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ABSTRACT  

In cone penetration testing (CPT) an electronic penetrometer is pushed at a constant rate into penetrable soils and cone 

bearing (qc), sleeve friction (fc) and dynamic pore pressure (u) are recorded with depth. The measured qc, fs and u values 

are utilized to estimate soil type and associated properties. Cone tips have areas which vary from 5cm2 to 40 cm2. The 

larger tips allow for the penetration of gravely soils while small cone tips are utilized for shallow soil investigations. The 

measured cone bearing and sleeve friction values are blurred or averaged.  The  measurements are also susceptible to 

anomalous peaks and troughs due to the relatively small diameter cone tip penetrating sandy, silty and gravelly soils. The 

cones with relatively smaller cone tips are significantly more susceptible to the anomalous peaks and troughs while the 

cones with larger cone tips are more susceptible to the smoothing of the cone tip and sleeve friction measurements. Baziw 

Consulting Engineers (BCE) has invested considerable resources in addressing the qc and fs measurements distortions. 

This paper outlines the techniques developed by BCE and integrates them so that optimal soil properties can be obtained 

from CPT data sets. Particular focus is put on relatively larger cone tips because they can penetrate soils with high 

resistance and are less susceptible to the additive   measurement noise of anomalous peaks and troughs. The anomalous 

peaks and troughs are more challenging to remove or minimize than the qc and fs blurring effects. It is of paramount 

importance to first implement newly developed signal processing and optimal estimation algorithms on extensive test bed 

simulations prior to processing real data sets. This paper also outlines the results from processing a challenging test bed 

simulation of  a 40 cm2 cone tip data set with BCE’s newly developed algorithms. 

 

Keywords: cone penetration testing (CPT); optimal estimation; test bed simulation; Monte Carlo techniques. 

1. Introduction 

The Cone Penetration Test (CPT) is an extensively 

utilized geotechnical in-situ tool which allows for the 

identification and characterization of  sub-surface soils 

(Lunne et al., 1997; Robertson, 1990; ASTM D6067, 

2017). In CPT a steel cone with electronic sensors is 

pushed vertically into the ground at a typical standard rate 

of 2 cm per second. The cone penetrometer has electronic 

sensors to measure penetration resistance at the tip (qc) 

and friction in the shaft (fs) during penetration. A CPT 

probe equipped with a pore-water pressure sensor is 

called a piezo-cone (CPTU cones).  For piezo-cones with 

the filter element right behind the cone tip (the so-called 

u2 position) it is standard practice to correct the recorded 

tip resistance and sleeve friction for the measured pore 

pressure. This corrected cone tip resistance is normally 

referred to as qt. 

The two most commonly utilized penetrometers  have 

cone tips with associated areas of 10 cm2 and 15 cm2. 

Larger cone tip penetrometers (33 cm2 and 40 cm2) are 

utilize to penetrate gravely soils. Small cone tips (2 cm2 

and 5 cm2) are utilized for shallow soil investigations.  

Figure 2 illustrates the comparable size of cone tips with 

areas of  5 cm2, 10 cm2, 15 cm2 and 40 cm2. 

CPT soil classification entails grouping soils 

according to their engineering behavior (i.e., Soil 

Behavior Type (SBT)).  This is accomplished by 

empirically relating measured cone sensor data to type of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 5 cm2, 10 cm2, 15 cm2 and 40 cm2 penetrometers 

(Robertson and Cabal, 2012).  
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Figure 2. SBT chart based on CPTU cone resistance, qt, and 

friction ratio, Rf (where Rf  = (fs /qc)100%) (Robertson et al., 

1986).  

soil in SBT charts. A commonly utilized CPT/CPTU 

SBT chart is based on qt and friction ratio, Rf [where: Rf 

= (fs/qc )100%] (Robertson et al., 1986) measurements. 

Figure 2 illustrates a SBT chart where 12 soil types are 

identified. For accurate CPT/CPTU soil classifications it 

is of paramount importance that cone bearing 

measurements of qc and fs with minimal distortions and 

added measurement errors are obtained.  

