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Abstract

The paper introduces a new global damage evaluation method which leads to a meaningful global damage index. A

numerical procedure for the prediction of local and global damage in civil engineering structures using the finite element

method and a continuum damage model, is presented. The method is adequate for the computation of the limit load in

reinforced concrete (RC) structures and for the prediction of the failure mechanisms. Details of the applied damage

model are given together with a description of the finite element implementation and the procedure for computing the

global damage parameters. Examples of applications of the methodology to the nonlinear analysis of a range of RC

structures, are presented.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Structural global damage; Damage models; Reinforced concrete structures; Failure load; Failure mechanisms; Nonlinear

analysis; Finite element method

1. Introduction

Since in the 1980s structural analysis was performed

including material nonlinearity in the study and design

of civil engineering structures, engineers gained access to

detailed information regarding phenomena occurring

beyond material elastic limit. This information typically

describes the state of the material on a point by point

basis, but is not easy to extrapolate to the entire struc-

ture nor offers sufficient indications about its general

state. Furthermore, the relevance to overall structural

stability and serviceability of the fact that a certain part

of a structure is more or less damaged, is difficult to infer

from the local information provided by classical non-

linear constitutive models.

The study at macroscopic scale of concrete behaviour

was traditionally founded on crack models for tension

and crush models for compression [19]. A latter-day

popular viable alternative are the damage models that

bring about a unified treatment of concrete behaviour

under both tension and compression.

Damage models may be classified mainly into two

families: those employed mostly in seismic engineering

for beam structures, evaluating damage indices from

parameters like sectional forces, ductility or deforma-

tional energy of structural members [4,25,35]; the second

family is made up by the continuum mechanics damage

models that describe the material state of a point of the

structure and are based on the principles of thermody-

namics [20,21,23,24,26,27].

The structural damage is defined as the degree of

degradation that allows conclusions about the capacity

of a structure to withstand further loadings. It is usually

quantified through damage indices that represent actual
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damage normalised to the failure level of the structure.

A value of the damage index equal to 1 reflects complete

loss of strength while a value of 0 means no damage.

The attributes ‘‘local’’ and ‘‘global’’ are often asso-

ciated with damage indices in current terminology. In

general acceptance, a damage index is local when it re-

fers to a single point, sections, members or structural

parts, while it is considered global when it describes the

state of an entire structure.

The need for damage indices as an evaluation tool

was acknowledged since the 1970s mainly in seismic

engineering in whose realm many formulae for beam

structures were developed [4,25,35]. These formulae for

‘‘local’’ damage indices are based on concepts like cu-

mulative plastic deformations under cyclic loading [4],

ratios between absolute maximum bending moments and

maximum bending moments reached during the earth-

quake [25] or the currently extensively employed func-

tion of Park and Ang [36], linking linearly structural

member ductility with dissipated energy under cyclic load-

ing. All these indices are adequate for seismic analyses

but are not applicable directly to other types of studies.

The definitions of global damage indices generally

rely on weighted averages of ‘‘local’’ (partial) indices.

The proposed weighting factors vary widely from

member volume or quota of potential energy absorbed

by the member, to esoteric criteria like the assignment by

experts of relative importance factors to the various

structural subparts.

DiPasquale and C�akmak [13–15] proposed the first
objective global damage index definition based on less

empirical concepts, as a function of the variation of the

fundamental frequency of the structure. This sound

basis provides an accurate description of the state of an

entire structure but it presents two major drawbacks.

First, it cannot be applied to determine the damage of a

substructure (ex. a storey of a building) and its impact

on the overall behaviour. Secondly, it requires the

evaluation of the fundamental frequency for each load

increment. This involves costly calculations of tangent

stiffness matrices that, on the other hand, are not always

known and sometimes do not even exist.

The damage evaluation methodology presented in

this paper addresses the following problems considered

of high interest for structural engineering:

1. Synthetic evaluation of the damage state of an entire

structure and of any of its parts, during and after sta-

tic or dynamic actions which drive the constitutive

materials beyond the elastic threshold.

2. Failure load evaluation for complex structures.

3. Reliability, safety and structural health assessment.

The proposed global damage evaluation method is

based on continuum mechanics principles, henceforth

the label ‘‘local’’ will be applied only to damage indices

describing the state of the material at particular points

of the structure while the ‘‘global’’ damage indices will

refer to the state of any finite volume of material. Thus,

global damage indices for individual finite elements,

substructures or the whole structure will be discussed.

This new classification is justified by the fact that in

continuum mechanics the constitutive models are ap-

plied at point level and all other magnitudes are ob-

tained integrating pointwise data.

The global damage evaluation theory presented

herein may operate independently from the chosen

constitutive models for the structural materials. Hence it

is always possible to obtain global damage indices

whatever the local constitutive model may be. This

feature converts the proposed global damage index

(GDI) into a powerful general tool for structural as-

sessment. Moreover, it is applicable directly to both

static and dynamic analyses.

The paper is organised as follows: In the next sections

the theoretical bases of the damage model are intro-

duced to act as supporting theory for the global damage

methodology. The finite element implementation is

briefly outlined. Examples of application of the meth-

odology to nonlinear analysis of a range of RC struc-

tures, such as a simple RC frame, a complete storey of a

housing building and a nuclear containment shell, are

finally presented.

2. The concept of damage

Extensive experimental studies have been undertaken

to characterise the response and the ultimate strength of

plain concrete under multi-axial stress states [2,3,22,40].

Considerable scatter of results has been observed and

collaborative studies have been undertaken to identify

the principal factors influencing this variation [2,29].

Several approaches, based on experimental data, have

been used to represent the constitutive relationship un-

der multi-axial stresses and these can be categorised into

the five following groups: (a) linear and nonlinear elas-

ticity theories, (b) perfect and work-hardening and

softening plasticity theories, (c) endochronic theory of

plasticity, (d) plastic fracturing theory and damage

theory and, (e) damage theory.

A simple and popular model for nonlinear finite

element analysis of concrete structures assumes elasto-

plastic (or viscoplastic) constitutive equations for com-

pression behaviour, whereas a conceptually more simple

smeared elasto-brittle model is used for defining onset

and progression of cracks at points in tension. Different

versions of this model have been successfully used for

nonlinear analysis of plain and reinforced concrete (RC)

structures. A summary of some of the more recent

contributions in each of those theories can be found in

[29,31,32,38].
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The elasto-plastic-brittle smeared model, in spite of

its popularity, presents various controversial features

such as the need for defining uncoupled behaviour along

each principal stress (or strain) directions: the use of a

shear retention factor to ensure some shear resistance

along the crack; the lack of equilibrium at the cracking

point when more than one crack is formed; the diffi-

culties in defining stress paths following the opening and

closing of cracks under cycling loading conditions and

the difficulty for dealing with the combined effect of

cracking and plasticity at the damaged points. It should

be noted that the description of compressive and tensile

behaviours on the basis of plasticity theory circumvents

the described disadvantages [41].

