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Abstract. A collocation model based on a Generalized Differential Quadrature Method 
(GDQM) is proposed for the dynamic analysis of anisotropic curved laminated structures with 
a central lattice core and different external constraints. The theory is based on the Equivalent 
Single Layer (ESL) approach, together with higher-order kinematic assumptions. The 
reliability of the proposed method is checked with respect to classical 3D FEM-based 
solutions, for different shell geometries, lamination schemes and unit cell configurations. 
Based on the numerical investigation, the proposed formulation reveals to be computationally 
performing even for complicated shapes and structural members, compared to more expensive 
commercial finite-element-based packages. 

 
1 INTRODUCTION 

Optimization tasks are becoming even more important in a design process of complex 
structures. Doubly-curved structural members play a key role, since their shape can provide a 
meaningful increase in stiffness with a reduced weight. In addition, lattice multi-layered shells 
are becoming very popular in many engineering fields [1], such that they require advanced 
modelling strategies to check for the best cell layup depending on the design demand [2-3]. In 
a context where common optimization algorithms are based on an iterative process, simple 
but performing models are preferred. In order to obtain a simple, but accurate simulation, the 
periodicity of the structure must be exploited: the so-called Representative Volume Element 
(RVE) is determined first, to check for the pertaining equivalent elastic properties under some 
fixed load cases [4]. A large variety of homogenization procedures can be found in literature 
for honeycomb cells: the macromechanical stiffness matrix is analytically obtained employing 
various different hypotheses, like thin-walled assumptions [5], the influence of shear and axial 
effects [6-10], the node shape [11], as well as its rigidity [12]. According to come theories, 
however, elastic constants do not converge to a unique solution [13], such that an 
interpolation procedure must be applied between some extreme values, as suggested by 
Grediac [14] and Scarpa and Tolmin [15]. In any case, an interpolation method can not be 
generalized, since the essential constants are calibrated on a series of analyses of cells with 
some fixed characteristics a priori, employing the least square method. As far as grid 
structures is concerned, a periodic pattern can be found starting from the number of rib 
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families occurring in the shell, characterized by a particular angle distribution [16-17]. The 
computation of the equivalent elastic properties account for the contribution of each rib family 
to the whole unit cell without considering coupling effects. 

For the analysis of doubly-curved structures, the Equivalent Single Layer (ESL) approach 
is one of the best strategies, whose properties are referred to the reference mid-surface [18]. 
The key aspect relies on the correct choice of the through-the-thickness shape of the 
unknowns, in a unified setting. The geometry description of a shell structure is dictated by its 
curvature properties, such that any kind of structure can be defined as particular case of a 
doubly-curved member. Tornabene et al. [18] applied this method to anisotropic laminated 
shells  by employing higher order theories. 

For a discrete definition of the governing equations of the problem, here we apply the so 
called Generalized Differential Quadrature (GDQ) method, due to its capability to discretize 
directly the derivatives of the unknown functions, and to solve the equations in a strong form 
[18-19]. In the present work a bi-dimensional structural model with 3D capabilities is 
proposed for the dynamic study of doubly-curved structures with a lattice or honeycomb core. 
The procedure follows the ESL method combined with higher-order theories. The 
fundamental equations of the problem together with the related boundary conditions are 
derived from the Hamiltonian principle, whose solutions are determined computationally via 
the GDQ method. A modal analysis is performed systematically in the DiQuMASPAB code 
[20] for doubly-curved lattice and honeycomb structures, evaluating the influence of the 
kinematic assumptions throughout the thickness on the overall response.  

2 SHELL THEORETICAL MODEL 

In this section we provide the theoretical background for the dynamic study of lattice 
shells: the attention is given to the geometric description of the reference mid-surface, the 
kinematic assumptions, the homogenization procedure of lattice and honeycomb unit cells, 
and the fundamental equations of the problem. A brief overview of the GDQ numerical 
technique is also reported in the last part. 

2.1 Geometry description and unified formulation 

Shell structures can be described accurately with 3D formulations [1], especially for cases 
involving deep shells. However, accounting for warping phenomena occurring within laminae 
of a stacking sequence, it is possible to define an equivalent bi-dimensional model in which 
all the geometric, kinematic and mechanic quantities are referred to the mid-surface of the 
shell. According to the ESL method, an arbitrary position vector  1 2, ,  R  can be referred to 

its projection  1 2, r  on the mid-surface [18] as 

        1 2
1 2 1 2 1 2

,
, , , ,

2

h
z

 
       R r n  (1) 

where    1 22 , 1,1z h      is a dimensionless variable defining an arbitrary point in the 

thickness direction 3  . In Eq. (1) the normal unit vector can be defined by means of the 

partial derivatives ,1r  and ,2r  of the reference surface position vector  1 2, r  with respect to 

in-plane spatial coordinates 1  and 2 , together with the Lamè parameters 1A  and 2A .  



