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ABSTRACT

This research investigates the impact of varying train-test ratios on machine learning (ML)
algorithms in the context of structural mechanics. Notably, it reveals that these algorithms
favour lower train-test ratios to counter overfitting and enhance robustness. The study employed
five datasets with various characteristics, objectively evaluating the train-test ratios' influence
when implementing the under-study ML algorithms. This research identified optimal ratios for
different ML algorithms, contributing to a more tailored approach to ML algorithmic
performance assessment. According to the parametric investigation, it was found that the range
of train-test ratios that is optimal for most algorithms is 0.1-0.15, suggesting a need to explore
a wider range of ratios with smaller intervals for a comprehensive and more detailed
performance assessment. Finally, the study calls for future research to explore the response of
ML algorithms when trained on numerical versus experimental datasets, potentially leading to

a generalised recommendation when dealing with structural mechanics applications.
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INTRODUCTION

In recent years, structural mechanics has undergone a transformative shift with the
incorporation of machine learning (ML) techniques, offering new avenues for optimising the
design, maintenance, and monitoring of complex structural systems. This transformation has
been demonstrated in the work of Kicinger et al. (2005), Liao et al. (2011), and Amezquita-
Sanchez et al. (2016). This shift is considered a significant advancement in the field. However,
the performance of these algorithms is highly contingent on the data available for training and
testing, and the train-test ratio plays a fundamental role in this regard. While guidelines exist
for selecting train-test ratios (Joseph 2022), there remains a scarcity of comprehensive studies
that systematically investigate the influence of varying train-test ratios on the performance of

ML algorithms in the context of structural mechanics applications.

To address this research gap, this paper aims to conduct a parametric investigation into the
impact of the train-test ratio on ML algorithms in structural mechanics. Through a series of
experiments, this research will explore how different train-test ratios affect the algorithm’s
accuracy, robustness, and generalisation across various structural mechanics scenarios. The
findings will provide valuable insights for practitioners and researchers in structural mechanics,

aiding in the selection of optimal train-test ratios tailored to specific applications.

Furthermore, the study builds upon the work of previous researchers who have explored the
integration of ML in structural mechanics (Markou et al., 2024). By shedding light on the
critical role of the train-test ratio in ML applications within the field of structural mechanics,
this study contributes to the ongoing efforts to harness the potential of artificial intelligence

(Al) and ML algorithms for more efficient and accurate structural analysis and design.

The subsequent sections will delve into the methodology, present experimental results, and

discuss the implications of the findings. By combining new research with the existing body of
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knowledge, this research aims to offer a comprehensive perspective on the use of ML in

structural mechanics while emphasising the significance of optimal data partitioning.

MACHINE LEARNING

Machine learning in structural mechanics

Adeli and Hung (1994) introduced the pioneering concept of multiparadigm learning,
emphasising the integration of various Al disciplines, including neural networks, genetic
algorithms, fuzzy sets, and parallel processing. Their work demonstrated that such integration
significantly enhances performance, laying the foundation for hybrid Al approaches in civil
engineering applications. Kicinger et al. (2005) conducted an extensive study on the application
of evolutionary computation within the context of structural design. This exploration
underscores the potential of Al-based optimisation techniques in enhancing structural designs,
providing valuable insights into the optimisation of civil engineering processes. Lu et al. (2012)
conducted a comprehensive survey of diverse Al methods, encompassing fuzzy logic,
evolutionary computation, neural networks, swarm intelligence, and expert systems, among
others. This broad survey underscores the wide array of Al tools available for civil engineering

applications and provides a reference for the range of methods under consideration.

Liao et al. (2011) reviewed studies focusing on metaheuristics as optimisation techniques to
address the lifespan of construction and engineering projects. This work highlights the role of
Al-driven metaheuristics in optimising project management. Saka and Geem (2013) conducted
a survey on mathematical and metaheuristic algorithms in the design optimisation of steel frame
structures, emphasising the importance of optimisation in structural design. Meanwhile,
Aldwaik and Adeli (2014) reviewed the progress in optimising high-rise buildings, and Mardani
et al. (2015) explored fuzzy multiple-criteria decision-making techniques. These studies
collectively delve into the nuances of structural design optimisation, offering a valuable

reference point for this research. Nasiri et al. (2017) conducted a survey on various Al methods,
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including artificial neural networks, Bayesian analysis, genetic algorithms, and case-based
reasoning, in the field of fracture mechanics. This reference provides insights into the
applications of Al within fracture mechanics, a critical aspect of structural analysis. Zamarron
et al. (2017) reviewed the application of multi-criteria decision analysis for ageing dam
management. This work exemplifies the integration of decision-making frameworks within

civil engineering.

Pongiglione and Calderini (2016) presented a state-of-the-art overview of sustainable structural
design within the context of green building rating systems and building codes. Their work
highlights the evolving importance of sustainability within civil engineering. Varela et al.
(2018) assessed the social sustainability of infrastructure using multi-criteria decision analysis,
and Zavadskas et al. (2017) surveyed state-of-the-art methods applied to sustainable decision-
making in civil engineering, construction, and building technology. These studies collectively
underscore the importance of sustainability considerations in infrastructure and construction,

aligning with our research focus.

The train-test ratio in machine learning
One of the pivotal aspects of ML algorithm development is the choice of the train-test ratio,
which determines the proportion of data allocated to training and testing subsets. This selection

significantly impacts algorithm robustness, generalisation, and overall performance.

