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1 INTRODUCTION

Engineering design optimization based on expensive simulation is increasingly per-
formed with surrogate models [1], i.e. approximate models fitted through a small dataset
of simulation results. To build surrogates within the lowest possible computational bud-
get, modern approaches use multi-fidelity data (combinations of cheap low-fidelity and
expensive high-fidelity simulation results) and adaptive sampling strategies, which add
simulation points one by one where they are most likely to discover the optimum [2].

Uncertainty estimation of the surrogate model is crucial for efficient adaptive sampling,
since it guides the choice of new sampling points. Thus, underestimation of the uncer-
tainty may lead to sampling in suboptimal regions, missing the true optimum. Existing
surrogate models such as Gaussian process regression [3] and Stochastic Radial Basis
Functions (SRBF) [4], provide uncertainty estimations, which are often used. Neverthe-
less, uncertainty estimation is so important for a successful surrogate model, that a more
thorough investigation seems warranted. This is the main objective of this paper.

This paper studies three issues with uncertainty estimation, in the context of multi-
fidelity SRBF. First, most existing techniques rely on knowledge about the global behavior
of the data, such as spatial correlations. However, the number of training points can be
too small to reconstruct this global information from the data. We argue that in this
situation, user-provided estimation of the function behavior is a better choice (section 3).

Furthermore, the dataset may contain noise, i.e. random errors without spatial cor-
relation (section 4). Surrogate models can filter out this noise, usually by modeling it
as belonging to a normal distribution with zero mean, but this introduces two separate
uncertainties: the optimum amount of noise filtering is unknown, and for a small dataset
the local mean of the noisy data may not correspond to the true simulation response.

Finally, in multi-fidelity models, the low-fidelity data are corrected by high-fidelity
results, which could reduce the amount of uncertainty they introduce. Therefore, we argue
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that the contribution of the low-fidelity uncertainty to the total multi-fidelity uncertainty
is a conditional probability, considering the low-fidelity surrogate in the higher-fidelity
training points as given. An approximation based on this principle is developed in section
5. This paper represents a multi-fidelity extension of [5], which introduces the single-
fidelity estimations.

2 STOCHASTIC RBF MULTI-FIDELITY SURROGATE MODEL

Consider x ∈ RD as a design variable vector of dimension D. Let a true objective
function f(x) be assessed by N fidelity levels: the highest-fidelity level is f1(x), the
lowest-fidelity is fN(x), and the intermediate fidelity levels are {fl}N−1

l=2 (x). Observations
can be perturbed by (fidelity-dependent) Gaussian white noise: sl(x) = fl(x)+N (0, σnl

).

The multi-fidelity (MF) prediction f̂l(x) of fl(x) (l = 1, . . . , N−1) is the sum of surrogates
(denoted by ·̃ ) for the lowest level and the inter-level errors [2]:

f̂l(x) = f̃N(x) +
N−1∑
k=l

ε̃k(x). (1)

For each l-th fidelity level the training set is Tl = {xi, sl(xi)}Jli=1, with Jl the training

set size. Nested data are considered: {xi}Jli=1 ⊆ {xi}Jl+1

i=1 . The resulting inter-level error
training sets are defined as El = {xi, εl(xi)}Jli=1, where

εl(xi) = sl(xi)− f̂l+1(xi). (2)

Each prediction ·̃l (x) is computed as the expected value (EV) over a stochastic tuning
parameter τ ∼ unif[1, 3] of a surrogate model g̃l [4]:

f̃l (x) = EV [g̃l (x, τ)]τ , with g̃l (x, τ) = EV [sl] +

Ml∑
j=1

wl
j||x− clj||τ , (3)

where wl
j are unknown coefficients, || · || is the Euclidean norm and clj are the RBF

centers, with j = 1, . . . ,Ml and Ml ≤ Jl. The uncertainty U srbf(x) associated with the
SRBF approach is quantified as the 95% confidence interval of the predictions gl(x, τ).