Tornabene F., Dimitri R., Viscoti M. 

 3

The displacement field can be expressed in terms of generalized displacement components 
[18], following the ESL approach 
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The accuracy of the model depends on the choice of a proper set of functions , 1,2,3iF i
  . 

If l  is the total number of laminae within a laminate, the overall thickness of the shell is 
defined as 

    1 2 1 2
1

, ,
l

k
k

h h   


  (3) 

The three principal curvilinear coordinates , 1, 2,3i i   must be constrained to predefined 

intervals, i.e. 0 1,i i i      , for 1,2i  ; whereas      3 1 2 1 2 1 2, , 2, , 2h h            . 

Thus, the thickness of an arbitrary k -th lamina is defined as 1k k kh    , where k  and 1k   

stand for its extreme 3  coordinate values at the bottom and top sides. 

Even though the axiomatic assumption (2) is capable to account for several warping 
effects, when the shell is obtained from the superimposition of different laminae, a complex 
set of internal actions occurs, and the simple hypothesis of perfect adhesion could yield an 
improper definition of the kinematic field [18]. For this reason, for the N -th order kinematic 
assumption, at the 1N   order, the introduction of the Murakami’s function would be useful, 
leading to 

 
for  0,1,...,

( 1) for  1k
k

N
F

z N
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where the dimensionless parameter    1,1k kz z     is defined as 
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The strain field is then derived from the partial derivatives with respect to the reference 
coordinates 1 2 3, ,    of the position vector (1). In a compact matrix notation, we get 

  DU  (6) 

It is useful to split the differential operator D  of Eq. (6) in different parts, such that D  is the 

through-the-thickness geometric matrix, whereas i
D  is related to the i -th displacement field 

component vector 
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DU D D U  (7) 

By combination of Eq. (2) with Eq. (7), we get the following definition for the generalized 
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strain field                      
1 2 1 1 1 2 13 23 13 23 3, ,

T

t                        [18] 

            
1 3 1 3 1 2 1

0 1 0 1 0 1 0

i i i i i

N N N N

i i i

F
         

   
   

   

  
      

   
      

   
     DU = D D F u D D u Z D u Z   (8) 

For each  -th expansion order, the strain vector is defined as 
    for 0,1, 2, , , 1, , 1,2,3i i

iN N i        D u  . For detailed treatment, we refer to the work 

by Tornabene et al. [18].  

2.2 Constitutive behavior 

In the present paper, the constituent materials of the shell are assumed to be linear elastic. 
Since the geometric configuration of the lattice core unit cell comes into the definition of 
various material symmetries, the model is developed for the case of completely anisotropic 
medium for each lamina. For each k -th layer it is possible to define the anisotropic 

constitutive relation between the stress vector                
1 2 1 2 12 13 23 3, , ,

T
k k k k k k kt             and 

the strain one                
1 2 1 2 12 13 23 3, , ,

T
k k k k k k kt            , by means of the equivalent stiffness 

matrix  kC , i.e. 

      k k k C   (9) 

Since the fundamental set of equation is derived in the curvilinear reference system 1 2 3O    , 

an orthogonal transformation matrix Τ  is required, such that the material reference system is 
rotated by an angle   along the 3   axis [18].  

2.3 Homogenization of the honeycomb core 

The equivalent elastic properties for the honeycomb RVE we follow the procedure 
suggested by Sorohan et al. [6-7], which account for the influence of shear stress 
distributions. The equivalent elastic properties depend strongly on the geometrical cell layup 
rather than constituent material. For this reason, it is common to refer to the cell slenderness 
instead of the actual geometric parameter. With reference to Figure 1a, three dimensionless 
cell quantities are introduced, namely 2l l  , s l   and b l  . Considering some 
elementary independent load cases (LCs), the stiffness of a general honeycomb can be 
expressed in terms of the engineering constants [7]. If we denote with the superscript s  all the 
mechanical characteristics of the raw material, one gets: 
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As far as 23G  elastic modulus is concerned, LCs provide only an interval of variation 