Racz et al. (2021) compared several combinations of dataset sizes and split ratios with five
different ML algorithms to find the differences or similarities and to select the best parameter
settings in nonbinary (multiclass) classification. Racz et al. (2021) concluded that the size of
the datasets and the train-test split ratios can greatly affect the outcome of the algorithms and
thus the classification performance itself. The importance of selecting appropriate train-test

ratios is paramount, especially in the context of classification tasks.
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Data availability and its implications

Structural mechanics faces a significant challenge when it comes to the size and accessibility
of datasets, and this challenge is central to the development of ML algorithms. Just as the choice
of algorithm is crucial (as emphasised by Asteris et al., 2021), the availability and quality of the

dataset play an equally critical role in algorithm training.

While numerical simulations provide a substantial and easily obtainable source of data, the
practical application of ML algorithms in real-world scenarios often grapples with constraints
arising from the limited availability of experimental data. As highlighted by Thai (2022), efforts
have been made to establish database platforms, but these primarily rely on data collected from
tests or simulations of individual structural components. The databases essential for predicting
the behaviour and strength of complete structural systems remain scarce. Generating such
databases would ideally involve finite element simulations, a more cost-effective alternative to

expensive experimental tests, as described by Dimiduk et al. (2018).

This scarcity of comprehensive data is influenced by multiple factors, including financial
considerations, the time required for data collection, and safety concerns. Consequently, the
field of structural mechanics frequently necessitates the integration of both numerical and
experimental datasets, as exemplified in the research of Cheraghzade and Roohi (2022). This

integration, however, introduces unique challenges in handling diverse data types.

Within structural mechanics, data availability presents a multifaceted challenge. The field
grapples with a significant disparity in data sizes, where numerical simulations yield vast
datasets in contrast to the limited availability of experimental data from real-world structures.
The ability to harmonise these disparate data sources while maintaining the reliability of

algorithms stands as a critical domain for ongoing research and advancement.
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METHODOLOGY AND EXPERIMENTAL DESIGN
This section outlines the approach for investigating the influence of train-test ratios on ML
algorithms in structural mechanics applications that will be described below. It also includes a

description of the datasets, parameter variations, and experimental setup.

Dataset description

This research employs a set of five datasets, which are accessible in Bakas et al. (2023). Detailed
information regarding the datasets used is presented in Table 1. These datasets were developed
for the need to propose predictive models for computing the fundamental period of reinforced
concrete and steel structures, the shear strength of slender concrete beams without stirrups, and
the deflection of curved steel I-beams. The selected datasets consist of different numbers of

data points and thus will allow an objective investigation of the train-test ratio.

Table 1: Dataset information

Dataset Description no. Variables | no. Datapoints
1 The fundamental period of a reinforced concrete frame 6 790
2 The deflection of a curved steel I-beam 10 1320
3 The fundamental period of a steel frame 1 6 98308
4 The fundamental period of a steel frame 2 6 1153
5 The capacity of a slender reinforced concrete beam 10 35849

Machine learning algorithms

For the purposes of this research work, the baseline ML algorithm is linear regression (LR),
serving as a reference for comparison. Additionally, four advanced ML algorithms, each with
specific enhancements and hyperparameter tuning, are used. These algorithms, as detailed in
Markou et al. (2024), include the Polynomial Regression with hyperparameter tuning
(POLYREG-HYT), Extreme Gradient Boosting with hyperparameter tuning and cross-
validation (XGBoost-HYT-CV), Random Forests with hyperparameter tuning (RF-HYT), and
MPI and Horovod-based deep learning Artificial Neural Network with hyperparameter tuning

(DANN-MPIH-HYT).
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Parameter tuning and evaluation metrics

A range of test ratios, specifically 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35, were systematically
investigated. This approach enables a comprehensive assessment of the effect of data
partitioning (in a relevant range) on ML algorithm performance in structural mechanics
applications. Additionally, a multifaceted performance evaluation strategy was implemented,
incorporating various metrics such as Pearson correlation coefficient (R), mean absolute
percentage error (MAPE), mean absolute mean percentage error (MAMPE), mean absolute
error (MAE), and root mean squared error (RMSE) (Markou et al., 2024). This diverse set of
metrics establishes a robust framework for assessing algorithm accuracy, precision, and
generalisation capabilities, ensuring a thorough examination of effectiveness in the context of

structural mechanics.

RESULTS

The most important numerical characteristic of ML algorithms is the ability to produce
generalised, accurate, and objective relationships between the given input and output features.
Furthermore, emphasising the methods’ training and testing abilities lies in the practical
relevance of evaluating how well ML algorithms perform when presented with new, out-of-
sample data, which is crucial for their real-world applicability. In order to evaluate any ML
algorithm’s performance, error metrics are used. Specifically, the average of the Pearson
correlation coefficient (R) and mean absolute percentage error (MAPE) across the datasets were
computed and analysed after each run. These averaged metrics offer a consolidated perspective
on the overall performance of the algorithms, accounting for variations in individual datasets.
As stated above, each ML algorithm was used to train on all datasets selected for the needs of
this research work, and for each dataset, six different train-test ratios were used. After the

completion of each analysis, the data were stored in a tabulated manner where the average error
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metrics were then computed. Due to brevity purposes, only the averaged R and MAPE are

presented in this manuscript.