For each fidelity level, if the data are not affected by numerical noise (σnl
= 0), exact

interpolation of the training set is imposed and the weights wl
j are computed by solving

Awl = (sl − EV [sl]), with clj = xj (i.e. Ml = Jl) and sl = {sl(xi)}Jli=1. In the presence of
noise, [2] choose a number of RBF centers Ml smaller than the number of training points
Jl, and clj coordinates are defined via k-means clustering of the training point coordinates.
The number of RBF kernels Ml ranges from 2D to J−1; least-squares regression provides
more smoothing of the noisy training set when the number of centers Ml is small. The
optimal number of stochastic RBF centers is defined by minimizing a leave-one-out cross-
validation (LOOCV) metric. Finally, the weights wl

j are determined with least-squares
regression (LS) by solving ATAwl = AT(sl − EV [sl]).

Sections 3 and 4 develop an uncertainty estimation for a single-level surrogate; the
indices l are dropped there for clarity. Section 5 considers the multi-fidelity uncertainty.
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Figure 1: SRBF uncertainty estimation for a sine-wave function. 2 (left) and 3 (right)
points per peak.

3 INTERPOLATION UNCERTAINTY IN SMALL-DATA CASES

The SRBF uncertainty estimation U srbf is highly accurate in predicting the model error
for surrogate models without noise, if enough training points are available to represent
f correctly. The 95% confidence interval of g(x, τ) is close to g(x, 3) − g(x, 1), where
g(x, 1) is C0 and piecewise linear, while g(x, 3) is piecewise cubic and C2. Our tests show
that this difference is a good estimator for the missing above-cubic terms, as long as the
second derivative of f is approximated correctly by the surrogate model (figure 1 right).
When insufficient points are available to capture the second derivatives, the uncertainty
estimation fails (figure 1 left).

We refer to a “small-data” situation when (a) the true function behavior cannot be
estimated from the data, and (b) the data cannot indicate that the approximation of
the true function is incorrect. In this case, the only way to evaluate the uncertainty is
with user-provided estimations of the behavior of f as a supplement to the data. While
reliance on user knowledge is a weakness for automatic surrogate model construction, we
consider it as inevitable. This section presents a small-data uncertainty estimation.

Default uncertainty If not enough data are available to correctly model f , the uncer-
tainty estimation must be based on assumptions about the function, rather than infor-
mation from the training points. Since the minimum of f is being sought, the function is
assumed to consist of peaks and valleys with a parabolic behavior, a typical peak width
2r0 and a typical peak height U0. Both these parameters need to be estimated from an-
other source than the training points. In the following, r0 is estimated as 1

4
times the

domain size, while U0 is taken as maxi s(xi) − mini s(xi). These are reasonable default
choices for any function, but if more reliable estimates are available for a function, the
uncertainty estimation will be better.

The parabolic behavior between data points is used to define a default uncertainty
Udef, based only on the distance to the closest training point rimin

(x) = mini=1...J∥x−xi∥:

Udef(x) =

{
U0(1− (rimin

(x)/r0 − 1)2) rimin
(x)/r0 ≤ 1,

U0 rimin
(x)/r0 > 1.

(4)
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Blending the uncertainties As noted above, the SRBF uncertainty is reliable when
the second derivatives of f are well represented by the data. In each peak or valley,
ignoring cross-derivatives, a central point plus 2 points for each dimension are needed to
capture the second derivatives. Thus, the original SRBF uncertainty can be considered as
valid in points x where at least 2D + 1 training points are found in a sphere of radius r0
around x. If fewer training points are close to x, the default uncertainty should be used.

A smooth transition between the two uncertainty estimations is obtained with two
smeared Heaviside functions. To prevent a sharp distinction between points on the inside
of the region and just outside, the number of training points in the sphere r0 is counted
as:

d̄(x) =
n∑

i=1

(
1− 1

1 + e
−12.5

(
ri(x)

r0
−1.1

)
)
. (5)

A weight w for the default uncertainty is evaluated based on d̄:

w(d̄) = 1− 1

1 + e−25( d̄
2D+1

−0.8)
. (6)

Using w, the modified interpolation uncertainty estimation is defined as:

U interp (x) = U srbf (x)
(
1− w

(
d̄(x
))

+ Udef (x)w(d̄(x)). (7)

The adjustment functions used in the modified uncertainty are shown in figure 2.