23 23,L UG G    for this constant, starting from a static and kinematic admissible solution of the 

problem. Grediac [14] proposed a linear interpolation between the two extreme values 23
LG  

and 23
UG . Nevertheless, in the present article a non-linear interpolation based on the cell 

slenderness is suggested, to ensure a great accuracy for a wider range of cases 

  23 23 23 232
L U LA

G G G G
B C




  


 (12) 

with 2 5A  , 3 4B   and 1 4C  . The key aspect of (12) relies on the fact that the accuracy of 
the formula by Grediac [14] is dramatically dependent on the cell configuration, and it turns 
out to be inadequate for re-entrant honeycombs. The remaining engineering constants are 
derived starting from (11) and (12) keeping in mind the symmetry of the stiffness matrix. 
From the previous relations one can obtained the stiffness matrix  kC  using the classical 
relations presented in the book by Tornabene et al. [18]. 

2.4 Homogenization of the Lattice Layer 

Since the material properties are defined in the material reference system of the single rib, 
each frame is oriented with an angle i  with respect to the geometric reference system. If we 
consider the i -th rib of the RVE, the stress and strain vectors are defined as 

               
1 2 1 2 12 13 23 3

ˆˆ ˆ, , ,
Ti i i i i i it             and                

1 2 1 2 12 13 23 3
ˆˆ ˆ, , ,

Ti i i i i i it           ε . Each 

elastic constant ( )i
ijC  of the ribs does not consider possible coupling effects due to the presence 

of other frames [16-17]. The single contribution of the i -th rib is defined assuming an 
isotropic behavior of the single rib. The material elastic modulus for the i -th frame is labeled 
with iE , whereas the Poisson’r ratio is denoted as i . According to Figure 1b, the relative 
density of the unit cell can be computed starting from the interspace ia  between two adjacent 
equally-oriented beams with i  width; i , instead, denotes the density of the i -th frame in the 
unit cell 
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If the repetitive pattern of the grid is obtained from a number of n  frame families, the 
homogenized material properties can be derived by rotating each rib of an angle equal to its 
inclination i  [16-17] 
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When the grid unit cells are taken in account, it is useful to introduce a compact nomenclature 
to identify the geometric characteristics of the RVE layup. In the present work, a single cell is 

denoted with the array  S/F 1,...,i a
i n


    

. The symbol S/F denotes Star (S) or Flake (F) cells, 

depending on the layout of the actual rib family with respect to the center of the RVE. 

 

(a) 

 

(b) 

Figure 1: Unit cell geometric configuration: honeycomb cell (a) and grid pattern (b).  

2.5 Fundamental equations 

Once the homogenized elastic stiffness matrix of each cell unit has been written in the 
geometric reference system by means of the transformation matrix Τ , it is possible to write 
the equilibrium equations by employing the Hamiltonian principle. The proposed approach is 
oriented to a modal analysis of shell structures with innovative-materials. Therefore, the 
elastic strain energy will be computed, together with the kinetic energy, involving the inertial 
effects. 
It is useful to define generalized stress resultants from the integration along the 3 -direction 

of the shell. The target is to rearrange the constitutive law (9) in terms of the generalized 
strains    1 2, ,i t

    . From the equivalence of the elastic strain energy with the actual stresses 
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and the generalized ones, keeping in mind the elastic behavior (9) rotated in the geometrical 
reference system, we get [18] 

      
1 3

1 2 3
0 1

for 0,1, 2,..., , 1,   , ,i j ji

N

i
j

N N     



    


 

   S A   (15) 

where                      
1 2 1 2 12 21 1 2 1 2 3, ,i i i i i i i i i i

T

t N N N N T T P P S                        S  is the generalized 

stress component vector, and   i j  
A  the generalized stiffness matrix component.  Based on 

an ESL approach (2), Eq. (15) is expressed in terms of the degrees of freedom  u  of the 
problem. The equivalent stiffness constants   i j  

A  are computed as follows, being 
, 0,1, 2,..., , 1N N    , , 1, 2,3, 4,5,6n m  , , 0,1, 2p q  , 1 2 3, , ,i j     [18] 
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Coefficients ( )k
nmB  can be intended as reduced elastic constants ( )k

nmC  of the material, as well as 

their correspondent reduced ones ( )k
nmQ  for the employment of the classical first order theories. 