Figure 1 displays the trends in the average R and MAPE error metrics across the stipulated
range of train-test ratios for the LR ML algorithm, which serves as the baseline algorithm. When
analysing the trends, it is apparent that the train-test ratio of 0.15 produces the best results for

the case of this ML algorithm, which resulted in the highest error.
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Figure 1: Average R and MAPE for the LR algorithm

Figure 2 through Figure 5 present the trends in the average R parameter and the MAPE error
metric derived by: POLYREG-HYT, XGBoost-HYT-CV, RF-HYT, and DANN-MPIH-HYT,
respectively. According to the numerical findings of this research work, the POLYREG-HYT
and XGBoost-HYT-CV methods perform optimally when a train-test ratio of 0.1 is used.
Additionally, the RF-HYT method shows optimum accuracy and correlation R at a ratio of 0.1,
with 0.2 producing results that are of similar performance. Notably, DANN-MPIH-HYT

achieves its peak performance at a train-test ratio of 0.15.

It is worth noting that the extent of variation in both the R and MAPE (across the range of train-
test ratios) for XGBoost-HYT-CV and RF-HYT is notably minimal. In comparison,
POLYREG-HYT exhibits a slightly higher degree of variation, while DANN-MPIH-HYT

displays even greater variability than LR.
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Figure 2: Average R and MAPE for the POLYREG-HYT
algorithm
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Figure 4: Average R and MAPE for the RF-HYT algorithm
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Figure 3: Average R and MAPE for the XGBoost-HYT-CV
algorithm

—e—R —=— MAPE

& 0.998 16 @
T <
= 14 =
:5 0.996 12
£ g
8 0994 0%
o 8 g
2 3
B 0.992 6 %
et 2
g 099 42
£ 0.988 0 8
o 01 015 02 025 03 035

Test-train ratio

Figure 5: Average R and MAPE for the DANN-MPIH-
HYT algorithm

When analysing the dataset averages of test error metrics across the entire range of train-test

ratios, it becomes evident that the XGBoost-HYT-CV ML algorithm consistently exhibits the

best performance, characterised by the lowest average error metrics and the highest R-value.

Following closely is the DANN-MPIH-HYT algorithm, which delivers accurate results but at

the expense of higher computational demand. RF-HYT performs well, landing in the middle

ground. POLYREG-HYT demonstrates respectable performance, while LR, serving as the

baseline algorithm, ranks as the least-performing ML algorithm among those assessed. Notably,

this outcome is in alignment with findings by Markou et al. (2024). The complete details of the

error metrics can be found in the appendix for a more comprehensive understanding of the

algorithm’s performance.
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CONCLUSION

In the context of this parametric investigation, it has been found that most of the under-study
ML algorithms exhibited a more accurate numerical response for low train-test ratios (0.1-0.15).
This is attributed to the formulation of the ML algorithms, and it is also in line with the
observations made by Markou et al. (2024). It is important to note here that the optimal choice
of a specific train-test ratio is particularly beneficial when data availability is limited; thus,
having to use a smaller test ratio will ensure a smaller proportion of the data to be used for
testing, while the ML algorithm will still be able to generate a generalised predictive model.
Low train-test ratios can be advantageous in scenarios where the dataset exhibits a high degree

of homogeneity, whereas ML algorithms can effectively capture underlying patterns.

Moreover, when considering the effect of dataset size on the performance of ML algorithms,
interesting variations emerge. It was found that for all the ML algorithms apart from DANN-
MPIH-HYT, there is generally more variation in both R and MAPE for the smaller datasets,
while the larger datasets demonstrate greater stability. However, in the case of DANN-MPIH-
HYT, higher variation is observed across datasets, and there appears to be no discernible
correlation between the variation (R and MAPE) and dataset size. This is attributed to the fact
that deep learning algorithms require an exceptionally large amount of data to perform
optimally. Nevertheless, it is shown from this research work that this advanced ML method is

able to derive accurate models even in the case of small datasets.

After this parametric investigation of the train-test ratio, it is deemed necessary to expand it
through the use of more datasets found in international literature. Future research should focus
on analysing the performance differences between algorithms trained on numerical and
experimental datasets and should consider testing a wider range of ratios with smaller intervals
to allow for a more detailed performance assessment. This will culminate in the development

of a more generalised recommendation for selecting the most optimal train-test ratio.
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APPENDIX