Both cone bearing and sleeve friction measurements 

obtain smoothed/averaged estimates of the true values; 

Furthermore, the measurements are susceptible to 

anomalous peaks and troughs  due to the relatively small 

diameter cone tip penetrating sandy, silty and gravelly 

soils (Lunne et. al,  1997;  Baziw, E. and Verbeek, 

2021a). The „high” peaks result from the penetration of 

interbedded gravels and stones  and the “low” troughs 

results from the penetration of softer materials or local 

pore pressure build-up. It has been found that the 

anomalous peaks and troughs can be comparatively more 

challenging to remove or minimize than the smoothing 

effects.  

 Cones with relatively smaller cone tips are 

significantly more susceptible to the anomalous peaks 

and troughs while cones with relatively larger  tips are 

more susceptible to the smoothing effect. BCE has 

invested considerable resources in designing optimal 

estimation algorithms for minimizing the effects of cone 

tip blurring (qcHMM and CPSPE algorithms), cone 

sleeve blurring (OSFE_IFM algorithm), and anomalous 

peak and troughs (qcKF algorithm). This paper briefly 

outlines the qcHMM, CPSPE and CPSPE algorithms and 

incorporates them in a very challenging test bed 

simulation for a 40 cm2 cone. The 40 cm2 cone was 

selected because it is relatively less susceptible to 

anomalous peak and troughs and it can be utilized to 

penetrate very stiff soils.  

The design and implementation of sophisticated 

optimal estimation algorithms (OEAs) for analyzing 

geotechnical in-situ data has gain significantly popularity 

in recent years. Unfortunately, many of the newly 

developed algorithms do not carry out sufficient 

challenging test bed simulations for algorithm 

verification. Thorough test bed simulation and analysis is 

required prior to implementation of OEAs on real data 

sets. This is the motivation to firstly demonstarte the 

efficacy of the qcHMM, CPSPE, and OSFE-IFM 

algorithms with challenging test bed simulations.  

2. CPT measurement models and optimal 
estimation algorithms 

The CPT cone bearing and sleeve friction 

measurements provide blurred\averaged estimates of the 

true values. This section describes the blurring 

  mathematical details and the associated OEAs. 

2.1. Cone bearing measurements  

 Cone bearing governing equations 

The cone tip resistance measured at a particular depth 

is affected by the values above and below the depth of 

interest which results in an averaging or blurring of the 

true values (qv) values (Boulanger and DeJong, 2018; 

Baziw and Verbeek,  2021b, 2022a, 2022b). The blurring 

of cone bearing measurements is especially of concern 

when mapping thin soil layers (e.g., liquefaction 

assessment). Mathematically the measured cone tip 

resistance qc is described as  

 

𝑞𝑐(𝑑) = ∑ 𝑤𝑐(𝑗) × 𝑞𝑣(∆𝑞𝑐 + 𝑗)
𝑁×(

𝑑𝑐
∆

)

𝑗=1
+  𝑣(𝑑)     (1) 

∆𝑞𝑐= (𝑑 − ∆𝑤𝑐),   ∆𝑤𝑐= 𝑁 × (
𝑑𝑐

2∆
)       

where 

d   the cone depth  

dc   the cone tip diameter  

Δqc   the qc sampling rate  

qc(d)   the measured cone penetration tip resistance 

qv(d)  the true cone penetration tip resistance 

wc(d) the qv(d) blurring function 

v(d)  additive noise (anomalous “peak” and  

 “troughs”  

The governing equations for wc are outlined below:  

 

𝑤𝑐 =  
𝑤1𝑤2 

∑ 𝑤1𝑤2
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𝑧−𝑧𝑡𝑖𝑝

𝑑𝑐
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where 

w1    accounts for the relative influence of any soil 

        decreasing with increasing distance from the  

        cone tip. 

w2 adjusts the relative influence that soils away  

        from the cone tip will have on the penetration  

        resistance based on whether those soils are  

  stronger or weaker.  

z/ the depth relative to the cone tip normalized by  

the cone diameter. 

 

In general terms, soils in front of the cone tip have a 

greater influence on penetration resistance than the soils 

behind the cone tip. The four main parameters which 

influence wc are z/
50,ref, mz, m50, and mq. Boulanger and 

DeJong (Boulanger and DeJong, 2018) outline the 

baseline values for these parameters as z/
50,ref = 4.0, mz = 

3.0, m50 = 0.5, and mq = 2. Boulanger and DeJong also set 

N = 60 in eq. (1) (i.e., −30 ≤ z' ≤ 30). The value of N = 

60 cone diameters was implemented due to wc being 

close to zero for distance exceeding 30 cone diameters 

from the cone tip based upon the previously specified 

baseline cone smoothing parameters. 

 qcHMM algorithm  

The qcHMM algorithm (Baziw and Verbeek,  2021b, 

2022a, and 2022b) was developed to address the 

smoothing/averaging of cone bearing measurements. 