In the latter case, the introduction of the shear correction factor 5 6   is compulsory.  
Taking in account the Hamiltonian principle and applying a variational formulation [18], the 
dynamic equilibrium equations can be obtained, together with their boundary conditions 
(BCs): 

      
3 1

*

1 0

for 0,1, 2,..., , 1i i

N

i

N N    







 

   D S M u  (17) 

In equation (17) * , 1,2,3i i
 D  denotes the equilibrium operators, collecting the derivatives of 

the geometric parameters in each principal direction of the shell. In addition,  M  stands for 
the generalized mass matrix [18], with , 0,1, 2,..., , 1N N    . If   1,...,k k l   is the density for 

the k -th lamina, the general term   i jI     inside the mass matrix  M  is defined as 

    
1

1 2 1 2 3
1

for , , ,
k

i j i j

k

l
k

i j
k

I F F H H d


    
 



      




    (18) 

Based on the ESL definition of   , 1, 2,3i i  S  for each  -th order, from the dynamic 
equilibrium equation (17) we can easily derive the fundamental relations for an anisotropic 
generally-shaped shell structure,  L  being the fundamental matrix 

        
1 1

0 0

for 0,1, 2,..., , 1
N N

N N   

 


 

 

   L u M u  (19) 

The complete expressions of constants   i j

ijL    with , 1, 2,3i j   and , 0,..., , 1N N     are 

reported in the book by Tornabene et al. [18]. In order to determine the natural frequencies 
and mode shape of the structure, the harmonic solutions of (19) should be obtained. For this 
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reason, the unknown field  u  with 0,1, 2,..., , 1N N    is set in a trigonometric form, so that 
   ( ) ( )

1 2 1 2, , , i tt e     u U . The fundamental equations (19) become 

        
1 1

2

0 0

for 0,1, 2,..., , 1
N N

N N   

 

 
 

 

    L U UM 0  (20) 

Based on the procedure proposed by Tornabene et al. [18] for the definition of BCs, the 
following nomenclature is applied to identify the shell edges: West (W), South (S), East (E) 
and North (N) parts are such that 0 1 0

1 1 1 2 2,        (W), 1 0 1
1 1 2 2 2,        (S), 

0 1 1
1 1 1 2 2,        (E), 0 0 1

1 1 2 2 2,        (N).  

2.6 Numerical Implementation 

The governing equations (20) are here discretized according to the GDQ method [18]. If 
 f x  is an arbitrary smooth function in a closed interval, its n -th order derivative is defined 

as  

 
     

1

 = 1, 2,..., 
N

i

In
n

ij j Nn
jx x

d f x
f x i I

dx




   (21) 

where NI  is the total number of grid points, and the coefficients  n
ij  are computed following a 

recursive formulation. The grid has been built following the Chebyshev-Gauss-Lobatto 
distribution [18]. Based on Eq. (21) we can discretize Eq. (20), thus obtaining the following 
compact relation 

 2Kδ Mδ  (22) 

After a distinction between inner “d” nodes and boundary “b” nodes in the physical domain, a 
static condensation of (22) is applied, so that only inner points DOFs are explicated [18] 

   1 1 2
dd dd db bb bd d   M K K K K I 0  (23) 

 

3 APPLICATIONS AND RESULTS 

The above-mentioned theoretical framework is here validated for some case studies by 
comparing the first five natural frequencies of different shell structures as provided by the 2D 
GDQ model with predictions from refined 3D FEM simulations, here assumed as reference 
solutions. Then, some completely-curved structures are investigated, and a parametric 
analysis is performed for grid and honeycomb layers. The first set of analyses consists of a 
comparative evaluation between the frequencies provided by the GDQ theory and 3D FEM 
model (Figure 2).  All the proposed examples start assuming an isotropic raw material (

70GPasE  , 0.33s  , 
32700kg ms  ). The homogenization (10)-(11) of the honeycomb layer 

is then validated by performing a modal analysis for a rectangular plate with the proposed 
approach and 3D FEM-based simulations. The results are provided in Table 1. It can be seen 
that for all investigated examples a great agreement between FEM and GDQ occurs, even 
though in the latter case a reduced number of DOFs is strictly required to get accurate 
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solutions. In addition, the accuracy of the honeycomb homogenized model is not affected by 
the geometric parameter issues, primarily by the internal angle   and the layer height.  