Appendix A

Al: LR error metrics and computation time for dataset 1

Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.987260 13.6103 7.5713 0.0371 0.0488 0.0010
Test 0.986769 15.0681 8.4216 0.0366 0.0480 0.0000
0.15 Train 0.987618 13.4805 7.5059 0.0365 0.0484 0.0006
Test 0.984799 14.1575 8.3323 0.0390 0.0509 0.0000
02 Train 0.987307 13.5695 7.5299 0.0369 0.0487 0.0010
Test 0.986872 14.4159 8.1170 0.0375 0.0488 0.0000
0.25 Train 0.987274 13.3843 7.4979 0.0367 0.0487 0.0010
Test 0.987054 14.8063 8.1306 0.0380 0.0490 0.0000
03 Train 0.987201 13.3186 7.5590 0.0367 0.0486 0.0010
Test 0.987290 14.8681 7.8821 0.0378 0.0491 0.0000
0.35 Train 0.987384 13.3330 7.5429 0.0365 0.0483 0.0010
Test 0.986958 14.8315 7.9507 0.0384 0.0497 0.0000
A2: LR error metrics and computation time for dataset 2
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (s)
01 Train 0.891378 107.3225 30.2801 2.8882 3.9892 0.0010
Test 0.902645 71.8096 26.8191 2.7234 3.8475 0.0000
0.15 Train 0.889842 109.0105 30.5193 2.9013 4.0204 0.0010
Test 0.907926 70.7771 26.2270 2.6564 3.7122 0.0000
0.2 Train 0.888638 107.3536 30.6024 2.9228 4.0511 0.0010
Test 0.907620 90.9117 27.2288 2.6671 3.6633 0.0000
0.25 Train 0.888158 108.9437 30.8291 2.9272 4.0693 0.0010
Test 0.905451 88.0989 27.3495 2.7116 3.6814 0.0000
03 Train 0.888016 109.3574 30.7538 2.8816 4.0347 0.0010
Test 0.902441 82.6297 27.6881 2.8065 3.8424 0.0000
Train 0.887564 110.4007 30.8493 2.8483 4.0347 0.0010
035 Test 0.899861 80.0158 27.7895 2.8578 3.8945 0.0000
A3: LR error metrics and computation time for dataset 3
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.923695 23.1002 20.1519 0.5002 0.5823 0.0050
Test 0.923808 22.9266 20.1435 0.4985 0.5817 0.0001
015 Train 0.923597 23.0871 20.1530 0.5003 0.5823 0.0040
Test 0.924316 22.9325 20.1244 0.4979 0.5819 0.0001
02 Train 0.923439 23.0730 20.1555 0.5007 0.5827 0.0040
Test 0.924751 22.9912 20.1159 0.4968 0.5804 0.0001
0.25 Train 0.923691 23.0597 20.1347 0.5003 0.5822 0.0040
Test 0.923739 23.0496 20.1807 0.4988 0.5824 0.0001
03 Train 0.923588 23.0694 20.1469 0.5002 0.5821 0.0040
Test 0.923975 23.0401 20.1530 0.4995 0.5825 0.0002
03 Train 0.923525 23.0751 20.1648 0.5006 0.5826 0.0040
35 Test 0.924042 23.0377 20.1307 0.4991 0.5816 0.0002
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A4: LR error metrics and computation time for dataset 4

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.735160 64.7434 47.6502 0.6299 0.7201 0.0010
Test 0.709729 66.2862 47.1927 0.6636 0.7390 0.0000
015 Train 0.731077 64.7201 47.7507 0.6326 0.7221 0.0010
Test 0.743005 65.3191 46.7779 0.6373 0.7219 0.0000
0.2 Train 0.730667 64.9207 47.4586 0.6316 0.7214 0.0010
Test 0.741062 67.8621 48.1772 0.6402 0.7261 0.0000
0.25 Train 0.737850 64.9206 46.9411 0.6303 0.7200 0.0010
Test 0.717455 68.8546 49.6604 0.6422 0.7302 0.0000
03 Train 0.738144 64.9977 46.8626 0.6292 0.7184 0.0010
Test 0.718624 68.8271 49.3859 0.6428 0.7348 0.0000
Train 0.737337 65.1642 46.9953 0.6280 0.7188 0.0015
035 Test 0.721542 68.7006 48.7436 0.6432 0.7321 0.0000
Ab: LR error metrics and computation time for dataset 5
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.872197 30.7180 22.4127 26.7088 34.9664 0.0030
Test 0.880421 29.7941 21.6397 25.7564 33.6050 0.0001
0.15 Train 0.871806 30.7575 22.4575 26.7460 35.0212 0.0030
Test 0.879927 29.9541 21.6692 25.8897 33.7448 0.0001
0.2 Train 0.872130 30.6627 22.4281 26.7045 35.0117 0.0030
Test 0.876577 30.3835 21.9841 26.2709 34.1081 0.0001
0.25 Train 0.872929 30.6022 22.3687 26.6379 34.9371 0.0030
Test 0.873240 30.6336 22.2093 26.5084 34.5209 0.0001
03 Train 0.872439 30.6273 22.3794 26.6307 34.9280 0.0030
Test 0.874325 30.6780 22.2293 26.5685 34.6123 0.0001
Train 0.873019 30.5733 22.3172 26.5633 34.8565 0.0030
035 Test 0.872965 30.7458 22.3511 26.6850 34.7928 0.0001
A6: POLYREG-HYT error metrics and computation time for dataset 1
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.996412 5.2681 3.9827 0.0195 0.0259 9.16
Test 0.996934 4.7426 3.8214 0.0166 0.0230 0.00
015 Train 0.996741 4.7176 3.7583 0.0183 0.0248 11.02
Test 0.996433 5.0736 3.9209 0.0183 0.0248 0.00
0.2 Train 0.995806 5.1230 4.1967 0.0205 0.0280 10.20
Test 0.995920 5.0193 4.1987 0.0194 0.0272 0.00
025 Train 0.996336 5.2395 4.0406 0.0198 0.0262 8.02
Test 0.996254 5.6807 4.1437 0.0194 0.0263 0.00
03 Train 0.996572 5.1551 3.9195 0.0190 0.0252 7.81
Test 0.995734 5.7602 4.3755 0.0210 0.0285 0.00
0.35 Train 0.996534 5.1149 3.8957 0.0189 0.0253 6.49
Test 0.995751 5.4576 4.1974 0.0203 0.0283 0.00
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AT7: POLYREG-HYT error metrics and computation time for dataset 2