4 NOISE CANCELING AND TRAINING-POINT UNCERTAINTY

Least-squares regression of the training set (section 2) is effective for filtering noise,
but has three disadvantages: (i) the interpolation error estimator is ill founded for non-
interpolating surrogate models, (ii) the uncertainty associated with the surrogate model
prediction may be smaller between the training points than in the points themselves,
which is illogical, and (iii) if the LOOCV procedure chooses a high number of kernels,
overfitting can occur [6].

Therefore, we define a new noise canceling approach which consists of separate noise-
filtering and interpolation steps. To compute the surrogate, noise-filtered data f̄i(xi) are
first reconstructed in the training points. Analogous to SRBF, these data are a weighted
average of fits with different noise levels; this reduces the risk of overfitting caused by one

0 0.5 1
0

0.5

1
Parabolic f.

0 0.5 1 1.5
0

0.5

1
Heaviside (Count)

0 0.5 1 1.5
0

0.5

1
Heaviside (Adjust)

Figure 2: Adjustment functions: default uncertainty Udef, counting function d̄(r), and
weight w(d̄).
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extreme fit. Then, standard SRBF interpolation of f̄i(xi) is performed, which eliminates
the problem (i) of the interpolation error estimation.

To associate an uncertainty to the noise-filtered surrogate model, it is assumed that
the training data uncertainty has two components: (1) the unknown amount of noise in
the data introduces an uncertainty in the required amount of noise filtering, which can
be estimated from the variance of the different fits, and (2) for a small dataset, even with
perfect noise filtering, the actual mean of the function in the neighborhood of a training
point may not correspond to the true simulation response; this mean-value uncertainty
can be estimated with the central limit theorem.

Training set reconstruction and associated uncertainty The noise in the training
points is removed with least-squares fitting, varying the number of RBF kernels M to
represent different noise levels. Thus, the noise-filtering uncertainty in the training points
is evaluated as the variance associated to the different fits of g̃M(xi, τ) due to varying M
with a fixed value of τ = 3. The noise-filtered training data f̄i are based on the average
of g̃M(xi, 3).

Depending on the noise that is actually present, not all M are equally likely. Therefore,
LOOCV is used to identify the most likely g̃M(xi, 3) fits. Let g̃

M
−i(x) be a surrogate model

trained with all the noisy data T = {xi, s(xi)}Ji=1 except the i-th point, using M centers.
Then the LOOCV error in the point i is:

eMi =
∣∣s(xi)− g̃M−i(xi)

∣∣ . (8)

The errors eMi are used to achieve a likelihood estimation for each M based on an approx-
imation of the noise level σn:

σ2
n ≈ σ2

CV = min
M

1

J

J∑
i=1

(
eMi
)2

, (9)

where the minimum of the LOOCV errors is taken as the closest approximation of the
noise, since the reconstruction with the lowest error is probably closest to the true function.
The likelihood that each M provides an accurate regression of the noisy data, L(M), is
the probability of the training point data s(xi) given the surrogate model g̃M−i and white
noise ∼ N (0, σCV ) [3]:

L(M) =
J∏

i=1

p
(
s(xi)

∣∣∣ g̃M−i(xi)
)
=

J∏
i=1

1

σCV

√
2π

exp

(
−1

2

(
eMi
σCV

)2
)
. (10)

The likelihoods L(M) for M = 2D . . . J − 1 are finally scaled to form a partition of unity.
L serves to reconstruct the data f̄i with a weighted average of the non-LOOCV fits g̃M ,
while the variance provides an uncertainty for the noise filtering:

f̄i =
∑
M

L(M)g̃M(xi, 3),
(
σfilt
i

)2
=
∑
M

L(M)
(
g̃M(xi, 3)− f̄i

)2
. (11)
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Finally, since LOOCV uses interpolation towards the excluded point, it does not provide
reliable results if too few training points are available (section 3). Therefore, the training
points which have fewer than 2D + 1 neighbors within a distance r0 are ignored for the
LOOCV and their training data s(xi) are kept unmodified.

