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Summary. Embedding microwires into composite materials is a novel technology that can 

provide in-situ and remote data on the structural health of the system. Damages such as 

delamination, disbond, and cracks in the composite structure induce a change in the stresses 

and strains on the microwires, modifying their electromagnetic response. Analysing this 

response with artificial intelligence can potentially allow us to not only detect these damages, 

but also characterise, localise, and quantify the damage, and possibly predict the remaining 

useful life of the structure. As part of the Horizon Europe project INFINITE, this work aims to 

develop methodologies for in-service structural health monitoring of composites equipped with 

microwire sensors. 

This work was funded by the European Union under the Horizon Europe grant 101056884. 

1. INTRODUCTION 

In 2015, the top 13 US airlines spent USD 2 billion in delays and cancellations, and USD 3 

billion in unscheduled maintenance, schedule interruptions thus garnering a total cost of USD 

5 billion. 70% of the delays and cancellations were driven by failures of Line Replaceable Units 

(LRUs), 25% of the drivers of which, such as environmental factors (severe and nominal 

weather, pollution), malfunction, and wear-and-tear can be predicted [1]. Airlines spend an 

average of USD 870 in direct maintenance costs for every flight hour. 40% of this cost is for 

engine maintenance, and 30% each for airframe and component maintenance. Of these costs, 

22% are labour cost, and 60% are material costs [2]. In 2016, the aircraft maintenance supply 

chain held an inventory of about USD 44 billion for an active global fleet of nearly 17,000 

aircraft - approximately USD 2.5 million inventory per active aircraft [3]. In 2016, the warranty 

reserves held worldwide by US-based manufacturers was USD 2.1 billion for aerospace 

Original Equipment Manufacturers (OEMs) and USD 2.3 billion for aerospace suppliers [4]. In 

case of failure, analysis to find the fault and awaiting replacement parts can incur long lead-

times thereby causing schedule interruptions for airlines. 

Structural Health Monitoring (SHM) involves the observation and analysis of a structural 

system over time using periodically sampled response measurements to monitor changes of the 
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material and geometric properties. Electrical [5] or optical [6] strain gauges need to be 

permanently connected to a data acquisition system (DAQ) to monitor the development of 

strains in structural members to record and evaluate the gradual development of the strains 

during the loading process. The size of these DAQs or the presence of extra electronic circuity 

along with sensors such as batteries or wireless connection precludes the embedding of such 

sensors inside materials. Moreover, this further limits the inclusion of such sensors in aerospace 

applications, where weight and volume are severely restricted [7]. 

Giant Magneto Impedance (GMI) effect measurement using magnetostriction can be used 

for mechanical stress detection. Using amorphous bistable glass-coated microwires, it is 

feasible to perform contactless measurements of strain, even when embedded inside composite 

structures [8]. Any damage to the composite structures that causes a change in the internal 

strains of the microwires can thus be identified, characterised, quantified, and localised – but 

the propagation of these damage properties into the values of the strain is a complex physical 

process, the data-driven inverting of which can be handled by machine learning (ML) 

approaches such as neural networks (NNs). 

The project proposes to employ hybrid physics-based, and ML based methodologies for 

predictive condition-based maintenance to enable continuous monitoring of components and 

systems, specifically using embedded microwires to automatically estimate asset health, detect 

degradation, and predict remaining useful life (RUL). A proactive approach to maintenance will 

help to reduce loss for airlines. 

Motivating examples of aircraft composite components that would benefit from in situ health 

monitoring are fan cowls, thrust reversers, inner inlet barrel, etc. Fan cowls are easily accessible 

and can be monitored with non-destructive testing, however, as they receive the widest range 

of damages the most frequently, data collected from this component will be extremely useful 

in identifying damages in the other two motivating components which aren’t easily accessible. 

Common composite damages include nicks, scratches, gouges, dents, delamination, disbond, 

and leading-edge erosion. 

2. CHALLENGES & INNOVATIONS 

Neural networks can identify complex patterns in data that humans may not be able to 

perceive. However, the black-box nature of artificial intelligence (AI) systems regarding the 

path to conclusions or decisions presents a significant impediment to the acceptance of AI-

based systems [9], especially in the aerospace domain. Abstracting key patterns identified in a 

deep learning model as actual features by using domain knowledge would make it possible to 

breakdown the model into more explainable pieces [10], paving a path towards validation and 

certification. 