It is well known that micro-cracking in concrete and

masonry takes place at low load levels due to physical

de-bonding between aggregate and mortar particles, or

to simple micro-cracking in the mortar area. Cracking

progresses following a nonhomogeneous path which

combines the two mentioned mechanisms, with growth

and linking between micro-cracks along different direc-

tions. Experiments carried out on mortar specimens

show that the distribution of micro-cracking is fairly

discontinuous with arbitrary orientations [1,3]. This fact

is supported by many experiments which show that

cracking can be considered at microscopic level as a

nondirectional phenomenon and that the propagation of

micro-cracks follows an erratic path which depends on

the size of the aggregate particles. Thus, the dominant

cracking directions can be interpreted at macroscopic

level as the locus of trajectories of the damage points

(Fig. 1).

The above concepts support the idea that the non-

linear behaviour of concrete can be modelled using con-

cepts of damage theory only [21,23,26,31,33,37], provided

an adequate damage function is defined for taking into

account the different response of concrete under tension

and compression states. Cracking can, therefore, be in-

terpreted as a local damage effect, defined by the evolu-

tion of known material parameters and by one or several

functions which control the onset and evolution of

damage.

One of the advantages of such a model is the inde-

pendence of the analysis with respect to cracking direc-

tions which can be simply identified a posteriori once the

nonlinear solution is obtained. This allows to overcome

the problems associated with most elastic-plastic-brittle

smeared cracking models. In this paper a model devel-

oped in recent years by the authors group in [5,10–

12,16–18,27,30–33] for nonlinear analysis of concrete

based on the concept of damage mentioned above, is

presented. The model takes into account all the impor-

tant aspects which should be considered in the nonlinear

analysis of concrete and masonry structures such as the

different response under tension and compression, the

effect of stiffness degradation due to mechanical effects

and the problem of objectivity of the results with respect

to the finite element mesh.

In order to clarify the concept of damage, let us

consider a surface element in a damaged material vol-

ume. This surface has an area large enough to contain a

representative number of defects, but still enabling to be

referred as pertaining to a particular material point.

Thus, if Sn denotes the overall section and Sn the effec-

tive resisting area (Sn � Sn is the area occupied by the

voids), the damage variable dn associated with this sur-
face is

dn ¼
Sn � Sn

Sn
¼ 1� Sn

Sn
ð2:1Þ

Clearly, dn represents the surface density of material
defects and it will have a zero value when the material is

in the undamaged virgin state. Conversely, the reduction

of the effective resisting area will lead to an increase of

damage until rupture defined by some critical value of dn
(bounded by the unreachable value of dn ¼ 1). Note that
this is a directional definition of damage. In many cases

a single scalar representation of damage is adopted (i.e.

dn ¼ d) which suffices to ensure realistic material mod-
elling. It is worth noting, that in this case cracks at a

microscopic point need have no particular direction and

a macroscopic crack is then defined as the locus of

damage points.

A useful concept for understanding the effect of

damage is that of effective stress. The equilibrium rela-

tionship between the standard Cauchy stress r and the
‘‘effective’’ stress, �rr, in the damaged bar specimen of Fig.
2 is

rS ¼ �rrS ð2:2Þ

Fig. 1. Mechanics of damage and propagation of a macro-

scopic crack in plain concrete.
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and from (2.1) and (2.2)

r ¼ ð1� dÞ�rr ¼ ð1� dÞEe ð2:3Þ

When a damaging process is occurring, the external

loading is resisted by the effective stress area and,

therefore, �rr is a more physically representative param-
eter than r. Note that the Cauchy stress vanishes when
the damage parameter approaches unity. Eq. (2.3) also

allows to identify an equivalent Young Modulus

E ¼ ð1� dÞE which also tends to zero as d ! 1 (Fig. 2).

3. Damage constitutive model

3.1. General concepts

The first formulations started from representing the

behaviour of materials in an approximate form based

mainly on experimental studies. Today, it is required

that these formulations be thermodynamically consis-

tent. Among those meeting this requirement, the so-

called continuous damage theory is generally accepted as

an alternative in the most complex constitutive formu-

lations [14,30]. The damage models have a rigorous but

relatively simple formulation strictly based on thermo-

dynamics [39]. They deal with the nonlinear behaviour

by means of one or more internal variables called

damage variables, which indicate the loss of secant

stiffness of the material and are normalised to a unit

value which corresponds to maximum damage. Fig. 3

shows a simplified unidimensional representation of the

behaviour of a point within a damaged material [30].

The model presented herein is a 3D damage constit-

utive model based on solid mechanics and it has a single

internal variable [30]. Therefore, this is a local isotropic

damage model and it is based on Kachanov’s theory

[20], appropriate for simulating the behaviour of con-

crete under monotonically increasing loads. Many ideas

inherent to the model have been taken from the works of

Sim�oo and Ju [39], Lubliner et al. [27] and Oliver et al.
[30]. This formulation has been chosen because it is a

compromise between the complexity of the models de-

scribing the behaviour of the concrete and the versatility

needed when dealing with dynamic problems. This in-

sures accurate results and low cost solutions for the

nonlinear problems which are the object of this paper.

The numerical treatment of viscoelastic phenomena

in materials can be followed in detail in Lubliner [28]

and Sim�oo and Hughes [39]. The damping effect of the
structure is simulated in this work by using a model

consisting of a damper placed in parallel with the

structure [6].

3.2. Characteristics of the damage model

3.2.1. Free energy and constitutive law

The model is formulated in the material configura-

tion, for thermodynamically stable problems with no

temperature time variation. For this specific case the

following mathematical form for the free energy is as-

sumed, where the nondamaged elastic part is expressed

as a scalar quadratic function of tensorial arguments

[30,37]

Wðe; dÞ ¼ ð1� dÞW0ðeÞ ¼ ð1� dÞ 1

2q0
eTr0

� �

¼ ð1� dÞ 1

2q0
eTC 0e

� �
ð3:1Þ

In Eq. (3.1) the strain tensor e is the free variable of the
problem, d (06 d 6 1) is the internal damage variable, q0
is the density in the material configuration and C

0

is the

stiffness tensor of the material in the initial undamaged

state.

For stable thermal state problems the Clasius Planck

dissipation inequality is valid, whose local Lagrangian

form is [28]

Fig. 2. (a) Damaged surface, (b) Cauchy r and effective �rr
stresses and (c) uniaxial stress–strain curve.

Fig. 3. Local damage behaviour.

