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Summary. We evaluate the behavior of several interpolations to perform density-based
topology optimization among many lattice structures. The relevance of different non-standard
mappings is compared to interpolating ten orthotropic microstructures with similar costs and
densities. More precisely, the lattices (materials) are distributed in two different interpolation
domains, namely, over the edges of a square domain and at the vertices of a non-orthogonal
decagonal prism. In addition, the material properties are interpolated by using either a Lagrange
polynomial, or Wachspress shape-functions. The performances are evaluated on a standard
benchmark problem, i.e., the compliance minimization problem over an MBB beam. The results
show that the use of an elaborated interpolation function or domain seems unnecessary for
conducting multi-material topology optimization when using one family of micro-structures with
similar geometric features.

1 INTRODUCTION

Since the early work of Bendsøe and Kikuchi [1], topology optimization has become a pow-
erful design tool in mechanical engineering. Due to the high manufacturing flexibility offered
by Additive Manufacturing, Multi-Material Topology Optimization (MMTO) of lattice struc-
tures has received considerable momentum in recent research. Several parameterizations are
available in the literature when dealing with multiple discrete materials or composite orienta-
tions. Most of them are supported by several ”density” fields ρ1, ..., ρn on a cartesian domain,
(ρ1, ..., ρn) ∈ [0, 1]n [2, 3, 4], or [5] more recently. It is also possible to interpolate the mate-
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rial properties on non-orthogonal domains, such as convex polytopes [6]. These interpolations
can be composed with additional penalization, such as the classical power law, so selecting the
appropriate material mapping based on the number of used materials and evaluated properties
(strength, stiffness, density, toughness, price, etc) could be challenging. This work aims to find
a suitable model for optimizing lattices, including ten different micro-structures with similar
costs and densities. In this study, we evaluate the performance of using combinations between
two interpolation domains and two interpolation functions. The paper is organized as follows.
Sec. 2 formulates the benchmark optimization problem. Then, Sec. 3 describes the candidate
material mappings – interpolation domains and functions –, and the optimization results are
analyzed in Sec. 4. Finally, Sec. 5 draws the conclusion and perspectives of this work.

2 FORMULATING THE OPTIMIZATION PROBLEM

This section introduces the discrete candidate materials and describes the associated two-scale
topology optimization problem.

2.1 Candidate materials

In our previous work [7], three families of lattices containing superimposed parameterized X-
shaped or XX-shaped lattices with square-shaped lattices were presented and used to optimize
lattice structures. In this work, we restrict ourselves to one of these families (Fam #1) and
treat its lattices as different candidate materials. Fig. 1 shows these lattices and their equivalent
properties. At the end of the optimization, the algorithm should then converge to the materials;
intermediate materials are not allowed due to manufacturability reasons.

Figure 1: Micro-structures used in the study (top) and their effective elastic moduli (bottom)

2.2 Design variables

In order to apply an efficient gradient-based optimization algorithm, the material discreteness
constraint is relaxed: therefore, the elastic moduli are interpolated by a differentiable mapping.
For navigating between the materials, we use the following design variables per mesh element:
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1. ρ ∈ [0, 1] distinguishes between void (ρ = 0) and solids (ρ = 1).

2. φφφ selects the lattice. This quantity can be a scalar, as in Fig. 1 where the ten lattices
are associated with scalar predefined values φpre. It can also be a vector on non-standard
interpolation domains, such as a regular decagon detailed in Sec. 3.

These design variables are optimized concurrently and can take any intermediate value during
the optimization process. So, the elastic modulus E of an element n could be written as

En(ρn,φφφn) = Eden
n (ρn)E

lat
n (φφφn). (1)

While the first part Eden
n is given by

Eden
n = Emin + ρpn(Eo − Emin) (2)

with a penalty factor p (in our case p = 3), the Young’s modulus of the material Eo and a very
small positive number Emin to prevent singularity (in our case Emin = 10−6), the second part
Elat

n depends only on the lattice and is interpolated in Sec. 3.2. After convergence, the resulting
gray materials are projected to their nearest candidate lattices in φpre.