Convolution leverages three important ideas that can help improve a ML system: sparse 

interactions, parameter sharing, and equivariant representations [11]. Convolutional Neural 

Networks (CNNs) use convolutional operations such as general pooling, subsampling, 

averaging, and many geometric operators, to extract features from images [12]. Since large 

depth-2 neural networks approximate a continuous function on a bounded domain [13, 14, 15], 

these seemingly abstract convolutional operators can be reinterpreted as mathematical functions 

being carried out on the data. Conversely, any physical restrictions on relationships in the data 

can be represented as convolutional filters. If these filters are being trained, constraints on these 
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filters in terms of dimensions, sizes, and weight values can be implemented to improve the 

training and performance. These restrictions have a secondary effect of reducing the learnable 

parameters of the network, thereby reducing overfitting to sparse data. Moreover, since each 

filter learned in this way can be interpreted as a physical function, it is possible (albeit unwieldy) 

to compare and adjust the weights using domain knowledge. 

Another challenge encountered while carrying out this work was the lack of experimental 

data. Due to the concurrent nature of the project activities, and an unexpected amount of effort 

required to achieve an acceptable level of signal-to-noise ratio, the manufacture of portable 

readers capable of acquiring the required data has been delayed. This necessitated the use of 

available simulation data to down select the structure of the CNN, characterise, and coarsely 

tune the hyperparameters, while leaving the fine-tuning to such a time as experimental data 

would be available. Moreover, since simulation data is deterministic and noise-free, and NNs 

don’t train or perform well under low data and noise-free conditions, the simulation data needed 

to be augmented by addition of random noise. This further exacerbated the requirement of 

restricting the NNs appropriately to prevent overfitting to variables such as simulation 

parameters and noise characteristics. 

3. EXPERIMENTAL AND SIMULATION SETUP 

 The setup to acquire electromagnetic data is shown in Figure 1 [16]. Further in the project, 

this setup will be done in test conditions where the composite sample will be under a loading 

stress. This stress will be replicated in the Finite Element Method (FEM) simulation, so that the 

data will be comparable. 

Since there are no strain sensors (apart from the microwires), the experiments will not give 

any independent data about the strains within the composite coupon. Conversely, due to the 

nature of FEM simulations, it is not possible to model the variation in EM behaviour of the 

microwires due to strain. As a result, the electromagnetic data in the experiments will be 

assumed to correspond directly to the 

strains as simulated for the same 

conditions. 

The simulation data available for initial 

efforts was generated using FEM. The 

simulated structure consists of a composite 

coupon of 8 plies of 30 mm × 30 mm × 

0.25 mm with one microwire between 

each layer at different angles to the fibre 

direction: -45° at the top and bottom of the 

structure, 45° between plies 1 & 2 and 7 & 

8, 90° between plies 2 & 3 and 6 & 7, and 

Anechoic Chamber 

Transmitting 

Horn Antenna 

Receiving 

Horn Antenna 

Composite Sample 

with Microwires 

E 

H 

Figure 1: Experimental setup [16]. A free space 

measurement system is used consisting of two broadband 

horn antennas fixed to a mini anechoic chamber covered 

inside with a microwave absorber. To provide external 

stimuli the composite samples were externally loaded or 

embedded into a planar magnetic coil. 
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0° between plies 3 & 4 and 5 & 6. There was 

no microwire simulated between plies 4 & 5. 

The finite elements were sized at 1 mm × 

1 mm × 0.0625 mm for the composite (for 30 

× 30 × 32 = 28800 elements) and ⌀ 0.02 mm 

× 0.625 mm for the microwire (for 60 

elements). The structure was constrained at 

one end, and a bending moment of 2 N·m was 

applied at the other to simulate loading stress. 

The simulation was repeated by adding 

delamination centred at one of the two 

constrained corners between plies 1 & 2, once 

with radius 10 mm and once with 20 mm 

(resemble a quarter circle of delamination). 