1670 A.D. Hanganu et al. / Computers and Structures 80 (2002) 1667–1687



_NNm ¼ 1

q0
rT _ee � _WW P 0 ð3:2Þ

_NNm ¼ 1

q0
rT

�
� oW

oe

�
_ee � oW

od
_dd P 0 ð3:3Þ

This expression for the dissipation rate _NNm allows the

following two considerations:

(a) In order to guarantee the unconditional fulfilment

of the Clasius Planck inequality [28], the multiplier of _ee
which represents an arbitrary temporal variation of the

free variable, must be null. This condition provides the

constitutive law of the damage model:

1

q0
rT � oW

oe
¼ 0) r ¼ q0

oW
oe

� �T
¼ ð1� dÞC0e

¼ CSe ð3:4Þ

CS ¼ ð1� dÞC0

where CS is the secant stiffness tensor.

(b) Inserting the last equation into (3.3), the dissi-

pation rate is now given by

_NNm ¼ � oW
od

_dd ¼ W0
_dd P 0 ð3:5Þ

AsW0 is always positive, Eq. (3.5) states that the damage

rate _dd cannot be negative, i.e. the damage level can only
stay constant or increase and never decrease.

3.2.2. Damage criterion

The damage criterion is defined as a function of the

free energy of the undamaged material, expressed in

terms of the undamaged principal stresses rp;0i , as

F ¼ Kðrp;0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q0W0

p
� 1

¼ Kðrp;0Þffiffiffiffiffi
E0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðrp;0i Þ2
vuut � 16 0 ð3:6Þ

where the terms of the above equation have the fol-

lowing meaning:

Kðrp;0Þ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q0ðW0

t ÞL
q þ 1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q0ðW0
cÞL

q ; r ¼
P3

i¼1hr
p;0
i iP3

i¼1 jr
p;0
i j

2q0ðW0
t;cÞL ¼

X3
i¼1

h�rp;0i iei; ðW0ÞL ¼ ðW0
t ÞL þ ðW0

cÞL

In these equations ðW0
t;cÞL represent the part of the free

energy developed when the tension/compression limit is

reached and h�xi ¼ 1
2
ðjxj � xÞ is the McAuley’s function.

Taking into account that the tension and compression

strengths are ft ¼ ð2q0W0
tE

0Þ1=2L and fc ¼ ð2q0W0
cE

0Þ1=2L

respectively, and substituting the last definition in the

Eq. (3.6), the damage function can be written, according

to Fig. 4, as

F ¼ �rr � fc6 0 ð3:7Þ

where

�rr ¼ ½1þ rðn� 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðrp;0i Þ2
vuut ð3:8Þ

with n ¼ fc=ft. This damage function, expressed in the
nondamaged principal stresses space, allows a great

number of choices. The advantage of the yield criterion

written in Eq. (3.8) is that any yield function F can be

used always as long as it is homogeneous and of first

order in stresses (i.e. Mohr–Coulomb, Drucker–Prager,

Lubliner et al. [27], etc.), in substitution of the equiva-

lent stress �rr.
This opens the possibility of applying more accurate

and powerful theories within the theoretical framework

given by Eq. (3.7). Nevertheless, the simple form pro-

vided by Eq. (3.8) fulfils the above requirements; besides,

it is simple and yields satisfactory results within the

range of assumptions made for this model and therefore

will be used henceforward as the scalar expression de-

fining �rr [30]. Sim�oo and Ju [37] proposed a very conve-
nient expression entirely equivalent to (3.7)

F ¼ Gð�rrÞ � GðfcÞ6 0 ð3:9Þ

where GðvÞ is a scalar monotonic function to be deter-
mined. Its shape is to be chosen suitably to the subse-

quent development of the damage model.

Fig. 4. Damage yield function in the principal stress plane

r1 � r2.
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3.2.3. Evolution of the damage variable

The following evolution law is used for the damage

internal variable:

_dd ¼ _ll
oF
o�rr

¼ _ll
dGð�rrÞ
d�rr

ð3:10Þ

where _ll is a nonnegative damage consistency parameter,
analogous to the plastic consistency parameter _kk in

standard plasticity theory.

Similarly to plasticity, a yielding criterion F ¼ 0 and
a consistency condition _FF ¼ 0 for a point subjected to a
damaging process are defined. The yielding rule and the

properties of GðvÞ allow to write Gð�rrÞ � GðfcÞ ¼ 0, what
implies �rr ¼ fc and consequently

dGð�rrÞ
d�rr

¼ dGðfcÞ
dfc

ð3:11Þ

From the condition of consistency––that means persis-

tency on the damage surface––and from the properties

of function GðvÞ, the following equation is deduced:

oF
o�rr

_�rr�rr þ oF
ofc

_ffc ¼
dGð�rrÞ
d�rr

_�rr�rr � dGðfcÞ
dfc

_ffc ¼ 0 ð3:12Þ

and the use of (3.11) allows to write _�rr�rr ¼ _ffc. Eq. (3.12)
can be now rewritten and leads to

dGð�rrÞ
d�rr

_�rr�rr ¼ dGðfcÞ
dfc

_ffc ¼
dGðfcÞ
dfc

dfc
dðdÞ

_dd

¼ dGðfcÞ
dðdÞ _ll

dGð�rrÞ
d�rr

ð3:13Þ

_�rr�rr ¼ dGðfcÞ
dðdÞ _ll ð3:14Þ

Conveniently choosing GðfcÞ as the function which de-
scribes the evolution of the damage ½d ¼ GðfcÞ�, the
damage consistency parameter _ll can be expressed as

_ll ¼ _�rr�rr ¼ _ffc ¼
o�rr
or0

_rr0 ¼ o�rr
or0

C0 _ee ð3:15Þ

Substituting this equation into (3.10) and (3.5), the fol-

lowing expressions which govern the temporal evolution

of the damage and dissipation variables are obtained:

_dd ¼ dGð�rrÞ
d�rr

_�rr�rr ð3:16Þ

_NNm ¼ W0
_GGð�rrÞ ¼ W0

dGð�rrÞ
d�rr

_�rr�rr

¼ W0

dGð�rrÞ
d�rr

o�rr
or0

C0 _ee ð3:17Þ

The loading/unloading condition is derived from the

relations of Kuhn–Tucker formulated for problems with

unilateral restrictions: (a) _ll P 0; (b) F 6 0 and (c)

_llF ¼ 0. From these, if F < 0, then the third condition

imposes _ll ¼ 0 and, if _ll > 0, then the same condition
requires that F ¼ 0.