This algortim utilizes the Bayesian recursive estimation 

(BRE) (Arulampalam et. al, 2002) Hidden Markov 

Model (HMM) filter. The HMM filter (also termed a 

grid-based filter) has a discrete state-space representation 

and has a finite number of states. In the HMM filter the 

posterior PDF is represented by the delta function 

approximation as follows:   

𝑝(𝑥𝑘−1|𝑧1:𝑘−1)  

=   ∑ 𝑤𝑘−1\𝑘−1
𝑖 𝛿(𝑥𝑘−1 − 𝑥𝑘−1

𝑖 )

𝑁𝑠

𝑖=1

 
(3) 

where 𝑥𝑘−1
𝑖  and 𝑤𝑘−1|𝑘−1

𝑖 , i = 1,…,Ns, represent the fixed 

discrete states and associated conditional probabilities, 

respectively, at time index k-1, and Ns the number of 

particles utilized. In the case of the qcHMM algorithm the 

HMM discrete states represent possible qv values where 

maximum, minimum and resolution values are specified.  

The HMM governing equations are outlined in Table 1. 

 
Table 1. HMM Filtering Algorithm  

 

The qcHMM algorithm implements a BRE smoother. 

BRE smoothing uses all measurements available to 

estimate the state of a system at a certain time or depth in 

the qv estimation case. This requires both a forward and 

backward filter formulation. The forward HMM filter 

(�̂�𝑘
𝐹) processes measurement data (qc) above the cone tip 

(𝑗 = 1 𝑡𝑜 30 × (
𝑑𝑐

∆
)) in (1) (N=60)). Next the backward 

HMM filter (�̂�𝑘
𝐵) is implemented, where the filter 

recurses through the data below the cone tip (𝑗 =

30 × (
𝑑𝑐

∆
)  𝑡𝑜 60 (

𝑑𝑐

∆
) in (1) (N=60)) starting at the final 

qc value.  The optimal estimate for 𝑞𝑣 is then defined as 

�̂�𝑘
𝑣 = (�̂�𝑘

𝐹 + �̂�𝑘
𝐵)/2 (4) 

where the index k represents each qc measurement. 

 CPSPE algorithm  

The CPSPE algorithm (Baziw, 2023a) is utilized to 

obtain estimates of the cone bearing blurring parameters 

(z/
50,ref, mz, m50, and mq ) from real data sets. This 

algorithm implements the Iterative Forward Modelling 

(IFM) parameter estimation technique. In IFM the 

parameters to be estimated are iteratively adjusted until a 

user specified cost function is minimized. The desired 

parameter estimates are defined as those which minimize 

the user specified cost function. The specific IFM 

technique utilized in the CPSPE algorithm is the 

downhill simplex method (DSM) (Nelder and Mead, 

1965). The DSM in multidimensions has the important 

property of not requiring derivatives of function 

evaluations and it can minimize nonlinear-functions of 

𝐶1 = 1 𝑓𝑜𝑟 𝑧′ ≥ 0 

  = 1 +
𝑧′

8
 𝑓𝑜𝑟  −4 ≤ 𝑧′ < 0 

  = 0.5 𝑓𝑜𝑟  𝑧′ < −4 

  

(2d) 

𝑧50
′ = 1 + 2(𝐶2𝑧50,𝑟𝑒𝑓

′ − 1) × 

            [1 −
1

1+(
𝑞𝑣,𝑧′=0

𝑞𝑣,𝑧′
)

𝑚50
] 

(2e) 

 

𝐶2 = 1 𝑓𝑜𝑟 𝑧′ > 0 

  = 0.8 𝑓𝑜𝑟 𝑧′ ≤ 0  
 

(2f) 

𝑤2 =  
√

2

1 + (
𝑞𝑣,𝑧′

𝑞𝑣,𝑧′=0
)

𝑚𝑞
 

(2g) 

Step Description Mathematical Representation 

 

1 
Initialization 

(k=0) – initialize 

particle weights. 