 
 

  
(a) (b) 

  
Figure 2: Refined 3D FEM model of a rectangular plate with a honeycomb infill (a) and homogenized 
revolution hyperbolic hyperboloid model reinforced with a grid layer (b). 

TABLE 1: Modal analysis of a rectangular laminated plate with a honeycomb layer. 
 

CCCC Rectangular Plate 

   2 3 0 1 0 1, , , 0, , , 0,x yx y y x x x x L y y y L                r e e  

Hexagonal cell  30 deg   

 Hzf  3D FEM FSDTZ TSDTZ EDZ1 EDZ2 EDZ3 EDZ4 

DOFs 1700490 7569 12615 7569 10092 12615 15138 
1 497.420 499.049 499.029 554.523 427.833 499.995 499.665 
2 937.430 942.166 942.110 1030.690 823.420 944.363 943.308 
3 937.520 942.875 942.819 1031.436 824.069 945.074 944.017 
4 1306.000 1314.580 1314.487 1425.197 1162.886 1318.049 1316.132 
5 1530.300 1541.770 1541.649 1662.021 1374.642 1546.278 1543.554 

Geometry Parameters 1 3 20.3999[m], 0.4003[m], 0.01[m], 0.05[m]x yL L h h h      

Rectangular cell  0 deg   

 Hzf  3D FEM FSDTZ TSDTZ EDZ1 EDZ2 EDZ3 EDZ4 

DOFs 1938258 7569 12615 7569 10092 12615 15138 
1 489.070 490.427 490.408 542.534 422.777 491.460 491.072 
2 907.740 910.100 910.051 989.235 802.364 912.576 911.288 
3 917.610 923.906 923.853 1006.364 812.050 926.137 924.976 
4 1264.300 1271.842 1271.760 1371.416 1133.618 1275.503 1273.322 
5 1468.000 1472.951 1472.848 1577.546 1325.986 1477.901 1474.691 

Geometry Parameters 1 3 20.4[m], 0.4[m], 0.01[m], 0.05[m]x yL L h h h      

Re-entrant cell  30 deg    

 Hzf  3D FEM FSDTZ TSDTZ EDZ1 EDZ2 EDZ3 EDZ4 

DOFs 1224690 7569 12615 7569 10092 12615 15138 
1 490.960 490.972 490.954 540.360 426.029 492.155 491.673 
2 901.600 906.894 906.847 980.996 804.838 909.522 908.038 
3 911.940 907.855 907.808 981.960 805.786 910.503 909.009 
4 1249.600 1250.808 1250.733 1340.796 1124.447 1254.864 1252.265 
5 1444.900 1454.799 1454.703 1550.972 1318.759 1460.028 1456.391 

Geometry Parameters 1 3 20.3999[m], 0.4003[m], 0.01[m], 0.05[m]x yL L h h h      

Cell Layup 2 28.1407[mm], 15.0218[mm], 0.1 [mm]l l s s     

 



Tornabene F., Dimitri R., Viscoti M. 

 10

In Tables 2-3 we summarize the first five natural frequencies here computed for fully 
clamped shells with different geometries and curvatures considering a central core made of 
honeycomb patterns and grid frames, respectively. Different cell layups are investigated, 
accounting for a possible variation of the layer height. The analysis is tackled with different 
HSDTs, embedding the Murakami’s function (4). 

 
 
TABLE 2: Modal analysis of doubly curved structures with different honeycomb cell configurations and 
external constraints. Each model is based on a grid made of 31 31N MI I    points, requiring 15138 

DOFs. 
 

CCCC Truncated Cone 

       

   

2 0 2 1 0 2 2 3 0

0 1
0 2 2 2

cos
, cos sin sin , sin , ( ) , ( )

sin

0, 0 m,0.4 m , , 3, 3 , 6, 0.08 m

b
b

b

R x
x R x R x x R x R x R x R x

x L R

 
    



      


       

            

r e e e
 

 Thin wall  0.1 mms   

 Thin Layer  0.05 mb   Thick Layer  0.10 mb   

 Hzf  Hexagonal  

 30 deg   
Rectangular 

 0 deg   
Re-entrant 

 30 deg    
Hexagonal  

 30 deg   
Rectangular 

 0 deg   
Re-entrant 

 30 deg    
1 1657.227 1608.798 1576.366 2011.162 1957.718 1903.079 
2 1667.269 1639.642 1616.982 2179.251 2078.134 1985.260 
3 2221.963 2147.151 2095.357 2917.179 2768.184 2619.085 
4 2434.515 2345.767 2277.202 3125.162 2985.967 2839.244 
5 2602.324 2503.119 2438.739 3167.130 3044.944 2929.574 