3.2.4. Definition of function G

From the different alternatives for defining function

GðvÞ [37], the following equation was chosen here

GðvÞ ¼ 1� GðvÞ
v

ð3:18Þ

where GðvÞ describes a function so that it gives for
v ¼ v� the initial yield stress G

�
and for v ! 1 the final

strength G ! 0. Thus, by running all the deformation

path, the point will have dissipated an energy equivalent

to the specific fracture energy. In our work, the expo-

nential function proposed by Oliver et al. [30], which is

shown in Fig. 5, was used

GðvÞ ¼ v�eA 1� v
v�ð Þ; GðvÞ ¼ 1� v�

v
eA 1� v

v�ð Þ ð3:19Þ

For a uniaxial tension process under monotonically in-

creasing load, the temporal dissipation change is given

by (3.6), with �rr ¼ nrt and

W0 ¼
1

2
etE0et ¼

ðrtÞ2

2E0
¼ �rr2

2n2E0
:

Integrating (3.6) in time we can calculate the total dis-

sipated energy at the end of the uniaxial tension process

as

Nmaxt ¼
Z 1

�rr�

�rr2

2q0n2E0
dGð�rrÞ
d�rr

d�rr

¼
Z 1

�rr�

�rr2

2q0n2E0
dGð�rrÞ ð3:20Þ

and after operating we get

Nmaxt ¼ ð�rr�Þ2

q0n2E0
1

2

�
þ 1
A

�
ð3:21Þ

Fig. 5. Representation of function GðvÞ.
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giving

A ¼ 1

Nmaxt q0n
2E0

ð�rr�Þ2
� 1
2

ð3:22Þ

where �rr� is the initial damage stress. Parameter A is

never negative, as the material must dissipate at least the

energy accumulated when reaching the initial damage

stress �rr�. Making the same hypotheses for a uniaxial

compression process and postulating that parameter A

must be the same in both cases, it is deduced that

A ¼ 1

Nmaxc E0

ð�rr�Þ2
� 1
2

ð3:23Þ

and, as parameter A must be the same as in (3.22)

Nmaxc ¼ n2Nmaxt ð3:24Þ

The value of tension maximum dissipation Nmaxt is a

material parameter equal to the fracture energy density

gf , parameter derived from fracture mechanics as

gf ¼ Gf=lc, where Gf is the fracture energy and lc is the
characteristic length of the fractured domain [26,30].

3.2.5. Tangent constitutive law

From (3.4), the variation of the stress tensor and fi-

nally the unsymmetric tangent constitutive tensor CD of

the damage model can be deduced as [6]

dr ¼ CSde þ dCSe; dCS ¼ oCS

od
dd ¼ �C0dd ð3:25Þ

dr ¼ CDde ¼ ð1
"

� dÞI � dGð�rrÞ
d�rr

r0 � o�rr
or0

#
C0de

¼ ðI �HÞC0de ð3:26Þ

where

CD ¼ ðI �HÞC 0

In these equations, I is the identity matrix of the same
order as C0 and H is a nonsymmetric damage matrix,

depending only on the stress vector r0 of the undamaged

material, as the damage variable is also implicitly related

with the mentioned stress vector through the equivalent

stress �rr.

3.3. Visco-elastic effects

The effect of damping on the material behaviour

under dynamic loads is now considered by means of a

Kelvin model. In this model, each point of the material

undergoes the same deformation e, so that the total
stress rtot of the system will be the sum of a nonviscous

stress r and a viscous stress rvis, i.e.

rtot ¼ r þ rvis ¼ CSe þ gS _ee ð3:27Þ

where the secant viscous constitutive matrix gS is defined

here as

gS ¼ g
E0

CS ¼ aCS ð3:28Þ

This viscous tensor definition is based on the hypothesis

that at the end of the load process a material point re-

mains completely relaxed, without stiffness nor cohesion

between particles. For this reason, it is assumed in this

work that the material point does not preserve its initial

viscous characteristics and it loses viscosity propor-

tionally with its loss of stiffness. However, this hypoth-

esis is flexible and can be adapted to the material type

without affecting the subsequent general formulation. In

equation (3.28), g is the one-dimensional viscous pa-
rameter and a is the relaxation time, defined as the time
needed by the elasto-viscous system to reach a stable

configuration in the undamaged state.

With these assumptions, the behaviour of the system

under virtual variations in strains and strain velocities

can be obtained as

drtot ¼ dr þ drvis ¼ CDde þ aðCSd _ee þ dCS _eeÞ
¼ CDde þ aðCSd _ee � C0 _eeddÞ ð3:29Þ

Introducing r0vis ¼ aC0 _ee and using relation (3.26), the
visco-elastic incremental strain–stress relation is ob-

tained as

drtot ¼ CD
visde þ aCSd _ee

¼ ðI �HvisÞC0de þ aCSd _ee ð3:30Þ

where Hvis takes the following value [6,7]:

Hvis ¼ dI þ
dGð�rrÞ
d�rr

ðr0 þ r0visÞ �
o�rr
or

0

ð3:31Þ

4. Global damage indices

4.1. Basic concepts

The idea for the GDI definition stemmed from a

macroscale analogy with the microscale local damage

index (LDI) definition. Thus, the starting point for de-

ducing a global structural damage index is Eq. (3.1),

which defines local damage as a relation between the

actual free energy W of the damaged material and the

elastic free energyW0 of a fictitious undamaged material.

The latter energy corresponds to the specific strain en-

ergy the material would store should it undergo the ac-

tual strains while preserving its initial elastic properties.

Therefore, the two above mentioned specific free ener-

gies may be mathematically interpreted as norms of
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material stiffness, as the strain field is the same in both

cases.

These considerations lead to the conclusion that the

LDI is actually a coefficient that measures the loss of

stiffness relative to the initial state at a particular phys-

ical location. A value of 0.2 for the LDI means that 20%

of the initial stiffness at a material point has been lost

during the nonlinear process.

4.2. Formulation

In the previous section the significance from a

structural perspective of the LDI and the magnitudes

involved in its definition was outlined. All this micro-

scale philosophy is extensible to macroscale level in

order to produce a GDI for a finite structural volume,

containing an infinity of points, each with a different

LDI.

It seemed natural to reach this objective by inte-

grating the pointwise Eq. (3.1) over a finite mass,

keeping in mind that dm ¼ q0dV , as follows:

W ¼ ð1� dÞW0 ) Wp ¼
Z
V

q0WdV

¼
Z
V
ð1� dÞq0W0 dV ¼ ð1� DÞW 0

p ð4:1Þ

where D is the GDI of the considered structural mass,

W 0
p ¼

R
V q0W0 dV is its fictitious ever-elastic potential

energy due to the actual strains and Wp is the actual
potential energy. Solving Eq. (4.1) for D, yields the final

expression:

D ¼ 1� Wp
W 0
p

¼
R
V q0W0dV �

R
V ð1� dÞq0W0dVR

V q0W0 dV

¼
R
V dq0W0 dVR
V q0W0 dV

ð4:2Þ

This expression is formally similar to other proposed

GDIs, usually sought as weighted volume averages of

LDIs, but for the weighting factors (q0W0) that are

particular to the proposed GDI.