 

e.g., 𝑤𝑘
𝑖  ~ 1/𝑁𝑠, i = 1,…,Ns.          

   

2 

 
Prediction - 

predict the 

weights. 

 

𝑤𝑘\𝑘−1
𝑖   =

 ∑ 𝑤𝑘−1\𝑘−1
𝑗

𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑗
)

𝑁𝑠
𝑗=1            

3 Update - update 

the weights. 

 

𝑤𝑘\𝑘
𝑖   =  

𝑤𝑘\𝑘−1
𝑖 𝑝(𝑧𝑘|𝑥𝑘

𝑖 )

∑ 𝑤𝑘\𝑘−1
𝑗

𝑝(𝑧𝑘|𝑥𝑘
𝑗

)
𝑁𝑠
𝑗=1

      

4 Obtain optimal 

minimum 

variance estimate 

of the state vector 

and 

corresponding 

error covariance. 
 

�̂�𝑘   ≈   ∑ 𝑤𝑘|𝑘
𝑖 𝑥𝑘

𝑖𝑁𝑠
𝑖=1 & 

                                                              

𝑃𝑥𝑘
  ≈   ∑ 𝑤𝑘|𝑘

𝑖 (𝑥𝑘
𝑖 − �̂�𝑘)

𝑁𝑠

𝑖=1

(𝑥𝑘
𝑖

− �̂�𝑘)𝑇 

5 Let k = k+1 & 

iterate to step 2. 

 

   



 

more than one independent variable. A simplex defines 

the most elementary geometric figure of a given 

dimension: a line in one dimension, the triangle in two 

dimensions, the tetrahedron in three, etc; therefore, in an 

N-dimensional space, the simplex is a geometric figure 

that consists of N+1 fully interconnected vertices. 

The DSM starts at N + 1 vertices that form the initial 

simplex. The initial simplex vertices are chosen so that 

the simplex occupies a good portion of the solution space.  

In addition, it is also required that a scalar cost function 

be specified at each vertex of the simplex. The DSM 

searches for the minimum of the costs function by taking 

a series of steps, each time moving a point in the simplex 

away from where the cost function is largest. The simplex 

moves in space by variously reflecting, expanding, 

contracting, or shrinking. The simplex size is 

continuously changed and mostly diminished, so that 

finally it is small enough to contain the minimum with 

the desired accuracy 

The CPSPE algorithm relies upon processing “well-

behaved” qc profiles. A “well-behaved” cone bearing 

profile is defined as containing significantly large depth 

intervals with known constant qv values (greater than the 

transition depth uncertainties).  Figure 3 illustrates a 

schematic of  a “well-behaved” cone bearing profile. In 

Fig.3, known real data cone bearing measurements are 

available (qv1, qv2, qv3, qv4, and qv5) with uncertainty in the 

locations of the depths (d1, d2, d3, and d4)  of the interfaces 

(identified by light blue zones).  

The CPSPE algorithm Cost Function (CF) to be 

minimized is defined as the Root Mean Square (RMS) 

difference between the simulated cone bearing 

measurements and the true cone bearing measurements. 

The simulated cone bearing measurements are obtained 

by implementing eqs. (1) and (2) for each z/
50,ref, mz, m50, 

mq and depth interfaces realization. For the case 

illustrated in Fig. 3 there are eight unknown parameters 

to be estimated (z/
50,ref, mz, m50, mq, d1, d2, d3, and d4). The 

CPSPE algorithm CF for each parameter realization is 

given as  

2.2. Sleeve friction measurements  

 Sleeve friction governing equations 

Sleeve friction is the measure of the average skin 

friction as the probe is advanced through the soil. From 

finite element analysis it has been shown (Susila and 

Hryciw, 2003) that there is a none uniform friction 

distribution along the length of the cone shaft.  The sleeve 

friction close to cone tip is nearly 0 MPa and gradually 

increases to the uniform value 30mm to 35mm from the 

bottom of the shaft (Susila and Hryciw, 2003; Kiousis et 

al., 1988).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Example of  “well-behaved” cone profile. The blue 

zones denote unknown transitional depths between known qv 

values. The red trace is a cone bearing profile with known 

values  (qv). The blue trace is obtained by inputting the  known 

red trace into eqs. (1) and (2) with the baseline values of z/
50,ref 

= 4.0, mz = 3.0, m50 = 0.5, and mq = 2. The black trace is obtained 

by inputting the  known red trace into eqs. (1) and (2) with the  

values of z/
50,ref = 7.0, mz = 2.0, m50 = 0.1, and mq = 2.  