The aim of this work is to construct a 

minimal explainable CNN to differentiate 

between the three conditions (henceforth 

referred to as undamaged, 10 mm, and 

20 mm), and characterise the hyperparameters in anticipation of availability of electromagnetic 

data. The 3D distribution of von Mises strain and stress in the composite (referred to as 

volumetric data) and the axial strain and stress along each microwire were used separately to 

this end. 

4. EXPLAINABILITY 

The physics, in this case, proceeds in the following manner: the specific damage (or fault) 

causes a change in the volumetric strain, which causes a change in the microwire strain. This 

change in strain causes a change in the microwire electromagnetic response. The analysis, 

therefore, must start with the electromagnetic response, proceed to estimate the microwire and 

thence the volumetric strains, and thus identify the damage. 

There are several pathways that could be taken: A12∘A23∘A34, A13∘A34, A12∘A24, or A₁₄.The 

intermediate strain estimations serve to increase the modularity of the algorithms – the same 

networks could theoretically be used with a different method of measuring strain. They also 

enable a sanity-check of the network outputs, increasing their explainability; however, they 

require more training data. 

Due to the unavailability of electromagnetic data, the paths A12, A13, and A14 (denoted by 

the dashed lines) cannot currently be trained, leaving only A23, A34, and A24. This work focuses 

on training A34, and A24, leaving the choice of the final path and the fine-tuning to a future time 

when electromagnetic data is available. 

5. PHYSICS-DRIVEN SIMPLIFICATIONS 

The volumetric strain data has a 3-dimensional structure and would ideally be analysed in 

all three dimensions. The base starting CNN structure is shown in Figure 3. Given the 

dimensions of the simulation data, this structure consists of ~550K learnable parameters and 

tries to learn physical functions in all 3 dimensions. 

EM MW Vol. 
Dam

-age 

A12 A23 A34 

A13 

 

A24 

 

A14 

Figure 2: Several pathways can be taken from 

measurement of electromagnetic response to damage 

identification, through none, one, or both of microwire 

and volumetric strains or stresses. Due to the 

unavailability of electromagnetic data, the paths A12, 

A13, and A14 (denoted by the dashed lines) cannot 

currently be trained, leaving only A23, A34, and A24. 
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However, the layers of the composite are loosely coupled and have similar internal 

relationships. Thus, rather than looking at the intra-layer coupling, a simplification of the 

network is possible, where the CNN is structured to use 3D convolution with a 2D kernel 

(denoted in shorthand as 2.5D). This would also reduce the need for the second convolution 

layer, thereby yielding just ~85K learnable parameters, and thus reducing the chances of 

overfitting. 

The microwire strain data also has a 3-dimensional span, however, each microwire has a 

single dimension with the same number of elements (despite a variation in length). The 

microwires themselves can therefore be compacted as a 2-dimensional structure. Since this is 

already a smaller data size, the second convolution layer can be dropped, using ~18K learnable 

parameters. 

Once again, each microwire is loosely coupled to the others. Moreover, in the final stages of 

the project, the composite coupon will only have one microwire across the thickness, to prevent 

cross-contamination of measurements. Thus, the network can be simplified further, using a 2D 

convolution with a 1D kernel (denoted in shorthand as 1.5D). This further reduces the number 

of learnable parameters to ~10K. 

6. HYPERPARAMETERS AND THEIR CHARACTERISATION 

This section lists the hyperparameters in the CNN structure and their characterisation, to 

enable fine-tuning of the networks with experimental data. The hyperparameters were 

optimised in three steps based on their effects: 

1. Standard deviation of noise for data augmentation, 

2. Optimisation algorithm & activation function, and finally, 

3. Number of filters and convolution filter size. 

The tuning for each step was finalised before proceeding to the next. 

6.1. Data Augmentation 

Simulated models inherently result in noiseless data. To make the data as realistic as possible 

as well as to enable training of neural networks, varying degrees of white Gaussian noise was 

added to each simulation (undamaged, 10 mm, and 20 mm) to create 1000 augmented samples. 

The different standard deviations for noise parameters can be seen below in Table 1 for 

microwire data and Table 2 for volumetric data. 