In a finite element context, expression (4.2) takes the

following operational form:

D ¼ 1�
P

e a
T
R
V ðeÞ B

TrdVP
e a

T
R
V ðeÞ B

Tr0 dV
ð4:3Þ

where
P

e denotes the sum over a number of finite ele-

ments, a is the mesh nodal displacement vector, B is the
strain displacement matrix, V ðeÞ is the volume of each

finite element (e), r is the actual stress vector and r0 is

the stress vector should the material preserve its original

characteristics and undergo the actual strains. The sum

is performed over the group of elements for which a

value for the GDI is sought. It may be observed that the

smallest entity on which a GDI may be calculated is a

single finite element.

4.3. Properties

Expression (4.3) of the GDI depends exclusively on

the actual nonlinear stresses and the hypothetically lin-

ear ones. It is absolutely general in the sense that it is

independent of the local constitutive model. The local

damage model described in this paper served as theo-

retical basis for deducing the GDI methodology, but is

not at all a compelling requirement for its application.

However, the objectivity and accuracy of the GDIs will

always depend on those same qualities of the local

model. This is so because the GDI methodology does

not have the least effect on structural behaviour as it is

basically a tool for assessing the state of a structure. It is

not responsible for the manner the structure has reached

its actual configuration. Thus, the GDI evaluation metho-

dology operates as a postprocess that may be imple-

mented with relative ease in any existing nonlinear finite

element code.

A GDI value has the significance of the unit com-

plement of the ratio between the potential energy of the

actual strain field the structure undertakes because of

damage and the hypothetic potential energy the struc-

ture would store had it stayed undamaged under the

same strain field. Furthermore, the GDIs, similarly to

the LDIs, give a measure of structural stiffness loss.

All these considerations seem to lead to the conclu-

sion that both LDIs and GDIs share similar nature and

properties. Nevertheless, there is a most important and

enlightening difference not apparent at first view, that

needs special emphasis. While Eq. (3.5) clearly states the

nondecreasing nature of LDIs, therefore the irreversi-

bility of local damage, an equivalent statement for GDIs

is not possible, meaning GDIs may indeed decrease in

special circumstances. The explanation of this intriguing

characteristic lies in the integral nature of GDIs in

contrast with the material intrinsic nature of LDIs.

An example will bring a clearer understanding of the

phenomenon: Imagine a four-legged chair with one leg

considerably weaker that the other three. Suppose that

somebody rests his substantial weight on that frail leg

braking it. Now the chair will be unable to bear even the

lightest child sitting on the chair exactly in the same way

as when it was led to failure. This situation clearly cor-

responds to a GDI for the entire chair of 1, LDIs of 1

somewhere along the broken leg and no local damage

for the remainder legs. Now suppose further that the

same light child sits on the leg opposite the broken one

and that leg withstands the small load within the elastic

behaviour range. The GDI for the entire chair in his new

circumstance is definitely 0, as there is no difference

between the behaviour of the broken chair and that of

an identical new chair. Why? Because the broken leg
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plays no role anymore, the chair is bearing the new load

without needing its strength.

This behaviour highlights the filtering characteristic

of GDIs, consisting in eliminating the contribution of

irrelevant parts of the structure and identifying and

following the evolution of its critical zones. The re-

sponsibility for this feature lies with the strain field

acting as weighting factor in the GDI definition. This

selects only those structural parts whose contributions

to the capacity to resist the applied load, are significant.

The above example stresses the obvious fact that the

damage level depends strongly on the applied load. The

immediate consequence is that GDIs are measures of

stiffness vis-�aa-vis the loads causing the damage. In case
of proportional loads (fixed loads that vary propor-

tionally only in amplitude), the GDIs are as irreversible

as the LDIs. If the load characteristics change, such as in

dynamic analyses, the GDIs may oscillate as the various

load-bearing capacities are brought in and out of action,

while LDIs always stay irreversible.

All this renders impossible the general description of

structural state exclusively by means of GDIs, disre-

garding the load that induced the damage. However, in

most cases there is a nonzero damage correlation level

between the various loads acting on a structure. For

example, the damage generated by an earthquake (hor-

izontal loads) generally affects the structural behaviour

under service loads (vertical loads), but almost never the

damage level is transmitted entirely, signifying that the

GDIs are not the same when the type of load changes.

The inconvenience arising from the nonirreversible

nature of GDIs may be circumvented if a reference load,

such as dead-load or service load, is established for

comparison purposes. This implies unloading the dam-

aged structure and subsequently reloading it with the

reference load. This unifying criterion allows obtaining

comparable GDIs for different loads.

These properties of the GDI allow the study of the

evolution of structural load-carrying capacity along

complex load histories. The GDI always shows syn-

thetically the quota of initial structural resistance that

has been lost due to the nonlinear behaviour of con-

stitutive materials under a certain load.

5. 3D Reinforced concrete finite element

The 20-node tri-quadratic isoparametric hexahedrical

serendipity element is used for computations in this

work. The stiffness and mass matrices are derived in the

usual way as

K c ¼
Z
V
BTC cBdV ; M ¼

Z
V
NTqN dV ð5:1Þ

where B is the strain–displacement matrix, C c is the

material constitutive matrix for concrete and the integral

extends over the volume of the element. The numerical

integration is performed using a reduced quadrature of

15 integration points instead of the usual 3� 3� 3 point
Gaussian quadrature, without losing accuracy and effi-

ciency [9,34]. The rule is (see Fig. 6)Z Z Z þ1

�1
f ð�1; �2; �3Þd�1 d�2 d�3

¼ Af ð0; 0; 0Þ þ B½f ð�b; 0; 0Þ þ f ðb; 0; 0Þ þ � � ��
þ C½f ð�c;�c;�cÞ þ f ð�c;�c; cÞ þ � � �� ð5:2Þ

where �1, �2 and �3 are the normalised natural coordi-
nates. The weight factors and the sampling points take

the following values: A ¼ 1:564444, B ¼ 0:3555556,
C ¼ 0:5377778, b ¼ 1:000000 and c ¼ 0:6741000. The
position of these sampling points includes six points on

the centre of the faces and one point in the centre of the

element.

Perfect bond between the reinforcement bars and the

surrounding concrete is assumed. This displacement

compatibility allows treating the steel as integrant part

of the 3D finite element. The steel stiffness matrices of all

layers K i
s are added to that of the concrete, K c, thus

obtaining the total stiffness (see Fig. 7) as

K ¼ K c þ
X
i

K i
s ð5:3Þ

Each set of reinforcement bars is distributed as a

bidimensional layer of equivalent thickness placed

within the concrete element in a position such that one

of the local natural coordinates is constant for that

layer. In that plane, the stiffness of the layer is oriented

according to the direction of the actual bars.