The sleeve friction distribution can be thought of as a 

Sleeve Friction Weighting Function (SFWF) where 

various values of sleeve friction along the shaft (due to 

varying soils) are weighted to give a final measured value 

assumed to occur at the center of the shaft.  The SFWF is 

mathematically approximated as (Baziw, 2023b) 

The sleeve friction measurements ft are generated 

from the true sleeve friction values fv by implementing 

eq. (7) outlined below. 

where 

Δ sleeve friction sampling rate  

L sleeve friction shaft length   

L* L/Δ 

l L/2 

l* l/Δ  

Implemention of eq. (7) requires that Δ is initially set 

to a 1mm sampling rate so that nearly true (i.e., 

𝐶𝐹 =  √∑(𝑞𝑚(𝑑) − 𝑞𝑐(𝑑))
2

𝐷

𝑧=0

 

 

where 𝑞𝑚is the measured cone bearing and 

𝑞𝑐 is obtained from eqs. (1) and (2) for  each 

unknown parameter realization. D is the 

maximum depth of the profile.  

(5) 

𝑆𝐹𝑊𝐹(𝑑∗) =  1 𝑓𝑜𝑟 𝑑∗ > 30 𝑚𝑚 (6a) 

𝑆𝐹𝑊𝐹(𝑑∗) =   𝑎𝑏𝑠(𝑑∗ − 30)3 303⁄  𝑓𝑜𝑟 𝑑∗

≤ 30 𝑚𝑚 

where d* = the distance from bottom of sleeve 

 

(6b) 

𝑓𝑡(𝑖) = ∑ 𝑆𝐹𝑊𝐹(𝑗) × 𝑓𝑣(𝑖 − 𝑙∗ + 𝑗)

𝐿∗

𝑗=1

 (7) 



 

continuous resistance along shaft)  in-situ measurement 

conditions are simulated.. The simulated date sets are 

then obtained by extracting data from the 1mm sampling 

rate data sets at the user specified rate. 

 
Table 2. CPSPE algorithm settings and optimal estimates  

 OSFE-IFM algorithm  

The OSFE-IFM algorithm (Baziw, 2023b) is utilized 

to obtain estimates of the true sleeve friction values from 

real data sets. The OSFE-IFM algorithm utilizes a 

posteriori information obtained from the qcHMM 

algorithm and implements IFM. The qcHMM algorithm 

facilities quantifying the soil layering (i.e., layer 

interfaces). Soil layering can readily be quantified based 

upon estimated qv values. This soil layering information 

is inputted into the OSFE-HMM algorithm.  

Each of the soil layers has an associated sleeve 

friction values fv1 to fvN which is estimated by IFM 

parameter estimation. The IFM cost function to be 

minimized in the OSFE-HMM algorithm is the RMS 

difference between the simulated sleeve friction values 

(eq. (7)) and the measured values.    

3. Test bed simulations 

The performances of the qcHMM, CPSPE, and 

OSFE-IFM algorithms were evaluated by processing  

challenging test bed simulations. As previously outlined, 

it is of paramount importance that thorough test bed 

simulation and analysis is carried out prior to the 

implementation of OEAs on real data sets.  

3.1. Test bed simulation of the CPSPE 

algorithm  

The performance of the CPSPE algorithm is 

demonstrated by processing the challenging “well-

behaved” cone bearing profile illustrated in Fig. 3. In Fig. 

3, the red trace is a cone bearing profile with known 

values  (qv). The blue trace is obtained by inputting the  

known red trace into eq. (1) with the baseline values of 

z/
50,ref = 4.0, mz = 3.0, m50 = 0.5, and mq = 2. The black 

trace is obtained by inputting the  known red trace into 

eq. (1) with the  values of z/
50,ref = 7.0, mz = 2.0, m50 = 0.1, 

and mq = 2. The interface uncertainties are identified by 

the light blue zones and are centered around the true 

interfaces of d1 = 4m, d2 = 12m, d3 = 19m and d4 = 25m.  

