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Summary. Regarding the limit analysis modeling of the masonry system, the employment of 
rigid elements seems to be a generally acknowledged solution. It could be correct for some 
cases where the block involves a simple stress state, for instance, vertically compressed wall, 
while it may not be a reasonable modeling for the masonry arch or vault masonry since the 
combination of bending and compression should lead to a more complicated stress distribution. 
Consideration of the deformability of the block element could be necessary in this case. In this 
paper, we develop a novel brick element for the limit analysis modeling of the ring or vault 
structures. This element takes into account the deformation induced by both bending and axial 
compressing motions. A new limit analysis formulation is established according to the kine-
matic theorem. We first construct the element velocity field referring to the classical beam the-
ory, and the new compatibility condition for the deformable brick elements can then be ob-
tained. A linear constitutive based on the No-tensile-resistance (NTR) assumption is employed 
to describe the material behavior of the brick. After collecting all the updated conditions, we 
give the new limit analysis formulation for the proposed deformable brick element. Implement-
ing the proposed theory, we perform two collapse analyses as bench-mark studies to understand 
the influence of rigid or deformable modeling for the ring. The results indicate the employment 
of rigid or deformable modeling for the ring can lead to very distinct collapse performance. In 
the investigation of the 80-block arch, the presence of the deformed bricks leads to a moderate 
overall motion of the arch. The capacity prediction is also more conservative against the rigid 
modeling case. Regarding the case of the Prestwood bridge, a more flexible ring modeling will 
reduce the passive deformation of the backfill upon the ring. As a result, both dissipation and 
potential power in the backfill decrease, and the predicted collapse load is much lower. Finally, 
the load prediction in the Prestwood bridge case is comparable to the on-site experimental out-
comes carried out in the last century. The accuracy of the proposed element is thus demon-
strated.  
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1 INTRODUCTION 
Masonry arch or vault structures comprise a large proportion of architectural heritage in both 

Western and Eastern worlds, due to their aesthetic construction and reliable structural perfor-
mance. However, those buildings are still vulnerable in some extreme circumstances because 
of the cracks and damage that exist. Therefore, to provide an effective improvement on their 
structure behavior as well as necessary preventive conservation, comprehensive numerical sim-
ulation in a priori is required to understand their capacity and collapse behavior under different 
scenarios. Thanks to the development of Computational Operations Research in recent decades, 
limit analysis has become a standard and rapid approach to investigating the collapse of ma-
sonry systems, which can conveniently take into account the discontinuities at the interface and 
the real brick arrangement of the masonry. 

In the current contributions of limit analysis, rigid block modeling for masonry bricks seems 
to be a widely acknowledged solution, which has been proven reasonable when applied to ma-
sonry walls or aggregates [1-5]. Nevertheless, Gilbert et al. [6] once reported that using rigid 
elements to model the ring of the masonry arch bridge may give rise to an overestimated ca-
pacity prediction, in particular when the backfill upon the ring is included. On the contrary, the 
employment of deformable-beam modeling, proposed by Cavicchi and Gambarotta [7-8], pro-
duced an accurate collapse load, being very comparable to the on-site test. This has indicated 
that the consideration of brick deformability may be necessary in some scenarios. 

Despite the excellent performance of the beam element modeling proposed by Cavicchi and 
Gambarotta [7-8], such reliability could not be expected in more general circumstances due to 
the neglect of the real thickness of the arch. This paper extends the conceptualization of this 
element to construct a deformable 4-node brick element. We develop the formulation for this 
new element based on the Upper Bound (UB) theory. The geometric compatibility condition 
and constitutive model for the new brick element are first developed and the new limit analysis 
optimization with consideration of the element deformability is then proposed. As an imple-
mentation, we present two collapse analyses as case studies: one 80-block arch and one arch 
bridge that involves ring-fill interaction. In each case, the results from rigid and deformable 
arch modeling are compared, through which the effect of the ring deformability in different 
cases can be shed light. 