The stiffness contribution of each steel layer is com-

puted as follows:

Fig. 6. Integration points distribution for the hexahedrical el-

ement.
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K i
s ¼

Z Z
Xi
TTBTC i

sBTtdX ð5:4Þ

where C i
s is the constitutive matrix of the steel layer i, T

is the rotation matrix from the local coordinate system

attached to the steel bar to the global coordinate system,

t is the equivalent thickness of the layer and the integral

is performed over the surface of the layer Xi.

The described element admits any number of layers,

each made of a different material and with either

uniaxial or biaxial behaviour. In this study, the rein-

forcement bars are assigned unidirectional stiffness

properties. Their constitutive behaviour is modelled by

means of an elasto-plastic hardening law with elastic

unloading. A strain limit corresponding to sudden fail-

ure is also considered.

6. Plane frame failure simulation

A simple plane frame constitutes a good test case in

this exercise meant to display the possibilities the new

GDI methodology opens for the assessment of the

damage history of entire structures and its component

parts. It will be shown how the GDI methodology may

be used to deepen the understanding of intimate loca-

lised failure mechanisms and load redistributions within

a civil engineering structure.

The frame is subjected to a static load and the

properties of the GDIs will be easily highlighted as the

intuitive character of structural behaviour will render

them evident.

6.1. Structural description

A layered Timoshenko quadratic beam finite element

[18] was used in the study of the frame in Fig. 8 sub-

jected in its left upper corner to the static action of an

imposed horizontal incremental displacement up to 4%

of total hight (push-over test). The RC frame is 9 m high

and 6 m wide and has three floors.

The columns have 30� 30 cm cross-sections rein-

forced symmetrically with 4.35% steel and the beams

40� 30 with 5.3% steel. These reinforcement percent-

ages are unrealistic and were chosen so high for dem-

onstration purposes. All finite elements are 1 m long and

have 20 layers, the 2nd and the 19th of steel and the

remainder of concrete. Typical material properties are

assumed for both materials. The constitutive model for

concrete is the isotropic damage model described in

Section 3, while for steel a perfect elasto-plastic law was

chosen, such that, once the steel reaches the elastic limit,

it yields indefinitely at constant stress.

6.2. Results

The plane frame was analysed with the GDI meth-

odology during all the load history. The purpose was to

monitor how the GDIs describe the shifting patterns

generated by stress redistribution due to damage and

their capacity to discern the relevant parts of the struc-

ture that play a key role in its behaviour.

In order to compare the behaviour of the critical

parts of the structure, seven nondisjunctive sets of finite

elements have been observed during the load process:

the whole structure, the three floors comprising each

three columns plus their two upper beams and, finally,

the three columns of the first floor separately.

The evolution of the resistant force versus the dis-

placement imposed in the left upper corner of the frame

Fig. 7. Concrete 3D element with a reinforcement steel layer.

Fig. 8. Studied frame geometry.
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are presented in Fig. 9. The evolution of GDIs for the

entire frame and the three floors are shown in Fig. 10.

Studying together these two graphs may be observed

that there are two sudden reductions of the force re-

sponse corresponding to sudden increases of the total

GDI and that of the first floor, and, to a lower extent, of

the other two floors. The explanation is found in the

detailed damage history of the first floor depicted in Fig.

11.

It is clearly expected that the structure will fail

through weakening of the columns of the first floor, first

the leftmost as it undergoes severe tension coupled with

the ground level bending, second the middle column

ceases to function and last the right column. It is

therefore clear that these three columns, belonging to the

first floor, constitute the critical parts from the point of

view of the capacity of the frame to withstand the ex-

ternal load. This phenomenon is perfectly captured by

their GDIs (Fig. 11) so that towards the end of the

loading history all three columns share the same level of

damage. It may be noted that the GDI of the first floor is

always an average of the GDIs of its three columns even

though it also comprises two beams but they add prac-

tically nothing to the first floor GDI.

When the entire structure GDI evolution is compared

with those of the three floors (Fig. 10) the whole damage

process gets clearer. The overall GDI and floors GDIs

behave similarly until the brittle collapse of the third

column of the first floor, which occurs for an imposed

displacement of around 10 cm (Fig. 11). From that point

on (after the first dramatic decline in response force––

Fig. 9) the overall GDI assumes more and more com-

pletely the behaviour of the first floor, ignoring what

happens to the rest. It seems that at this point the overall

GDI decided that only the first floor state is relevant and

this idea seems to be maintained until the end of the load

history.

The second steep fall in response force at 13 cm im-

posed displacement (Fig. 9) corresponds to the brittle

failure of the first floor columns concrete in compres-

sion, and the ensuing redistribution of stresses towards

the steel. It corresponds to a change of static configu-

ration for the whole structure due to the formation of

perfect plastic hinges and not to important changes of

damage levels. Starting at that point, the concrete is

practically inexistent at hinge locations and only the

steel remain there so that the response force stays con-

stant as the steel has a perfect plastic behaviour from

here on.

Fig. 9. Force–displacement curve for the left upper corner.

Fig. 10. Evolution of the GDIs for the entire frame and its three floors.
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Fig. 12 presents the deformed shapes with the

correspondent elemental GDIs (GDIs for each finite

element separately) distributions for imposed displace-

ments of 9.2 cm, before failure of the third column (Fig.

12(a) and (b)), and 35.5 cm, close to failure (Fig. 12(c)

and (d)) respectively. The mentioned change in static

configuration may be observed as well as the relatively

even damage distribution before plastic hinge formation

at the ends of first floor columns, where damage levels

are maximum at the end of the load history.

7. Pathology of a housing building

Housing buildings often display structural problems

after completion when, due to constructive vices, ex-

ceptional loads like earthquakes or later accidents like

ground movements, these are rendered unserviceable

and rehabilitation decisions need be taken.

The methodology described herein proposes re-

constructing through numerical analysis the surveyed

damaged state of a structure and in this manner explain

the underlying reasons of unaccounted-for structural

behaviour while simultaneously quantifying them by

means of GDIs. These indices signal the weaker zones

and provide the measure of their experimented stiffness

loss. When a configuration similar to the real state of the

building is found, deductions can be made about the

actual structural characteristics using similarity tech-

niques.

Numerical simulations carried out with the damage

model can provide assessments of the proposed repair

works and help define the optimum intervention, being a

valuable tool both for diagnosis and rehabilitation of

buildings.