 Thick wall  0.4 mms   

1 1667.471 1668.086 1658.796 2027.201 2016.099 1982.200 
2 1764.654 1753.507 1734.991 2349.595 2310.519 2262.280 
3 2447.396 2425.604 2390.008 3158.391 3109.716 3049.913 
4 2682.429 2655.922 2617.421 3169.757 3132.372 3094.036 
5 2715.192 2695.486 2673.897 3342.959 3317.743 3262.166 

CCCC Revolution Hyperbolic Hyperboloid 

     0 1 0 1
1 2 1 2 1 1 2 2 1 3 1 1 1 2 2 2, cosh cos cosh sin sinh , 1,1 , , 3, 3 , 0.1ma a c a c                              r e e e  

 Thin wall  0.1 mms   

1 4131.112 4014.426 3906.901 4844.136 4681.732 4463.809 
2 4198.343 4112.187 4020.120 4869.505 4689.504 4503.004 
3 4646.210 4494.957 4324.393 5316.217 5234.266 5028.628 
4 4682.749 4554.176 4389.052 5537.462 5350.350 5059.643 
5 5354.179 5240.959 5111.220 6054.736 5850.609 5588.587 

 Thick wall  0.4 mms   

 Thin Layer  0.05 mb   Thick Layer  0.10 mb   

1 4500.867 4487.545 4420.049 5302.710 5228.929 5119.306 
2 4608.481 4560.647 4483.242 5477.890 5394.412 5197.384 
3 5022.580 5107.134 4999.194 5526.572 5649.525 5412.585 
4 5340.633 5344.049 5215.148 5864.442 6043.142 5897.546 
5 5847.358 5810.670 5667.187 7069.135 7000.055 6717.297 

Geometric Layup 28.1407[mm], 15.0218[mm]l l   
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TABLE 3: Modal analysis of a revolution hyperbolic hyperboloid with a central grid core 
employing different HSDT theories. 

 
CCCC Revolution Hyperbolic Hyperboloid 

     0 1 0 1
1 2 1 2 1 1 2 2 1 3 1 1 1 2 2 2, cosh cos cosh sin sinh , 1,1 , , 0, 2 , 0.5ma a c a c                            r e e e  

 Thin Layer  0.05 mb   

 Hzf  FSDTZ TSDTZ EDZ1 EDZ2 EDZ3 EDZ4 

DOFs 7569 12615 7569 10092 12615 15138 
1 1171.606 1186.549 1208.034 1179.045 1194.845 1190.332 
2 1289.555 1301.213 1316.268 1295.383 1307.409 1304.120 
3 1420.729 1464.369 1484.147 1435.767 1481.836 1471.330 
4 1434.474 1471.590 1485.532 1447.074 1486.304 1477.559 
5 1548.062 1576.195 1598.883 1558.876 1588.857 1581.717 

 Thick Layer  0.10 mb   

1 1323.700 1357.564 1359.981 1337.761 1374.209 1362.464 
2 1358.916 1378.572 1383.111 1368.241 1389.483 1381.879 
3 1663.839 1729.824 1702.673 1680.953 1751.206 1734.890 
4 1715.224 1792.931 1766.397 1737.477 1820.117 1799.678 
5 1789.544 1854.351 1839.681 1809.927 1879.373 1861.378 

Cell Layup 0.010 0.010 0.010 0.010
0.141 0.100 0.141 0.10045 / 0 / 45 / 90    

 

4 CONCLUSIONS 

A theoretical model is here proposed for the dynamic analysis of curved surfaces 
reinforced with lattice layers and honeycomb cores. The geometrical issues rely on the 
differential geometry, and the kinematic field is described within a unified formulation. The 
equations of motion are derived from the Hamiltonian principle, accounting for the possibility 
of treating a completely anisotropic honeycomb cell and lattice structure. The stiffness matrix 
is computed by means of a RVE homogenization technique, whereby the fundamental set of 
equations is discretized with the GDQ method. Some validation case studies are presented, in 
which natural frequencies from the homogenized model are compared to refined FEM-based 
predictions from commercial codes. After that, some completely doubly-curved structures are 
analyzed by employing different HSDTs, as well as geometries and cell layups, with very 
accurate results even with a reduced computational cost. 
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