2 METHODOLOGIES 
Below we will briefly demonstrate the construction of the governing equations of the upper 

bound (UB) limit analysis for the novel brick elements. 
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The kinematic mode of this element can be regarded as a superposition of rigid body motion 
( )u r

and axial deformation mode ( )u r
 induced by the axial force and bending moment (Eq. 
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(1)). Here, the construction of the axial deformation space refers to the classical beam theory 
(see Figure 1a). Introducing the axial strain εα and curvature κ, the velocity field induced by this 
deformation mode can be described. In this element, only deformation along the axial direction 
eα is allowed and the strain distribution along the height of the section is linear. 
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  T T+ = qA uA u    (3) 

After defining the element kinematic mode, we can proceed to compute the interfacial dis-
continuities across the elements. We subtract the velocity at the overlapped nodes of blocks a 
and b (Figure 1b) and then use the rotational matrix Qj to project this subtraction from the global 
frame (ex, ey) to the interfacial one (en, et) (Eq. (2)). Assembling the equation at the element 
level, the global compatibility condition can be stated as a linear equality (Eq. (3)). 

(a) 

 

(b) 

 
Figure 1: Configuration of the novel deformable block element: (a) element kinematic mode; (b) computation of 
interfacial velocity jumps, geometric compatibility. 
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Recall that the strain field along the sectional height is known, which can be decomposed to 
a uniform distribution and a centrosymmetric-linear distribution. We can further deduce the 
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sectional stress distribution based on the assumption of rigid plasticity (Figure 2a). Therefore, 
a straightforward conceptualization of the constitutive model for the new brick element is to 
require the maximum tensile and compressive stress of the section to be in the span of the 
corresponding limit, i.e. Eq. (4). Here, b, h and d represent the width, height and depth of the 
block, respectively; W and A denote the plastic modulus and the area of the section. 
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We can also rewrite Eq. (4) as a linear equality Eq. (5) by introducing the non-positive slack-
ness variables z1. For specific element i, expressions of the constitutive operator M and cohe-
sion vector c1 are given in Eq. (6). Figure 2b manifests that the region of the static-allowed 
force state defined by this constitutive law is a quadrilateral zone. The flow rule for the proposed 
element is associated with the yield surface. Thus, we can directly construct the corresponding 
flow constraint Eq. (7) through the mapping operator MT, which is the transpose of the consti-
tutive operator. 

 1 1 2 2,  : 0
TT

i i i i iλ λ λ λ+ − + − = = ≥ M λ u λ   (7) 

(a) 

 

(b) 

 
Figure 2: (a) assumption of strain and stress distribution for element; (b) diagram of the limit domain for the 
proposed constitutive model. 

Finally, we compute the dissipation energy of the element due to the deformation (Eq. (8)). 
Integrating strain energy density over the bulk and applying the constitutive and flow relations 
(Eqs. (5) and (7)), it can eventually be expressed by the inner product of cohesion c1 and plastic 
multiplier vector λ. 

Collecting all the new governing equations accounting for the element deformation, we can 
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now establish the optimization formulation for limit analysis based on Upper Bound (UB) the-
ory. In the constraint list of the new optimization problem (Eq. (9)), we update the geometric 
compatibility condition (3) and supplement an extra flow rule for the deformation unknowns 
(7). The first constraint is the positive external work condition [9] and the third one represents 
the flow rule for the interfaces, which is associated with the well-acknowledged Mohr-Coulomb 
friction model (see [10-11] for more details). In the objective function, the dissipation induced 
by the element deformation has also been taken into account. If we dismiss all the terms in Eq. 
(9) that account for the deformability of the element, the optimization will return to the standard 
rigid block limit analysis (Eq. (11)) (see [11-12]). 
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Table 1: Formulations for rigid or deformable limit analysis 
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Observing the duality of Upper Bound (UB) formulation (Eq. (9)), we can get the Lower 
Bound (LB) optimization problem (Eq. (10)). Compared with the corresponding formulation 
for the rigid element (Eq. (12)), extra balance condition and constitutive constraint need to be 
supplemented for the in-element generalized force σ  late introduced.  

3 RESULTS 
Implementing the proposed formulation, in this section we will present two case studies to 

investigate the performance of the proposed element. In each case, the collapse results from the 
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new deformable bricks will be compared to the prediction from rigid block modeling, through 
which we can shed light on the influence of different considerations of the ring flexibility when 
analyzing the masonry arch structures. 

3.1 Case Study A: an 80-block arch ring  
The first benchmark study is to investigate the collapse of a circular arch ring with 80 blocks. 