The CPSPE algorithm is applied on the black trace of 

Fig. 3 where it is initially assumed that the baseline 

values are valid. In this test bed simulation there are eight 

unknowns (z/
50,ref , mz, m50, mq, and interfaces at d1, d2, 

d3, and d4). Table 2 outlines the parameters set as input 

into the CPSPE algorithm. In Table 2 the minimum and 

maximum values of CBWF parameters are specified. 

These limits are applied 

within the IFM portion of the 

CPSPE.  

Table 2 outlines the 

uncertainty of the interface 

transitions for interfaces 

located at d1 = 4m (2m to 

6m),  d2 = 12m (10m to 13m), 

d3 = 18m (16m to 20m), and 

d4 = 25m (23m to 27m). In 

the CPSPE algorithm a 

Monte Carlo technique is 

utilized where the initial 

simplex within the IFM 

portion of the algorithm is 

initialized with cone bearing blurring parameters within 

the minimum and maximum ranges specified in Table 2. 

This Monte Carlo initialization and CPSPE algorithm 

implementation is carried out one hundred times. The 

CPSPE estimates are defined as the CPSPE algorithm 

output which results in the lowest cost function (eq. 5) 

from the 100 executions. Table 2 outlines the CPSPE 

optimal estimates which are nearly identical to the true 

values. 

3.2. Test bed simulation of qcHMM and OSFE-

IFM algorithms  

The performances of the qcHMM and OSFE-IFM 

algorithms were evaluated by processing the challenging 

test bed simulation illustrated in Figure 4. Figure 4 

illustrates a highly variable CPT profile where it assumed 

that both the measured qc and fc have been corrected for 

pore pressure. In Figure 4, the true values of qv, fv and Rfv 

are red traces while the corresponding measured values 

are the black traces.  The black qt measured traces were 

obtained by implementing eqs. (1) and (2) on the true qv 

values with the true cone bearing parameters  outlined in 

Table 1 (i.e., z/
50,ref = 7, mz,=  2, m50 = 0.1, and  mq, = 2). 

Table 3 outlines the depth intervals  and different SBT 

zones (as shown in Fig. 2) corresponding to the profiles 

illustrated in Fig. 4. Figure 2 illustrates the location of the 

1m to 3.8m interlayering SBT zone 9 for the true values  

of  qv = 50MPa and fv = 0.75MPa (A) and the location of 

the 7m to 11m interlayering SBT zone 12 for the true 

values  of  qv = 40MPa and fv = 2MPa (B). The shift of 

these SBT zones (A/ and B/ ) is also illustrated in Fig. 2 

for the corresponding simulated measured qt and ft 

values.  

  

  

 z/
50,ref mz   m50  mq 

Depth1  

[m] 

Depth2  

[m] 

Depth1  

[m] 

Depth2  

[m] 

Minimum 2 0.1 0.01 0.1 
 

 
  

Maximum 9 6 3 6 
 

 
  

Interface  

Transition 

Range 

    2 to 6 10 to 13 16 to 20 23 to 27 

True 

Values 
7 2 0.1 2 4 12 19 25 

CPSPE 

Estimates 
6.8 2 0.1 2 3.9 12.2 18.9  24.8 



 

  

 

 

(a)                                                                             (b)                                                                 (c) 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. qcHMM and OSFE-IFM test bed simulation. (a) Simulated cone bearing data qt (measured – black trace) and qv (true – 

red trace). (b) Simulated sleeve friction data ft (measured – black trace) and fv (true – red trace). (c) Simulated cone friction ratio Rft  = 

100*ft /qt (measured – black trace) and Rfv  = 100*fv/qv  (true – red trace). 

 

 

 Table 3. qcHMM and OSFE-IFM test bed simulation layering  

and associated SBT zones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. qcHMM estimated values. Red trace is the true qv  
values of Fig. 4a. Black trace is the measured qt values of Fig. 

4a. Blue trace is the qcHMM estimated qv values (qv
/). 