7.1. Description of the structure

The studied structure is a five-storey building with

two symmetrical flats per floor. The third floor presented

extensive damage from unknown reasons and was

therefore the object of detailed analysis. The finite ele-

ment mesh and the RC members of the semi-structure

actually analysed are shown in Fig. 13. This study was

performed using the 3D RC finite element described in

Section 5.

The trouble with this building was that soon after

completion and being already in use, micro-cracks which

soon became important cracks appeared. That fact im-

posed urgent measures which were developed in two

stages: survey of the actual state of the building and

numerical modelling in order to simulate its behav-

iour.

7.2. Strategy of analysis

The applied load in the numerical simulation con-

sisted in own weight plus an incremental pressure on

both upper and lower floors so scaled so that nominal

service load correspond to a load factor of 1.

Fig. 14 shows the cracks observed on the third floor

during the survey and those same cracks as obtained

from the analysis results. The most important cracks

were detected in the partition walls and excellent overall

correlation with the analysis was accomplished, with

exactly the same localisations as in the real case, but for

Fig. 11. Evolution of the GDIs for the first floor and its three columns.
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a load factor of 4. This suggests that the trussed joists in

the floors are much more flexible than expected given

that the partition walls are not supported by any col-

umn. However, as complete failure occurred for a load

factor of 5.9, may be concluded that the actual safety

factor is only 1.45 and that the actual state of the

structure under service load is that corresponding to the

computed configuration subjected to 4 times the service

load.

In view of this surprising result, a verification cam-

paign was initiated and it was discovered that the rein-

forcement bars of trussed joists and some of the beams

Fig. 12. Deformed shape and elemental GDIs for two characteristic moments of the load history.

Fig. 13. Third floor mesh. Reinforcement bearing members of half structure.
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showed important drift from design specifications about

distance between bars that leads to important stiffness

alterations.

Fig. 15 shows elemental damage distribution and

confirms that the cracks appear in the most damaged

zones. Fig. 16 presents the evolution of GDIs for the

complete floor and its constitutive parts. The dominant

GDI is that of the partition walls as the overall GDI

traces its trajectory since the beginning of the load his-

tory. The second most decisive GDI is that corre-

sponding to the beam filling.

This paramount role of plain masonry parts suggests

that the intended resistant members are failing their

mission. The message that this anomalous behaviour

sends is that the serviceability of the structure depends

on structural parts which are not supposed to play this

role. Thus the GDI is proven to be a resourceful tool for

structural health assessment.

8. Failure pressure evaluation of the containment building

of a large dry nuclear power plant

The evaluation of the failure pressure of the con-

tainment building of a large dry PWR-W three loops

nuclear power plant is described in this section. The

method considers fully tridimensional finite element

models in order to take into account the effect of the

most significant structural characteristics (presence of

three buttresses, penetrations, additional reinforcement

around the penetrations, etc.), the lack of symmetry of

the forces generated by the prestressing system, as well

as the nonlinear behaviour of the materials and the

sensitivity of the results to uncertainties associated with

several material parameters.

The GDI methodology is used to ascertain the in-

fluence of structural parts on the overall structural be-

haviour and to identify and confirm the causes of failure.

Fig. 14. Third floor cracks: (a) visual survey and (b) numerical simulation.

Fig. 15. Elemental GDIs map at failure.
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8.1. Description of the structure

The RC containment building which hosts the reac-

tor core and its cooling system consists of a massive

foundation slab and a vertical cylindrical wall closed on

the upper part by a hemispherical dome. The structure

has an additional prestressing system for the wall and

the dome consisting of nonadherent tendons and its in-

terior is protected with a steel liner having a sealing role.

Fig. 17 shows vertical and horizontal cross-sections of

the structure, including the main geometrical parame-

ters. The most important dimensions of the structure

are: interior diameter of the wall 40 m, interior total

height 63.4 m, interior height of the cylinder 43.4 m,

thickness of the foundation slab 3 m, thickness of the

cylindrical wall 1.15 m, thickness of the dome at its

highest point 0.95 m, average liner thickness 6.5 mm.

There are three vertical buttresses on the outer side of

the cylindrical wall spaced at 120�, which serve as sup-
port for the horizontal prestressing system. The pene-

trations in the cylindrical walls having a major impact

(being modelled therefore) on the structural behaviour

are: the personnel airlock, the equipment hatch, the

emergency airlock, the main steam penetration, the fuel

transfer penetration and the purge line penetration.

The prestressing system is also shown in Fig. 17.

There are 132 horizontal tendons, comprising an angle

of 240� each, anchored in the 3 buttresses and 80 vertical
tendons in 2 families (N–S, E–W) anchored in a peri-

metrical gallery located in the lower part of the foun-

dation slab.

8.2. Strategy of analysis

The failure pressure is defined as the inner pressure

corresponding to the structural material exhaustion, that

is, to a certain strain limit of the reinforcement steel,

prestressing tendons and liner. The failure criterion as-

sumes that local steel rupture occurs when the men-

tioned strain limit reaches 0.8% for the reinforcement

and 1% for the tendons. The straining up to failure limit

of the reinforcement is made possible by the damage-

induced stress loss in concrete leading to stress redis-

tribution towards the steel components. The global

damage indices describe the state of entire structural

parts, summing up both concrete and steel data.

The loads considered in the analysis were the self-

weight, the external pressures generated by the pres-

tressing system and the internal pressure corresponding

to a specified accident. The distribution of the pressures

equivalent to those produced by the prestressing system

has been evaluated analytically for all the nodes of the

mesh. All the possible sources of prestressing losses have

been included in this evaluation, i.e. friction, wobble,

anchor set, instantaneous and long term, etc. The in-

ternal pressure was incremented gradually until the

structural collapse occurred.

The model was calibrated using actual displacement

and outside temperature measurements obtained during

a 4-day real pressurisation experiment performed at the

studied nuclear power plant. During the test, the inner

pressure was increased up to 1.15 times the design

pressure, which was 0.372 MPa. The results of the

Fig. 16. Global damage indices evolution.
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mentioned test allowed to calibrate those parameters of

the model referring to the amount of reinforcement steel

to be included in the regions were unconsidered pene-

trations exist. It was a safe way to determine how much

of the actual reinforcement is needed to counter the loss

of wall stiffness due to the penetrations.

8.3. Failure pressure evaluation

The influence of including the foundation slab in the

structural model on the global structural behaviour and

especially on the failure pressure was first examined. The

results show that the influence of including the slab is

quite small for low levels of internal pressure; it de-

creases further as the pressure increases and it is negli-

gible near the failure pressure, which is 1.11 MPa in both

cases. This gives a safety coefficient of the structure re-

lated to the design pressure of 2.78. Furthermore, the

cylindrical wall behaves better when the slab is present,

due to the fact that the displacements of the slab slightly

reduce the circumferential displacements of the wall; this

allows to conclude that by not including the slab, one

stays on the safety side during the complete load history.