 

3D Conv. × n1 

ReLU 

Batch 

Normalisation 

Max 

Pooling 

3D Conv. × n2 

ReLU 
Batch 

Normalisation 

Flatten Soft 

Max 

Figure 3: Original 3D CNN Structure for Volumetric Data showing two sets of convolution and normalisation 

layers separated by a maximum pooling layer and followed by a flattening layer and a softmax layer for output. 
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Table 1: Standard Deviation of Noise added to Microwire Data 

   Noise in Strain Data (σ) (µε) Noise in Stress Data (σ) (Pa) 

   25 50 100 180 2.5 3 5 10 

1.5D Loss 0.049 0.072 0.37 1.54 0.067 0.049 0.08 0.39 

1.5D Accuracy 0.998 0.987 0.83 0.551 1 1 0.998 0.82 

 
Table 2: Standard Deviation of Noise added to Volumetric Data 

   Noise in Strain Data (σ) (µε) Noise in Stress Data (σ) (Pa) 

   20 40 80 5 10 20 

2.5D Loss 0 0.00015 0.0003 0.0006 0.00016 0.0012 

2.5D Accuracy 1 1 1 1 1 1 

3D Loss 0.000003 0.000125 0.00015 4.89 0.066 0.025 

3D Accuracy 0.327 0.98 0.993 0.33 0.98 0.99 

6.2. Optimisation Algorithm 

While using Deep Learning, there are several options of optimisation algorithms to use. The 

ones considered are: 

• Stochastic Gradient Descent (SGD): Uses single records to update the weights. SGD 

is usually slow to converge and the path to reach global minima becomes very noisy. 

• Adaptive Gradient Algorithm (AdaGrad): Uses different learning rates for each 

weight base on iteration. While using AdaGrad, due to monotonically decreasing 

learning rates, the model stops learning after some time. 

• Adaptive Learning Rate with Momentum (AdaM): AdaM is extension of Adagrad 

that attempts to solve its radically diminishing learning rates, as well as using 

exponentially weighted averages to compute gradients, to minimise the effects of 

oscillations. 

Each of the algorithms have their pros and cons that depend on the data available [17]. 

6.3. Activation Functions 

An activation function is one that maps the output of a node to values in a fixed range. A 

neural network may learn to simulate nonlinear relationships between the input and output 

variables by introducing nonlinearity through an activation function, thereby recognising more 

intricate patterns. The activation functions considered are given in Table 3. 
 

Table 3: Activation Functions & Their Properties (summarised from [18]) 

Function Mathematical Form Range Monotonic Potential Issues 

ReLU 𝑅(𝑥) = max(0, 𝑥) [0, ∞) ✘ Dead neurons 

softmax 𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 (0, 1) ✔ Numerical instability 

tanh tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (-1, 1) ✔ Output saturation 
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In general, the effects of changing the optimisation algorithm and the activation function go 

together – it is difficult to separate out the effects of one from the other. Thus, for each of the 

combinations of an optimisation algorithm and an activation function, the network was trained 

and validated 100 times for both microwire (Figure 4) and volumetric data (Figure 5), and the 

testing loss and accuracy were compared. It can be seen that in both cases, the combination of 

the AdaM optimisation algorithm and the ReLU activation function performed significantly 

better. These hyperparameters were chosen for the last tuning step. 

6.4. Number of Filters 

The CNN training process starts with a number (denoted by 𝑛1 in Figure 3) of randomised 

convolutional filters, whose weights are optimised as the training progresses, to mimic physical 

functions. Increasing the number of filters increases the number of physical functions that can 

be utilised in the final expression, as well as increasing the probability that the right physical 
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Figure 4: Average testing loss & accuracy for microwire data across optimisation algorithms and activation 

functions over 100 runs. The combination of AdaM optimisation algorithm and ReLU activation function 

performed significantly better. 
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Figure 5: Average testing loss & accuracy for volumetric data across optimisation algorithms and activation 

functions over 100 runs. The combination of AdaM optimisation algorithm and ReLU activation function 

performed significantly better. 
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functions are learnt. However, it also increases the training time and computational 

requirements, as well as increasing the chances of overfitting to the training data and reducing 

the explainability of the final network. Thus, initialising the network with a judicious number 

of filters is essential. For the microwire data, the number of filters was varied from 8 through 

32 in steps of 8, whereas for the volumetric data, the number of filters was varied from 16 

through 128 in powers of 2. 