2.3 Optimization Problem

The problem is to minimize the compliance

C(ρρρ,φφφ) = UT (ρρρ,φφφ)K(ρρρ,φφφ)U(ρρρ,φφφ) (3)

such that
K(ρρρ,φφφ) U(ρρρ,φφφ) = F, (4)

G(ρρρ) =
N∑

n=1

ρn −N · Vf ≤ 0, (5)

and
0 ≤ ρn ≤ 1,

φφφn ∈ Dφ,

where K, U, and F are the stiffness matrix, displacement vector, and load vector, respectively;
Vf is the allowed volume fraction; and Dφ is an interpolation domain associated with φφφ detailed
in Sec. 3. The sensitivities are calculated from Eq. 3, 4, and 5 and according to Eq. 1 as

∂C

∂ρn
= −∂Eden

n

∂ρn
uT
n

(∫
Ωn

BTElat
n BdΩn

)
un,

∂C

∂φn
= −Eden

n uT
n

(∫
Ωn

BT ∂E
lat
n

∂φn
BdΩn

)
un,

∂G(ρ)

∂ρn
= 1,

where Ωn is the mesh domain of element n, B is the strain-displacement matrix, ∂Eden
n /∂ρn is

obtained from Eq. 2, and ∂Elat
n /∂φn is obtained from Eq. 7, 8, or 9, depending on the selected

interpolation function. In order to prevent checker-board effect, we modify the term ∂Eden
n /∂ρn

using the sensitivity filter [8] with a radius of Rmin = 2.0 mesh elements.
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3 MATERIAL MODELS

To study the effect of the material interpolation, we evaluate two interpolation domains as
well as two interpolation functions.

3.1 Interpolation domains

We compare two interpolation domains: a square domain and a decagonal prism. The former
is 2D and orthogonal, while the latter is 3D and non-orthogonal.

3.1.1 Square domain

This is the most simple domain used in 2D, where Dφ = [0, 1]. We divide the vertical edges
of the domain into nine segments. Void is assigned to all the left nodes, while the lattices
are distributed over the right ones according to their φpre values, as depicted in Fig. 2a. An
advantage of such an orthogonal domain is that the strayed points are easy to handle by the
following projection

Proj(φn) = min(max(φn, 0), 1). (6)

3.1.2 Decagonal prism

Orthogonal domains are not suitable for all optimization problems. An example is given in
[6]: the conductors of an electrical machine are of the same nature, so they should be placed
on the same plane according to their discrete electrical phase. This consideration leads to a
diamond-shaped domain where the bottom is void, the midplane includes the conductors, and
the top is iron. Since this work also considers discrete materials of the same nature, it might
make sense to follow the same idea by defining the interpolation domain D as a regular decagon,
which includes the ten lattices, and extruding it to the void along the ρ-axis. Then, we assign
voids to the front face (ρ = 0) and place the materials at the vertices of the back side (ρ = 1),
in a symmetric order as shown in Fig. 2b. The order of the lattices is chosen to avoid the jump
in the properties between each of the two adjacent ones.

(a) Square domain (b) Decagonal domain

Figure 2: Interpolation domains
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The coordinates of a specific vertex (m) is obtained by using:

xm =
1

2
cos(ϕm) +

1

2
,

ym =
1

2
sin(ϕm) +

1

2
,

where the angle ϕ is also given in Tab. 1. In this domain, the variable φφφ is a 2D vector describing
the position in the decagon and, therefore, selecting the lattice.

Table 1: Angles and assigned materials for the vertices of the decagonal prism

Vertex Angle ϕ Material

1 1
5π Lat #1

2 2
5π Lat #3

3 3
5π Lat #5

4 4
5π Lat #7

5 5
5π Lat #9

6 6
5π Lat #10

7 7
5π Lat #8

8 8
5π Lat #6

9 9
5π Lat #4

10 10
5 π Lat #2

3.2 Interpolation functions

Similar to the previous subsection, we evaluate two approaches for interpolating the second
part of Eq. 1, i.e. Elat

n . More precisely, we employ Lagrange and Wachspress interpolations.

3.2.1 Lagrange interpolation

This method could be combined in almost all domains. We interpolate the elastic modulus
for the square, where φn is a scalar, as

Elat
n =

q∑
i=0

Ai · (φn)
i, (7)

and for the prism, where φφφn = (φx
n, φ

y
n) is a 2D vector, as

Elat
n =

qx∑
j=0

qy∑
k=0

Bjk · (φx
n)

j · (φy
n)

k
, (8)

respectively, where q, qx, and qy are the fitting degrees (in our case q = qx = qy = 3 gives
satisfactory precision) and Ai and Bjk are matrices of fitting coefficients.