 

 

 

 

Depth 

Interval  

[m] 

qv   

[MPa] 

fv   

[MPa] 

Rv  

 [%] 
Zone 

0 to 1 1 0.06 6 3 

1 to 3.8 

(interlayering) 

50(A)/

2 

0.75(A)/ 

0.08 

1.5(A)/ 

4 

9(A)/ 

4 

3.8 to 4.3 30 0.45 1.5 9 

4.3 to 4.8 20 0.4 2 7 

4.8 to 5.3 10 0.5 5 11 

5.3 to 7 1 0.06 6 3 

7 to 11 

(interlayering) 

40(B)/

2 

2( B) 

/0.04 

3.5(B) 

/2 

12(B)/ 

6 

11 to 15 1 0.06 6 3 



 

Figure 5 illustrates the output from the qcHMM 

algorithm after processing the measured values 

illustrated in Fig. 4a. The qcHMM algorithm utilizes the 

estimated CPSPE algorithm blurring parameters outlined 

in Table 2 when processing the qt data set. Figure 5 

illustrates the test bed specified true qv values (red line), 

derived measured qt values (black line) and estimated qv
/ 

values from the qcHMM algorithm (blue line). As is 

illustrated in Fig. 5, the estimated qv
/ values are nearly 

identical to the true qv values. The orange lines shown in 

Fig. 5 demonstrate that an investigator can readily 

identify the soil profile layering interfaces from the 

output of the qcHMM algorithm. This a posteriori 

information is then inputted into the OSFE-IFM algorithm 

so that the associated sleeve friction values can be 

estimated for each soil layer identified.  

Figure 6 illustrates the output from the OSFE-IFM 

algorithm after processing the measured ft sleeve values 

shown in Figure 4b. In Figure 6, it is shown the test bed 

specified true fv values (red line), derived measured ft 

values (black line) and estimated fv
/ values from the 

OSFE-IFM algorithm (blue line). As is illustrated in 

Figure 6, the estimated fv
/ values are very close to the true 

fv values. 

Figure 7 illustrates friction ratio output obtained from 

the estimates from implementation of the CPSPE, 

qcHMM and OSFE-IFM algorithms where Rfv
/ values are 

derived from qv
/ and fv

/ estimates. In Figure 7 the test bed 

specified Rfv, measured Rft values and estimated Rfv
/ 

values are identified by red, black and blue lines, 

respectively. As is illustrated in Fig. 7, the estimated Rfv
/ 

values are very close to the true Rfv values. 

Figure 6. OSFE-IFM estimated values. Red trace is the true 

Rfv values of Fig. 4b. Black trace is the measured ft values of 

Fig. 4b. Blue trace is the OSFE-IFM estimated fv values (fv
/).  

 

Figure 7. qcHMM, CPSPE, and OSFE-IFM estimated 

values. Red trace is the true Rfv values of Fig. 4c. Black trace 

is the measured Rft values of Fig. 4c. Blue trace is the qcHMM, 

CPSPE, and OSFE-IFM estimated Rfv values (Rfv
/)  

4. Conclusions 

In CPT there can be significant blurring\smoothing of 

the cone bearing (qc) and sleeve friction (fs) 

measurements. There is also additive measurement noise 

resulting from anomalous peaks and troughs as the    

relatively small diameter cone tip penetrates sandy, silty 

and gravelly soils. It has been found that the additive 

measurement noise can be comparatively more 

challenging to remove or minimize than the smoothing 

effects. Cones with relatively smaller cone tips are 

significantly more susceptible to the anomalous peaks 

and troughs while cones with relatively larger  tips are 

more susceptible to the smoothing effect. 

This paper has outlined three relatively new and 

highly effective optimal  estimation algorithms (OEAs). 

These algorithms are referred to as the so-called  CPSPE, 

qcHMM and OSFE-IFM algorithms.  The CPSPE, 

qcHMM and OSFE-IFM algorithms provide for the 

calibration of cone tips and optimal estimates of the true 

qv and fv values from the blurred measurements, 

respectively. The efficacy of the CPSPE, qcHMM and 

OSFE-IFM algorithms was demonstrated by processing 

a challenging test bed simulation. Although the test bed 

simulation was carried out on a 40cm2 cone, the 

algorithms are readily applied to qc and fs data acquired 

from a cone of any size. Furthermore, the paper is not 

recommending a cone of a specific size be utilized.  

 It is of paramount importance that the performance of 

newly developed OEAs is demonstrated prior to 

application on real data sets. It is the intentions of the 



 

author to expand upon OEAs for CPT measurements by 

incorporating automated interface estimation. 
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