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.988235 20.0019 9.0757 0.8657 1.3461 18.34
Test 0.984704 14.6522 9.4318 0.9578 1.5480 0.00
015 Train 0.986966 19.9990 9.4859 0.9018 14181 20.73
Test 0.983540 16.3398 9.9196 1.0047 1.6122 0.00
0.2 Train 0.989773 18.1104 8.4964 0.8115 1.2601 26.98
Test 0.986301 17.2807 9.2545 0.9065 1.4695 0.00
0.25 Train 0.991645 16.7146 8.0058 0.7601 1.1423 29.50
Test 0.987296 17.5910 9.0438 0.8967 1.3846 0.00
03 Train 0.989902 16.2108 8.4864 0.7952 1.2438 25.77
Test 0.985726 19.2065 9.6280 0.9759 1.4984 0.00
Train 0.985191 21.2685 10.5488 0.9740 1.5017 14.69
035 Test 0.978551 18.7898 11.5365 1.1864 1.8287 0.00
A8: POLYREG-HYT error metrics and computation time for dataset 3
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.992653 8.6176 4.8891 0.1213 0.1839 1229.64
Test 0.992646 8.6221 4.8824 0.1208 0.1839 0.01
0.15 Train 0.992659 8.6212 4.8879 0.1213 0.1837 1121.64
Test 0.992588 8.6627 4.8986 0.1212 0.1853 0.01
0.2 Train 0.992604 8.6396 4.8966 0.1216 0.1843 1028.16
Test 0.992752 8.7428 4.9003 0.1210 0.1833 0.01
0.25 Train 0.992663 8.6106 4.8777 0.1212 0.1837 1140.69
Test 0.992623 8.6293 4.9034 0.1212 0.1844 0.02
03 Train 0.992655 8.6136 4.8867 0.1213 0.1837 952.18
Test 0.992640 8.6165 4.8976 0.1214 0.1845 0.02
Train 0.992622 8.6402 4.9031 0.1217 0.1842 901.18
035 Test 0.992703 8.6278 4.8818 0.1210 0.1834 0.04
A9: POLYREG-HYT error metrics and computation time for dataset 4
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.970022 22.8935 13.9141 0.1839 0.2581 9.05
Test 0.967969 23.7743 13.8147 0.1943 0.2636 0.00
015 Train 0.969229 22.9549 14.1123 0.1870 0.2605 7.31
Test 0.975809 23.9196 13.3219 0.1815 0.2385 0.00
0.2 Train 0.969281 23.5803 14.0147 0.1865 0.2599 8.60
Test 0.973665 24.5414 13.5609 0.1802 0.2463 0.00
025 Train 0.969008 24.2773 14.1270 0.1897 0.2635 9.54
Test 0.972271 24.9080 13.7111 0.1773 0.2442 0.00
03 Train 0.968833 23.4752 13.9872 0.1878 0.2638 9.33
Test 0.969385 23.7857 13.8715 0.1805 0.2589 0.00
Train 0.963728 23.7571 13.9987 0.1871 0.2841 8.44
035 Test 0.964320 25.9418 14.1170 0.1863 0.2800 0.00
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A10: POLYREG-HYT error metrics and computation time for dataset 5

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.947759 20.2660 13.6749 16.2961 22.8018 560.44
Test 0.947612 19.6857 13.5348 16.1096 22.6377 0.01
015 Train 0.945905 20.5495 13.9664 16.6334 23.1951 540.53
Test 0.944583 20.1719 13.9235 16.6355 23.3153 0.01
0.2 Train 0.944980 20.7425 14.1135 16.8045 23.4083 676.32
Test 0.943234 20.7618 14.1362 16.8926 23.5398 0.01
0.25 Train 0.946738 20.4899 13.9208 16.5776 23.0598 565.08
Test 0.945406 20.3338 13.8892 16.5778 23.0904 0.02
03 Train 0.947658 20.1974 13.7169 16.3226 22.8182 487.43
Test 0.947409 20.1189 13.6685 16.3367 22.8246 0.02
Train 0.940993 22.3049 14.6597 17.4488 24.1878 349.65
035 Test 0.941591 22.0785 14.5562 17.3787 24.0190 0.02
Al1l: XGBoost-HYT-CV error metrics and computation time for dataset 1
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (s)
01 Train 0.997870 3.9108 3.0433 0.0149 0.0200 40.49
Test 0.997628 5.1397 3.5457 0.0154 0.0203 0.00
0.15 Train 0.998580 2.2075 2.1405 0.0104 0.0164 40.30
Test 0.993039 3.9284 3.3121 0.0155 0.0348 0.00
0.2 Train 0.998588 2.2674 2.1316 0.0104 0.0163 42.55
Test 0.994522 3.8769 3.4309 0.0158 0.0317 0.00
0.25 Train 0.998599 2.1998 2.1347 0.0104 0.0162 39.63
Test 0.995448 3.7670 3.2642 0.0152 0.0292 0.00
03 Train 0.998632 2.2362 2.1187 0.0103 0.0159 37.76
Test 0.996771 3.9957 3.1592 0.0152 0.0249 0.00
0.35 Train 0.998660 2.0996 2.0729 0.0100 0.0158 37.50
' Test 0.996564 3.7770 3.1770 0.0154 0.0256 0.00
Al12: XGBoost-HYT-CV error metrics and computation time for dataset 2
Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.999996 0.4733 0.1756 0.0167 0.0235 56.70
Test 0.999347 5.0689 2.0257 0.2057 0.3213 0.00
015 Train 0.999958 0.6992 0.4484 0.0426 0.0810 52.50
Test 0.998356 3.2565 2.7436 0.2779 0.5092 0.00
0.2 Train 0.999998 0.3207 0.1270 0.0121 0.0166 51.19
Test 0.998536 5.5748 2.5974 0.2544 0.4773 0.00
0.25 Train 0.999994 0.5947 0.2241 0.0213 0.0296 50.01
Test 0.998798 5.9645 2.6343 0.2612 0.4275 0.00
03 Train 0.999991 0.7346 0.2860 0.0268 0.0364 48.83
Test 0.996760 7.7042 4.0555 0.4111 0.7237 0.00
Train 0.999938 0.9363 0.5614 0.0518 0.0984 47.89
035 Test 0.997429 4.5025 3.6860 0.3791 0.6494 0.00
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A13: XGBoost-HYT-CV error metrics and computation time for dataset 3