5
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3.2.2 Wachspress interpolation

This interpolation comes from a generalization of barycentric coordinates used in the finite
element method [9] and is compatible with strictly convex polytopes. Accordingly, we combine
it with the decagonal prism. The elastic modulus of an element n is interpolated regarding its
location inside the domain as

Elat
n =

M∑
m=1

ωm(φφφn) ·Em (9)

with

ωm(φφφn) =
ϕm(φφφn)∑M
i=1 ϕi(φφφn)

,

ϕm(φφφn) =
Am

A+
m(φφφn) ·A−

m(φφφn)
,

where A+
m(φφφn), A

−
m(φφφn), and Am are the (signed) areas of the triangles shown in Fig. 3 for a

simpler pentagonal domain, cf. [10]. Compared with the previous square domain, it is more
involved in handling constraints in a non-orthogonal domain; there is no simple formula such as
(6). For simplicity, we use a radial projection of the points outside the decagon shown in Fig. 3,
applied after each update of the optimization variable φφφ.

Figure 3: Illustration of the Wachspress coordinates (left) and projection of the strayed points
(right) for a pentagonal domain

4 RESULTS

In this section, we solve an MBB beam problem as a benchmark to assess the different
combinations of interpolation domains and functions introduced in the previous section.

A schematic of our MBB beam problem is given in Fig. 4. The beam has a length and height
of 1.00 and 0.25, respectively, and holds a pressure of 1.00 distributed over a strip of 0.10. Due
to its symmetry, we only discretize the right half using 50×25 plane-strain elements and set the
volume fraction to Vf = 40%.

Using Wachspress interpolation is not directly possible for the square domain because not
all materials are placed over vertices; see Fig 2a. Accordingly, we combine it with Lagrange
interpolation. In contrast, the decagonal domain is compatible with both types of interpolations.

Then, we solve the problem using the Method of Moving Asymptotes (MMA) [11]. Fig. 5
shows the optimization histories for the objective function and volume constraint. Typical
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Figure 4: Schematic for the MBB beam problem

behaviors are seen in the two sub-figures, where the objective value drops steeply at the beginning
of the process and then reduces slowly until convergence. The volume constraint similarly
fluctuates around Vf value but then stabilizes. It is worth mentioning that the objective values
do not represent the structural compliance due to the fact that the design variables are relaxed.
For obtaining the physical compliance (Tab. 2), the values of φφφn need to be projected to their
nearest φpre.

Figure 5: Optimization histories for the compliance and volume constrain

Fig. 6 shows the optimized designs: the optimized values of ρρρ are plotted in the upper
subplots, while the optimized values of the lattices φφφ are displayed in the lower subplots. Gen-
erally, the three models converged to similar designs. All the designs have uniform distributions
and transitions between the lattices with very few isolated elements. On the one hand, light
brown (square) micro-structures are seen at the upper and lower regions due to their directional
strength, as expected. On the other hand, the dark (cross) microstructures, with their high
shear strength, fill the region between them.

Since the prism domain has more dimensions than the square, it should offer more connections
between lattices and more freedom to the optimization algorithm; it is, therefore, expected to
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(a) Square & Lagrange (b) Prism & Lagrange (c) Prism & Wachspress

Figure 6: Optimized designs obtained with different interpolation domains and functions

converge to a better optimum. However, when comparing the numbers in Tab. 2, it is found
that compliance is lower when using the square domain. The interpolation function also plays
a role: Wachspress interpolation leads to comparable results with the prism domain, while the
Lagrange interpolation seems to return a different and worse local optimum.

Table 2: Optimized compliance for the studied interpolation domains and functions

Interpolation Interpolation Function
Domain Lagrange Wachspress

Square 331.79 N/A

Decagonal 368.28 334.94

In addition, when comparing the computational costs, using non-orthogonal domains requires
a potentially time-consuming treatment of the strayed design points. One of the simplest meth-
ods is to project them back onto the polygon. Different types of projection may be used, such as
the radial projection (see Fig. 3, right) or minimal distance (orthogonal) projection. However,
this has to be done individually for each mesh element, which requires additional cost, especially
in 3D and higher dimensional domains. Therefore, it is preferable to keep an orthogonal domain
in our case, where only two types of micro-structures are mixed together.

5 CONCLUSION

In this paper, we studied different multimaterial interpolation schemes in which the number of
design variables does not depend on the number of candidate materials. We solved an MBB beam
optimization problem to compare the behaviors of material models combined from the square
domain and decagonal prism domain on the one hand and Lagrange polynomial and Wachspress
interpolations on the other hand. The results showed that using the simplest scheme consisting
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of a square domain with Lagrange interpolation would result in better-optimized designs and
lower computational cost than if the materials were wisely arranged within a higher dimensional
domain. However, this might not be the case anymore when additional families of lattices are
included in the optimization, which will be addressed in future work.
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