The geometry feature of the arch is illustrated in Figure 3, with an out-of-plane depth of 3800 
mm. We consider a concentrated load applied at (approximately) a quarter of the arch. The 
material properties of the element follow the set of [7-8], listed in Table 2. Note that here the 
tensile strength of the brick is equal to zero. The brick is regarded as standard No-tensile-re-
sistance (NTR) material in this case. The collapse of the deformable ring and rigid ring is solved 
by Eqs. (9) and (11), respectively. 

 
Figure 3: Geometry and load/boundary conditions of the 80-block ring. 

Table 2: Material feature of the bricks in the case of the 80-block ring  

Density ρb 
[kg/m3] 

Interfacial cohesion 
cbb [MPa] 

Compressive strength 
σbc [MPa] 

Tensile strength 
σbt [MPa] 

Frictional angle 
φbb [°] 

2000 10-6 4.5 0 37 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4: Collapse of 80-block ring: (a) rigid case, mechanism; (b) rigid case, interfacial dissipation, Pu = 41.414 
kN; (c) deformable case, interfacial dissipation; (b) deformable case, in-element dissipation, Pu = 17.598 kN. 
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In the rigid modeling case, the arch collapses as a standard 4-hinge (S4H) mechanism (Figure 
4a), which is widely observed in other contributions (see [10-11]). Extrados hinges are located 
near the loading brick and left springer stone while intrados hinges appear at the left quarter 
and right springer. After considering the brick deformability, the collapse mechanism of the 
ring changes. The rotational separations at the interfaces, originally taking place in the rigid 
case, now vanish, being instead by the deformation of the brick, and the position of these bend-
ing bricks is consistent with the hinge location of the standard 4-hinge collapse (compare Figure 
4b and Figure 4c). Remark that the dissipation of these deformed bricks is almost zero, indicat-
ing that such failure is caused by the high bending moment rather than crushing. As a result, 
the overall motion of the ring is significantly moderated; the potential power of the system 
decreases. Given the infinitesimal system dissipation in this case, the drop in the potential power 
of the mechanism will directly impact the capacity prediction of the structure. Finally, the col-
lapse capacity of the deformable ring is 57.5% lower than the rigid one. 

3.2 Case Study B: Prestwood Bridge  
We now move to investigate the collapse of another more practical benchmark case: Prest-

wood Bridge, a real single-span masonry arch bridge being numerically and experimentally 
investigated by previous researchers. In this case, we explicitly consider the fill upon the arch 
to understand how the ring deformability affects the collapse involving arch-ring interaction. 
The geometry characteristic of the model is given in Figure 5. The out-of-plane depth of the 
bridge is also 3800 mm. The load condition is a surface pressure (with a width of 300 mm) 
against the fill applied at the quarter-span of the bridge. The boundary conditions of the model 
are all unilateral contacts (Figure 5). 

 
Figure 5: Geometric characteristics, backfill mesh, and load/boundary conditions of Prestwood Bridge. 

The backfill behavior is modeled by constant-strain triangular elements developed by Sloan 
and Kleeman in 1995 [17], applying Mohr-Coulomb constitutive with tension cut-off [6-7,14]. 
To avoid the non-linearity in the constraint, the linearization technique is employed to approx-
imate the real yield surface into several planes [15]. As the compatibility condition, constitutive, 
and flow rule share the same matrix expression as those in the previous deduction, Eq. (9) can 
continue to be used in this case study despite the combined usage of these triangular and brick 
elements. We generate the triangular mesh of the backfill region through a MATLAB-based 
generator “MESH2D” [16], with a typical size of 131 mm (see mesh in Figure 5). Material 
parameters for the brick, backfill, and interfaces all follow the setting of the numerical work 
from previous researchers [7-8], which have been calibrated in their works based on the exper-
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imental results (Table 3). Again, we will compare the collapse performance of the bridge em-
ploying the rigid or deformable ring modeling. 

Table 3: Material parameters for the brick, backfill and interfaces in the case of Prestwood Bridge. 