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.999999 0.0819 0.0457 0.0011 0.0017 854.14

Test 0.999996 0.1626 0.0935 0.0023 0.0045 0.07
015 Train 0.999999 0.1083 0.0580 0.0014 0.0020 805.24
Test 0.999993 0.2435 0.1280 0.0032 0.0059 0.12
0.2 Train 0.999993 0.1883 0.1523 0.0038 0.0056 762.71
Test 0.999981 0.2622 0.2259 0.0056 0.0093 0.02
0.25 Train 0.999992 0.1988 0.1593 0.0040 0.0059 743.42
Test 0.999979 0.2843 0.2436 0.0060 0.0098 0.03
03 Train 0.999998 0.1547 0.0861 0.0021 0.0029 683.95
Test 0.999983 0.3745 0.2029 0.0050 0.0088 0.22
Train 0.999990 0.3485 0.1775 0.0044 0.0066 710.28
035 Test 0.999982 0.4838 0.2384 0.0059 0.0092 0.12

Al4: XGBoost-HYT-CV error metrics and computation time for dataset 4

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (s)
01 Train 0.999884 1.1072 0.5583 0.0074 0.0162 45.86

Test 0.999489 2.2260 1.2978 0.0183 0.0346 0.00
0.15 Train 0.999880 1.1457 0.5869 0.0078 0.0164 42.89
Test 0.999592 2.4782 1.2597 0.0172 0.0313 0.00
0.2 Train 0.999875 1.1714 0.5890 0.0078 0.0167 42.43
Test 0.999562 2.8610 1.3873 0.0184 0.0322 0.00
0.25 Train 0.999874 1.1528 0.5874 0.0079 0.0169 42.11
Test 0.999339 3.4808 1.6656 0.0215 0.0385 0.00
03 Train 0.999882 1.3435 0.6417 0.0086 0.0163 40.51
Test 0.999053 4.0502 1.9311 0.0251 0.0462 0.00
Train 1.000000 0.0983 0.0458 0.0006 0.0010 39.86
035 Test 0.999580 1.3833 0.6249 0.0082 0.0308 0.00

A15: XGBoost-HYT-CV error metrics and computation time for dataset 5

Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.998209 3.5987 2.5840 3.0793 4.2881 738.62

Test 0.993688 5.9589 45575 5.4245 7.9795 0.01

015 Train 0.998230 3.6084 2.5668 3.0570 4.2638 681.74
Test 0.993321 6.0305 4.6068 5.5041 8.2314 0.01

02 Train 0.998332 3.4992 2.4986 2.9750 4.1448 642.03
Test 0.993468 6.0727 4.6080 5.5065 8.1301 0.02

0.25 Train 0.998364 3.4508 2.4686 2.9398 4.1075 611.51
Test 0.993595 6.0391 4.5955 5.4851 8.0355 0.02

03 Train 0.998435 3.3630 2.4137 2.8722 4,0108 576.13
Test 0.993425 6.1291 4.6914 5.6072 8.2004 0.02

0.3 Train 0.998505 3.3123 2.3681 2.8187 3.9206 542.53
35 Test 0.993397 6.1503 4.7185 5.6334 8.2211 0.03
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A16: RF-HYT error metrics and computation time for dataset 1