Mean-value uncertainty According to the central limit theorem, the mean of n real-
izations of a function with stochastic noise is another stochastic variable whose standard
deviation is the noise standard deviation divided by

√
n. Therefore, estimating the un-

certainty in the mean value of s(xi) requires an estimation of the noise level and an
indication of how many training points contribute to the local mean value; both vary
with M . Following a conservative approach, it is preferable to overestimate the noise,
therefore a different estimate than (9) is selected, i.e. the highest noise level for which the
outcome s(xi) is in the 95% confidence interval:

σ2
n,M =

1

F−1(0.025, J)

J∑
i=1

(
s(xi)− g̃M(xi)

)2
, (12)

where F−1(0.025, J) is the inverse of the cumulated distribution function for the chi-
squared distribution with J samples, evaluated at a probability of 2.5%.

The (probably pessimistic) estimated number of training points which contribute to
each local minimum is the number of training points IMi which are k-means clustered into
the same RBF center as point i, when M centers are used. The mean-value uncertainty
for M centers is then:

σm,M(xi)
2 =

σ2
n,M

IMi
, (13)

The final estimated mean-value variance is weighted like the noise-filtering variance:

(σmean
i )2 =

∑
M

L(M)(σm,M(xi))
2. (14)

Total training point uncertainty Assuming that the mean-value and noise-canceling
uncertainties are independent, the standard deviation of the total training point uncer-
tainty in the i-th point is: (

σdata
i

)2
=
(
σfilt
i

)2
+ (σmean

i )2. (15)

The 95% confidence interval Udata
i is assumed equal to 2σdata

i , it is interpolated with SRBF
(M = J) and added to U interp, as shown in the following section.

5 MULTI-FIDELITY

Thanks to the definition (2), the error training data cancel the influence of LF data in

HF training points, so each multi-fidelity model f̂l is a fit through its own data Tl. Hence,
the full multi-fidelity surrogate model can be seen as a (highly sophisticated) interpolation

6
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through the highest-fidelity data. Following the principles of the preceding sections, the
MF uncertainty therefore consists of HF data uncertainty and an interpolation uncertainty
caused by the use of lower-fidelity models between the high-fidelity data.

Recursively writing (1) as f̂l = ε̃l + f̂l+1 allows its uncertainty to be decomposed as

U2
f̂l
= (Udata

ϵ̃l
)2 + (U interp

ϵ̃l
)2 +

(
U2
f̂l+1

)interp
. (16)

When using the low-fidelity surrogate f̂l+1 for interpolation, the error induced in the HF
training points {xi}Jli=1 is zero, since any deviation is corrected by the error surrogate ε̃l.

The MF interpolation uncertainty induced by f̂l+1(x) can therefore be seen as conditional
w.r.t its value in those points:(

U2
f̂l+1

)interp
=
(
U2
f̂l+1

∣∣∣ f̂ l
l+1

)
, (17)

where f̂ l
l+1 = {f̂l+1(xi)}Jli=1. The recursion in (16) can be removed by substitution in (17)

and simplifying. The interpolation error is zero in data points, so (U interp
ϵ̃l+1

| f̂ l
l+1) = U interp

ϵ̃l+1
.

Furthermore, the data are nested, so
(
(Uf̂l+2

| f̂ l+1
l+2 )

∣∣∣ f̂ l
l+2

)
= (Uf̂l+2

| f̂ l+1
l+2 ) since {xi}Jli=1 ⊆

{xi}Jl+1

i=1 . Thus, equation (16) becomes:

U2
f̂l
=

[
(U interp

f̃N
)2 +

l∑
k=N−1

(U interp
ϵ̃k

)2

]
+

[(
Udata
f̃N

∣∣∣ f̂ N−1
N

)2
+

l∑
k=N−1

(
Udata
ϵ̃k+1

∣∣∣ f̂ k
k+1

)2]
+ (Udata

ϵ̃l
)2. (18)

Estimation Since no stochastic process is known for the data, the conditional training
point uncertainty has to be estimated. We suppose that it is linked to the two-point
correlation of the data: if a training point xi and an arbitrary point x are uncorrelated,
fixing fl+1(xi) has no influence on x. The two-point correlation of the noise-filtered data
can be estimated from the local distances between RBF kernels cl+1

j , since these represent
data which the noise canceling deems independent. However, the kernel point distance
depends on the number of kernels Ml+1 (section 4). The following estimation has been
implemented:

1. In each training point xi, the characteristic radius d l+1,M
xi

for each Ml+1 is the
minimum distance of the kernel center into which the training point is clustered to
any other kernel center. Like (14), the final characteristic radius d l+1

xi
is a weighted

mean of these distances.