Elements 

brick 
Density ρb [kg/m3] 2000 
Compressive strength σbc [MPa] 4.5 
Tensile strength σbt [MPa] 0 

backfill 

Density ρf [kg/m3] 2000 
Frictional angle φf [°] 37 
Cohesion cf [MPa] 0.01 
Tensile strength σft [MPa] 0 

Interfaces 

Frictional an-
gle 

Brick to brick φbb [°] 37 
Brick to backfill φbf [°] 37 
Backfill to backfill φff [°] 37 

Cohesion  
Brick to brick cbb [MPa] 10-6 
Brick to backfill cbf [MPa] 10-6 
Backfill to backfill cff [MPa] 0.01 

Figure 6 illustrates the collapse of the bridge employing the rigid ring modeling. The defor-
mation of the ring part is analogous to the 4-hinge mechanism observed in the pure-arch case, 
yet with the occurrence of multiple hinges in one location. For instance, we can note a group of 
intrados hinges appears near the keystone and right springer. The magnitude of the relative 
rotation reduces though, which could be attributed to the containment effect of the backfill. In 
terms of the backfill motion, a trapezoid region at the right settles downward due to the external 
vertical pressure, and the backfill at the left inverted-triangular region is extruded up, caused 
by the passive movement of the ring. The element dissipation and crack propagation majorly 
take place in these two regions of the backfill as well. Finally, we notice a load dispersion in 
the backfill part: the distance between the two extrados hinges below the pressure is much 
boarder than the original width of the load. 

The capacity of the system is significantly cut down after using the deformable brick to 
model the arch ring (with a drop of 46.3% against the prediction of the rigid case) and this 
prediction is exceptionally consistent with the experimental study [17] (with only a bias of 
0.98%). In this case, the ring part presents a more flexible behavior when the bridge collapses 
(see Figure 7). The interfacial discontinuities vanish, being shared by the zero-dissipation bricks 
whose failure again results from the large bending moment. The weakened deformation of the 
arch ring further gives rise to a lower dissipation in the backfill. Compared with the prediction 
of the rigid case, the location of the left bending bricks gets closer to the keystone, and the 
extruding effect of the ring against the backfill is relieved. Therefore, we observe a shrunk 
passive-extruded area at the left of the backfill. Given also the moderated overall motion of the 
backfill part, the dissipation and potential power of the system both decrease when the ring 
deformability improves. This explains the considerable decrease in the load prediction after 



Y. Hua and G. Milani 

 9 

using a more deformable ring modeling. 

(a) 

 
(b) 

 
Figure 6: Collapse of Prestwood Bridge, rigid arch ring, Pu = 420.462 kN: (a) interfacial dissipation; (b) in-element 
dissipation. 

(a) 

 
(b) 

 

Figure 7. Collapse of Prestwood Bridge, deformable arch ring, Pu = 225.747 kN: (a) interfacial dissipation; (b) in-
element dissipation. 
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4 CONCLUSIONS 
This paper has proposed a novel deformable brick element for limit analysis, which could 

be an alternative when modeling the deformability of masonry arch or vault structures. The 
kinematic mode of the new element includes both the rigid body motion and the axial defor-
mation that mimics the bending-compression behavior of the beam elements. A flow rule asso-
ciated with a No-tension resistance (NTR) yield criterion has been employed to constrain the 
plastic flow of the brick. The new limit analysis formalization can be stated as a standard Linear 
Programming (LP) problem. For the sake of benchmarking, two collapse analyses have been 
conducted to test the robustness of the proposed element, and we have summarized the influ-
ence mechanism of the ring deformability in these two different cases. 

In the case of the 80-block arch, the deformability of the arch brick majorly influences the 
potential power of the system. The presence of the deformed bulks will remarkably reduce the 
kinematic magnitude of the ring, and its collapse capacity thus drops (57.5%) compared with 
that of the rigid ring. In the collapse of Prestwood bridge, the ring deformability manifests a 
more noticeable impact on the behavior of the backfill, particularly the passive-extrusion zone. 
A weaker extrusion from the ring will give rise to a more moderate deformation of the backfill 
region, leading to a reduction of passive-extruded backfill. As a result, the predicted load also 
decreases against that of the rigid modeling because of the reduction of the dissipation and 
potential power of the backfill. Moreover, the reliability of our proposed deformable bricks is 
also verified by comparison with the previous experimental results [17] (deviation within 
0.98%). In conclusion, this element can be a proper approach to modeling the deformability of 
masonry arch or vault structures.  
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