear regression models 

would significantly enhance the classification performance, minimising the number of false 

positives. 

A further demonstration of the effectiveness of the information provided by the FE model is 
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conducted by considering two additional scenarios. In the first one, the natural frequencies are 

estimated through the linear regression model based on the simulation, considering cluster 1 

knowledge only. In the second scenario, both clusters are considered known. For both scenarios, 

the residuals between measured and estimated natural frequencies are directly adopted for the 

classification, bypassing a further processing of the data by using the Gaussian process.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4: Control charts (green dots are true negatives, red dots false positives): (a) Gaussian process regression 

of  frequencies; (b) features normalised according to cluster 1 equation, Gaussian process regression of residuals; 

(c) features normalised according to cluster 1 and 2 equation, Gaussian process regression of residuals; (d) direct 

classification of features normalised according to cluster 1 equation; (e) direct classification of features 

normalised according to cluster 1 and 2 equation.  



A. Barontini, D. Pellegrini, F. Testa, M. Girardi, M.G. Masciotta, N. Mendes, C. Padovani, L.F. Ramos and P.B. 

Lourenço 

 8 

Comparing the control charts in Figure 4d and 4e, with Figure 4b and 4c, respectively, an 

improvement in the final classification emerges, suggesting that the linear regression models 

are sufficiently effective in explaining the dependency of the natural frequencies on the 

temperature variation. 

Comparing all the considered scenarios, it is worth noting that the performance of all 

regression models (Gaussian process and linear) in reducing the data variability is strongly 

affected by the large scatter in the samples. This scatter is likely influenced by several factors, 

beyond the ambient temperature, which is the only parameter considered in the present study. 

4 CONCLUSIONS AND FUTURE SCOPES 

In the present work the advantages of integrating physics knowledge to enhance traditional 

data-driven methods for damage detection and early warning are investigated. To this end, an 

accurate calibrated FE model is utilised to simulate environmental conditions otherwise 

unknown during the training period. The clock tower of Mogadouro serves as a relevant case 

study. This tower presents an extremely peculiar response under varying environmental 

conditions due to a change in the behaviour between rainy and dry seasons. The development 

of reliable models for the dependency of the natural frequencies on the temperature through 

numerical simulations demonstrated to be an effective approach to integrate and/or substitute 

the information obtained solely from experimental data. However, for real world case studies, 

such as the one analysed here, a single extrinsic parameter, like the temperature, is not sufficient 

to completely explain the variability of the monitored data. More research is required to ensure 

more accurate simulations of thermal variation effects and to incorporate on the FE model 

additional operational and environmental factors that influence the structural response. 
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