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.998370 2.4689 2.3686 0.0116 0.0175 92.49
Test 0.997937 3.5534 3.0282 0.0132 0.0190 0.03
0.15 Train 0.997756 3.6969 3.1718 0.0154 0.0211 91.88
Test 0.989217 5.2415 4.5032 0.0211 0.0436 0.04
0.2 Train 0.998331 2.6201 2.4615 0.0120 0.0177 91.70
Test 0.997031 3.8996 3.5882 0.0166 0.0233 0.04
0.25 Train 0.998324 2.6448 2.4707 0.0121 0.0177 91.62
Test 0.996603 3.9891 3.6873 0.0172 0.0251 0.04
03 Train 0.998315 2.6556 2.4798 0.0120 0.0177 91.30
Test 0.995926 4.2457 3.9327 0.0189 0.0279 0.04
0.35 Train 0.998325 2.6560 2.4813 0.0120 0.0177 90.67
' Test 0.996047 4.2065 3.9697 0.0192 0.0274 0.05
Al17: RF-HYT error metrics and computation time for dataset 2
Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (s)
01 Train 0.996623 3.7860 3.7753 0.3601 0.7306 94.73
Test 0.988615 6.6994 6.5982 0.6700 1.3458 0.05
0.15 Train 0.996542 3.8731 3.8681 0.3677 0.7414 94.60
Test 0.990247 6.3413 6.1437 0.6223 1.2537 0.04
0.2 Train 0.996519 4.0069 3.9258 0.3750 0.7486 94.73
Test 0.990355 6.5400 6.4715 0.6339 1.2484 0.05
0.25 Train 0.996221 4.1478 4.1280 0.3920 0.7826 94.61
Test 0.990523 6.7810 6.4274 0.6373 1.2167 0.05
03 Train 0.995939 4.3103 4.2880 0.4018 0.8053 93.93
Test 0.988792 7.2517 6.9806 0.7076 1.3318 0.05
0.35 Train 0.995514 45377 4.5663 0.4216 0.8448 93.63
' Test 0.986856 7.6176 7.5696 0.7784 1.4355 0.06
A18: RF-HYT error metrics and computation time for dataset 3
Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.997536 2.6972 3.1092 0.0772 0.1098 639.18
Test 0.997486 2.7587 3.1598 0.0782 0.1109 0.66
0.15 Train 0.997057 2.8699 3.3563 0.0833 0.1198 616.49
Test 0.997055 2.9175 3.3875 0.0838 0.1202 0.95
0.2 Train 0.996813 3.0463 3.5258 0.0876 0.1246 578.35
Test 0.996775 3.0964 3.5747 0.0883 0.1256 1.25
0.25 Train 0.997114 3.0223 3.4564 0.0859 0.1190 553.77
Test 0.997020 3.0882 3.5230 0.0871 0.1205 1.54
03 Train 0.996563 3.2026 3.6845 0.0915 0.1293 526.84
Test 0.996476 3.2708 3.7579 0.0931 0.1312 1.84
Train 0.996257 3.3620 3.8543 0.0957 0.1349 504.69
035 Test 0.996155 3.4286 3.9267 0.0974 0.1369 2.13
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A19: RF-HYT error metrics and computation time for dataset 4

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.998777 4.6438 3.4725 0.0459 0.0623 93.06
Test 0.996628 8.7104 6.0656 0.0853 0.1052 0.04
015 Train 0.998774 4.6970 3.4587 0.0458 0.0621 93.02
Test 0.996955 8.3456 5.7427 0.0782 0.1006 0.04
0.2 Train 0.998644 4.8158 3.5317 0.0470 0.0649 92.84
Test 0.996860 8.7276 6.0056 0.0798 0.1035 0.05
0.25 Train 0.998560 5.4046 3.6573 0.0491 0.0664 92.71
Test 0.995582 10.3662 6.6901 0.0865 0.1126 0.05
03 Train 0.998522 5.6056 3.7277 0.0501 0.0678 92.62
Test 0.995968 11.0292 6.7384 0.0877 0.1110 0.05
Train 0.998569 5.9452 3.8356 0.0513 0.0670 92.74
035 Test 0.995856 12.0637 6.9854 0.0922 0.1140 0.05
A20: RF-HYT error metrics and computation time for dataset 5
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.988546 8.3045 6.6236 7.8932 10.8225 1466.34
Test 0.984053 9.6787 7.8027 9.2871 12.6218 0.27
0.15 Train 0.988598 8.3390 6.6246 7.8896 10.8009 1391.14
Test 0.984385 9.5543 7.6500 9.1400 12.5156 0.37
0.2 Train 0.988797 8.2691 6.5800 7.8347 10.7183 1292.09
Test 0.984349 9.6299 7.6689 9.1642 12.5102 0.48
0.25 Train 0.988907 8.2516 6.5620 7.8144 10.6757 1187.46
Test 0.984474 9.5732 7.6645 9.1481 12.4536 0.59
03 Train 0.989082 8.1739 6.5090 7.7455 10.5710 1132.30
Test 0.984587 9.5555 7.6599 9.1551 12.4918 0.70
Train 0.989060 8.1740 6.5223 7.7632 10.5848 1024.11
035 Test 0.984302 9.6042 7.7266 9.2248 12.6048 0.80
A21: DANN-MPIH-HYT error metrics and computation time for dataset 1
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.997365 9.9829 6.1221 0.0300 0.0370 1886.42
Test 0.996802 12.1298 6.7708 0.0294 0.0352 0.00
0.15 Train 0.997675 4.0850 3.3169 0.0161 0.0214 1845.73
Test 0.996361 4.6924 3.9624 0.0185 0.0251 0.00
0.2 Train 0.998321 3.6118 2.7219 0.0133 0.0187 1799.71
Test 0.996921 4.7835 3.8187 0.0176 0.0241 0.00
025 Train 0.997780 5.5836 3.5294 0.0173 0.0220 1749.57
Test 0.996658 6.4997 4.4082 0.0206 0.0265 0.00
03 Train 0.997596 4.6941 3.4558 0.0168 0.0214 1681.96
Test 0.995663 5.5954 4.4151 0.0212 0.0292 0.00
0.35 Train 0.997569 9.6396 5.7469 0.0278 0.0360 1632.99
Test 0.994879 11.9764 6.9677 0.0337 0.0445 0.00
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A22: DANN-MPIH-HYT error metrics and computation time for dataset 2