The comparison was based on an extensive survey of

displacements, cracking patterns and reinforcement

stresses along the load path.

A comparison was made of the radial displacement–

pressure curves for the models with and without foun-

dation slab, corresponding to the same point of the

structure at the cylinder mid-height, where maximum

displacement occurs. Slightly different responses were

obtained for pressures over 0.7 MPa, due to the fact that

cracking appears at the slab-wall junction, thus soften-

ing the wall clamping effect in the model which includes

the slab. This difference does not affect the failure

pressure, and changes only slightly the displacements at

failure.

Fig. 18 shows results of a typical simulation of the

behaviour of the structure under increasing internal

pressure until failure. Fig. 18(a) shows a map of ele-

mental damage of the structure, while Fig. 18(b) shows

the broken reinforcement bars at the moment of failure,

corresponding to strains higher than 0.8%.

The model used in the analysis demonstrates an im-

portant capacity of localising the deformation when the

damage sets in. Once cracking diminishes the stiffness of

concrete, the reinforcement remains the only element to

withstand the pressure. This reduces heavily the impact

of the concrete and therefore of its constitutive behav-

iour on the failure pressure of the containment and

suggests that its complexity may be kept at a minimum.

Fig. 19 presents the evolution of several GDIs be-

longing to the most representative (from a failure pres-

sure viewpoint) zones of the structure. Given that the

failure occurs at mid-cylinder, the cylinder was divided

in three disjoint rings of finite elements: the first ring is

made of the lower row of elements that join the slab, the

second ring contains the following three rows and the

Fig. 17. Containment shell: (a) vertical section and (b) horizontal section.
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last three rows that end where the dome begins belong to

the third ring. Separately, GDIs for the cylinder as a

whole, the dome, the slab and the entire structure were

also calculated. Zooms of the final instants are shown in

a box in the graph, in order to observe in detail what

happens just before failure.

The first observation is that the presence of the

foundation slab does not influence in the overall de-

gradation patterns which develop at mid-cylinder. The

overall GDI and the GDIs for cylinder, the second and

third rings take very close values, which means that the

overall damage takes into account exclusively what

Fig. 18. Structural failure: (a) damage distribution and (b) broken steel bars.

Fig. 19. Model with slab: global damage indices evolution.
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happens in those rings, and that what happens with the

rest of the structure has little relevance. Moreover, al-

though the slab GDI displays important variations and

finally takes values well above the overall GDI, the latter

is never influenced by the state of the slab and the

driving influence keeps being that of the above-men-

tioned rings. Also, the states of the first ring or the dome

have little effect, while the cylinder GDI at his turn be-

haves like the overall GDI. The fact that the overall

GDI reaches in both cases values close to the unit show

that the structure really fails when the pressure reaches

11.1 bars.

In the segments close to the failure pressure (see box)

it may be seen that the total, cylindrical wall and rings

two and three GDIs get ever closer and their curves

change curvature, sign that the reinforcement started to

fail in those rings. Although the broken reinforcement

bars are extremely localised, it may be observed that the

overall GDI captures the phenomenon in all its inten-

sity.

Seismic analyses of the containment building were

also performed. The Californian 1940 El Centro earth-

quake was selected as reference seism, the effect on the

structure of several intensity amplitudes being studied.

The results showed that the building resists an El Centro

type earthquake at 20% real amplitudes of the ground

accelerations which corresponds roughly to seismic

regulations-stipulated maximum ground acceleration at

the real location site. For higher intensities, the structure

collapses due to failure of vertical reinforcement at the

base of the cylindrical wall, that suffers large stresses

while the building swings during the earthquake.

Fig. 20 presents the distribution of elemental GDIs

after the 20% intensity earthquake. It confirms the ex-

pected behaviour consisting in severe degradation of the

lower ring (first ring) of finite elements as the rein-

forcement bars experience severe strains leading to

widespread yielding of the steel (Fig. 21). Fig. 22 dis-

plays the evolution of significant structural parts

throughout the duration of the seism. Although less

than 3% of total structural volume undergoes important

damage levels (Fig. 20), the overall GDI consequently

reaches values above 70%. This behaviour of the GDIs

highlights its property to correctly assess structural fit-

ness vis-�aa-vis the applied load. Moreover, the observa-
tion of the behaviour of the rest of the GDIs can be

enlightening to the intimate understanding of the

structural response under these loading circumstances.

Thus, in Fig. 23 can be seen that the first ring is the most

damaged (90%), the second ring is slightly damaged

(30%) and the third ring together with the Dome are

almost as new. The cylinder as a whole, comprising all

three rings, reaches values of GDI approximately 5%

higher than the overall GDI but 15% lower than first

ring. These data certifies that the structure as a whole is

not at collapsing stage, as the influence of the first ring,

Fig. 20. Elemental GDIs after El Centro earthquake at 20%

intensity.

Fig. 21. Reinforcement bars surpassing yield limit during the

20% intensity seism.
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although dominant, is not overwhelming. It that were

not true, the GDI levels of the first ring would be

transfered in totality to its hierarchically superior

structural subsets that are, in order, the cylinder and the

whole structure. As it is, the undamaged zones of the

structure still preserve a certain specific weight in

the overall GDI, showing that the building is not close

to collapse and still retains some loading capacity.

The opposite situation occurs when the El Centro

earthquake strikes at full power (Fig. 23). In this case the

overall GDI tracks closely from the very beginning the

GDI corresponding to the cylinder that is strongly in-

fluenced by the first ring. That the overall GDI sticks to

cylinder GDI shows how it forecasts the structural col-

lapse and its cause almost from the start of the loading

history. Structural failure occurs very quickly after only

Fig. 22. Global Damage Indices evolution for El Centro earthquake at 20% intensity.

Fig. 23. Global damage indices evolution for El Centro earthquake at 100% intensity.

A.D. Hanganu et al. / Computers and Structures 80 (2002) 1667–1687 1685



4.75 seconds due to the complete braking of vertical

reinforcement bars. All three mentioned GDIs reach

levels of 100% signalling failure of the corresponding

structural parts to resist the acting load.

Further details about this study may be found in [8].

9. General conclusions

A new numerical global damage evaluation method

developed on a sound energy formulation base was

presented.

The GDI was proved to be a powerful and precise

tool for identifying the failure load and structural

mechanisms leading to failure of RC structures.

The GDI provides accurate quantitative data on the

state of any component subpart of a damaged structure

and its importance to the overall structural behaviour,

being of invaluable help to the task of assessing the re-

liability, safety and health of a structure and may well

assist in the definition of adequate repair or retrofitting

strategies.

Examples illustrating all facets and characteristics of

the GDI methodology were provided.
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