6.5. Kernel Size 

The kernel size denotes the length and height of the matrix used as the convolutional filter. 

A larger kernel increases the complexity of the filters, allowing for more complex physical 

functions to be learnt during training. However, a larger kernel increases training time and 

computational requirements, as well as increasing the chances of overfitting to the training data 

and reducing the explainability of the final network. Thus, choosing the right size of the kernel 
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Figure 6: Average testing loss & accuracy for microwire data across number of filters and kernel size over 100 

runs. The accuracy for all cases was almost 100%, while the loss decreased almost monotonically with 

increasing number of filters and increasing kernel size (the variations can be attributed to stochastic error). 
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Figure 7: Average testing loss & accuracy for volumetric data across number of filters and kernel size over 100 

runs. To experimental accuracy, there was essentially no difference in the performance – all the combinations 

gave 100% accuracy and infinitesimal loss. 
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is necessary. For the microwire data, where the filter is a vector, the size was varied from 2 × 1 

through 6 × 1, whereas for the volumetric data, where the filter is a square matrix, the size was 

varied from 2 × 2 through 6 × 6. 

 As the number of filters and the kernel size both represent the physical functions learnt, it 

was reasonable to optimise them together. Thus, for each combination of a number of filters 

and a kernel size, the network was trained and validated 100 times for both microwire (Figure 

6) and volumetric data (Figure 7),  and the testing loss and accuracy were compared. For the 

microwire data, the accuracy for all cases was almost 100%, while the loss decreased almost 

monotonically with increasing number of filters and increasing kernel size (the variations from 

monotonicity can be attributed to stochastic error). For the volumetric data, to experimental 

accuracy, there was essentially no difference in the performance – all the combinations gave 

100% accuracy and infinitesimal loss.  

This performance is attributed to the nature of simulation data, and further tuning of the 

number of filters and kernel size needs to be done with experimental data. 

7. FINALISED STRUCTURES 

The finalised structures for the networks are shown in Figure 8 for the microwire data and 

in Figure 9 for the volumetric data. The average training times for the networks were almost 

constant at ~5 seconds for the microwire data and from 0.5 to 1.5 minutes for the volumetric 
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Figure 8: Final structure of network for microwire data. There is only one set of a 1D convolutional and a batch 

normalisation layers, followed by a maximum pooling layer, a flattening layer, and a softmax layer for output. 
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Figure 9: Final structure of network for volumetric data. There is only one set of a 2D convolutional and a batch 

normalisation layers, followed by a maximum pooling layer, a flattening layer, and a softmax layer for output. 
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sdata (increasing with increasing number of filters and kernel size). 

8. CONCLUSION & FUTURE WORK 

This work demonstrates a pathway of training convolutional neural networks for classifying 

physics-based damages in composites in a robust and explainable way in the absence of 

experimental data. While the fine-tuning will need to be done with experimental data, it is 

possible to perform the initial hyperparameter optimisation using finite-element simulations. 

The next steps will involve creating and following a test plan for the project, generating FEM 

simulation data for the strains and experimental data for the electromagnetic response. The test 

plan will also include more faults with increasing extents, and the full dataset will be used to 

fine-tune the network for detecting, identifying, and quantifying damages in sensorised 

composite coupons. 

Outside the scope of the INFINITE project, results will be extended to composite aerospace 

structures to enable condition-based proactive maintenance and reducing the cost of reactive 

maintenance. 

9. REFERENCES 

 

[1]  US Bureau of Transportation Statistics, US Dept. of Transportation, “Transportation 

Statistics Annual Report US DOT Form 41,” 2016. 

[2]  International Air Transport Association (IATA) Maintenance Cost Task Force (MCTF), 

“Airline Maintenance Cost Executive Commentary—An Exclusive Benchmark 

Analysis of Maintenance Cost Task Force (MCTF) FY 2013,” 2014. 

[3]  D. Evans, “Aftermarket Outlook,” May 2006. [Online]. Available: 

http://www.aviationtoday.com/am/categories/rotocraft/273.html. 

[4]  Warranty Week, “Aerospace Warranty Expense Report,” 13 April 2017. [Online]. 