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.997949 8.2543 4.2320 0.4037 0.5701 2427.28
Test 0.997234 8.5315 4.6032 0.4674 0.6678 0.00
015 Train 0.998265 8.8736 8.1800 0.7776 1.1738 2371.74
Test 0.996057 9.1368 8.8814 0.8996 1.4645 0.00
0.2 Train 0.998924 5.6844 3.2794 0.3132 0.4716 2259.60
Test 0.997134 7.0297 4.3641 0.4275 0.7554 0.00
0.25 Train 0.997864 9.1299 5.4257 0.5152 0.6991 2214.47
Test 0.995826 9.2616 5.8737 0.5824 0.8482 0.00
03 Train 0.998886 5.8170 3.0852 0.2891 0.4215 2145.76
Test 0.997548 6.4518 3.9919 0.4046 0.6212 0.00
Train 0.998295 7.0161 3.8995 0.3600 0.5370 2132.17
035 Test 0.995402 7.4987 5.1503 0.5296 0.8511 0.00
A23: DANN-MPIH-HYT error metrics and computation time for dataset 3
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.998479 8.3994 4.1577 0.1032 0.1214 82204.19
Test 0.998499 8.4009 4.1622 0.1030 0.1209 0.00
0.15 Train 0.999479 2.6188 1.8159 0.0451 0.0620 76612.20
Test 0.999480 2.6522 1.8142 0.0449 0.0619 0.00
0.2 Train 0.998825 13.2393 9.8610 0.2450 0.2792 128921.59
Test 0.998820 13.3730 9.8737 0.2438 0.2789 0.01
0.25 Train 0.999149 10.1431 8.6224 0.2142 0.2629 67372.66
Test 0.999147 10.1633 8.6072 0.2127 0.2616 0.01
03 Train 0.999736 6.0444 2.3922 0.0594 0.0692 62757.34
Test 0.999731 6.1035 2.4008 0.0595 0.0694 0.01
Train 0.999573 5.3433 2.2097 0.0549 0.0661 104372.08
035 Test 0.999572 5.3707 2.2192 0.0550 0.0662 0.02
A24: DANN-MPIH-HYT error metrics and computation time for dataset 4
Train-Test Train or MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time (5
01 Train 0.994536 15.5010 6.8196 0.0902 0.1146 2310.94
Test 0.993340 14.1054 7.1831 0.1010 0.1293 0.00
015 Train 0.999868 2.1594 1.8287 0.0242 0.0354 2272.40
Test 0.999479 2.2739 2.0779 0.0283 0.0467 0.00
0.2 Train 0.999791 1.5648 1.1849 0.0158 0.0259 2194.28
Test 0.999736 2.3799 1.5130 0.0201 0.0296 0.00
025 Train 0.999800 1.3634 0.8940 0.0120 0.0219 2076.55
Test 0.999740 1.9617 1.2032 0.0156 0.0240 0.00
03 Train 0.999565 3.8565 2.8232 0.0379 0.0520 2010.29
Test 0.999542 3.9727 2.8608 0.0372 0.0481 0.00
03 Train 0.999828 1.6510 1.2977 0.0173 0.0279 1963.30
35 Test 0.999276 1.8574 1.5542 0.0205 0.0429 0.00
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A25: DANN-MPIH-HYT error metrics and computation time for dataset 5

Train-Test | Trainor MAPE MAMPE Computation
ratio Test R (%) (%) MAE RMSE Time s)
01 Train 0.968626 27.8667 22.8715 27.2555 33.3211 51697.53
Test 0.969549 28.0178 23.3875 27.8366 33.7000 0.01
015 Train 0.995583 5.4581 4.1154 4.9013 6.7186 49433.92
Test 0.993535 5.9577 45578 5.4455 8.0671 0.01
0.2 Train 0.994376 6.3444 5.4181 6.4511 9.0713 45846.40
Test 0.991945 6.8458 5.8182 6.9527 10.1466 0.01
0.25F Train 0.989866 11.9005 9.9695 11.8723 15.9620 42781.25
Test 0.988501 12.1077 10.1967 12.1705 16.4945 0.02
03 Train 0.984736 10.3018 7.9582 9.4699 13.2557 22062.03
Test 0.983535 10.5106 8.1647 9.7585 13.7166 0.01
Train 0.984521 12.4428 10.6888 12.7224 17.6987 20765.28
035 Test 0.983797 12.6741 10.8728 12.9811 18.0754 0.01
Appendix B
B1: Average error metrics across datasets and train-test ratios
LR POLYREG-HYT XGBoost-HYT-CV RF-HYT DANN-MPIH-HYT
R 0.8833 0.9777 0.9974 0.9924 0.9951
MAPE (%) 43.2802 15.2506 3.7076 6.7255 8.0772
MAMPE (%) 25.1602 9.2980 2.4903 5.6210 5.7225
MAE 6.0396 3.5934 1.1726 2.0104 2.6513
RMSE 7.8732 5.0521 1.7445 2.8196 3.5591
B2: Variation in error metrics across datasets and train-test ratios
LR POLYREG-HYT XGBoost-HYT-CV RF-HYT DANN-MPIH-HYT
R 0.0073 0.0042 0.0012 0.0015 0.0059
MAPE (%) 4.6848 1.8837 1.2633 1.1040 9.2945
MAMPE (%) 0.8800 0.7607 0.5040 0.7047 4.9627
MAE 0.2090 0.2987 0.0795 0.0533 44201
RMSE 0.2478 0.3367 0.1287 0.0780 4.9975
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