Available: http://www.warrantyweek.com/archive/ww20170413.html. 

[5]  L. D. Vijay Anand, D. Hepsiba, S. Palaniappan, B. Sumathy, P. Vijayakumar and S. 

Sheeba Rani, “Automatic strain sensing measurement on steel beam using strain gauge,” 

2021.  

[6]  O. G. Morozov, I. I. Nureev, A. Z. Sakhabutdinov, R. S. Misbakhov and A. A. 

Kuznetcov, “Advanced Microwave Photonics Sensor Systems: Address FBG Sensors, 

Interrogation and Calibration,” in 2022 Systems of Signal Synchronization, Generating 

and Processing in Telecommunications (SYNCHROINFO), 2022.  

[7]  M. Al Ali, P. Platko, V. Bajzecerova, S. Kusnir, S. Kmet, S. Nalevanko, A. Spegarova, 

L. Galdun and R. Varga, “Application of bistable glass-coated microwire for monitoring 

and measuring the deformations of metal structural members,” Measurement, vol. 208, 

2023.  

[8]  D. Praslicka, J. Blazek, M. Smelko, J. Hudak, A. Cverha, I. Mikita, R. Varga and A. 

Zhukov, “Possibilities of Measuring Stress and Health Monitoring in Materials Using 

Contact-Less Sensor Based on Magnetic Microwires,” IEEE Transactions on 

Magnetics, vol. 49, no. 1, p. 128–131, 2013.  



Rohan Chabukswar, Chloe Mullen, Kostas Kouramas 

 11 

[9]  A. P. Saraf, K. Chan, M. Popish, J. Browder and J. Schade, “Explainable Artificial 

Intelligence for Aviation Safety Applications,” in AIAA Aviation 2020 Forum.  

[10]  B. Shukla, I.-S. Fan and I. Jennions, “Opportunities for Explainable Artificial 

Intelligence in Aerospace Predictive Maintenance,” in PHM Society European 

Conference, 2020.  

[11]  I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.  

[12]  T. Wiatowski and H. Bölcskei, “A Mathematical Theory of Deep Convolutional Neural 

Networks for Feature Extraction,” IEEE Transactions on Information Theory, vol. 64, 

no. 3, p. 1845–1866, 2018.  

[13]  G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics 

of Control, Signals, and Systems, vol. 2, no. 4, p. 303–314, 1989.  

[14]  K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward networks are 

universal approximators,” Neural Networks, vol. 2, no. 5, p. 359–366, 1989.  

[15]  K.-I. Funahashi, “On the approximate realization of continuous mappings by neural 

networks,” Neural Networks, vol. 2, no. 3, p. 183–192, 1989.  

[16]  V. Zhukova, P. Corte-León, J. M. Blanco, A. Allue, M. Ipatov, A. Zhukov and K. 

Gondra, “Applications of Co-rich Amorphous Glass-coated Microwires for Monitoring 

the Matrix Polymerization,” in 2024 IEEE Applied Sensing Conference (APSCON), 

2024.  

[17]  E. M. Dogo, O. . J. Afolabi, N. I. Nwulu, B. Twala and C. O. Aigbavboa, “A 

Comparative Analysis of Gradient Descent-Based Optimization Algorithms on 

Convolutional Neural Networks,” in 2018 International Conference on Computational 

Techniques, Electronics and Mechanical Systems (CTEMS), 2018.  

[18]  R. Mahima, M. Maheswari, S. Roshana, E. Priyanka, N. Mohanan and N. Nandhini, “A 

Comparative Analysis of the Most Commonly Used Activation Functions in Deep 

Neural Network,” in 4th International Conference on Electronics and Sustainable 

Communication Systems (ICESC), 2023.  

 

 


	1. Introduction
	2. Challenges & Innovations
	3. Experimental and Simulation Setup
	4. Explainability
	5. Physics-Driven Simplifications
	6. Hyperparameters and Their Characterisation
	6.1. Data Augmentation
	6.2. Optimisation Algorithm
	6.3. Activation Functions
	6.4. Number of Filters
	6.5. Kernel Size
	7. Finalised Structures
	8. ConclUsion & Future Work
	9. References