2. Then, for any point x, the largest two-point correlation with any training point in
l + 1 which is also available on level l, is:

K l+1
max(x) = max

i∈Jl
K
(
x,xi, d

l+1
xi

)
. (19)

7
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The correlation functionK(x,x′, d) has to be estimated. Since the default interpolation
uncertainty (section 3) is based on parabolas we use:

K (r, d) =

{
(r/d− 1)2 r/d ≤ 1,

0 r/d > 1,
(20)

where r = ∥x − x′∥. However, this choice is arbitrary; a Gaussian kernel function could
also be used. The conditional uncertainty in (18) then becomes:(

Udata
ϵ̃l+1

∣∣∣ f̂ l
l+1

)
≈ Udata

ϵ̃l+1
(x)
(
1−K l+1

max(x)
)
. (21)

6 TEST CASES

Interpolation The interpolation uncertainty estimation is tested on the 1D MF For-
rester function [7]. For the moment, only the HF function f1 is used:

f1(x) = (6x− 2)2 sin(12x− 4),

f2(x) = (6x− 2)2 sin(12x− 4)− 10(x− 0.5)− 5.
(22)

With 2 and 3 training points (figure 3) the default uncertainty is used everywhere, which
is the right choice: unlike U srbf, the modified uncertainty interval contains most of the
true function. For 5 data points, U srbf becomes reliable and Udef starts to be switched

Figure 3: HF Forrester (f1) without noise: interpolation uncertainty with 2, 3, 5 and 7
training points.
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off, while for 7 points, U srbf is selected everywhere. Looking in detail, the estimation is
pessimistic for 5 points, while for 7 points the true function leaves the uncertainty domain
once. This is because the peak width r0 which was chosen as a compromise to fit many
different functions, does not correspond to the actual peak widths for Forrester. Given
this limitation, the new estimation predicts the uncertainty with a reasonable accuracy.

Noise filtering Figure 4 shows three surrogate models for the HF Forrester function
with noise. The first one has σn = 1.5 and clustered data. RMSE is the function mini-
mized in (9), err the RMS difference between the true f and each fit. The interpolation
uncertainty varies with the distance between sampling points and even Udef is used. The
training point uncertainty is reduced around the cluster, thanks to the lower mean-value

x
0 0.2 0.4 0.6 0.8 1

15

10

5

0

5

10

15

20

25

Figure 4: Surrogate models for HF Forrester with noise: 20 points, σn = 1.5 (top), 100
points, σn = 1.5 (middle), and 100 points, σn = 0.15 (bottom). Right figures: the noise
and errors of the fits with different M . RMSE is the function minimized in (9), err the
RMS difference between the true f and each fit.
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uncertainty. The right figure shows that 3 values of M are the most likely. These coincide
both with the minimum of the RMSE and with the minimum true error, showing the
efficiency of the likelihood estimator. Finally, the noise σn,M is overestimated w.r.t. σn as
desired, but the order of magnitude is correct. These observations hold for all three tests.

The middle image retains σn = 1.5 but has 100 equidistributed training points. For
this point density, U interp is negligible. The total uncertainty interval is smaller than the
spread of the data, indicating effective noise filtering. Also, the uncertainty is smaller
than in the cluster for the first case, although the local point density is lower. Thus, the
data uncertainty in a given point is non-local; it depends on the data in a region around
the point. With a noise level σn = 0.15 (bottom row) the LOOCV automatically detects
that less smoothed fits (higher M) are more likely and changes the chosen fits.

The last test (figure 5) uses the 145-point low-fidelity dataset from the 2-parameter two-
fidelity airfoil optimization of [2], which has a valley-like response shape with a minimum
around [0.3, 0] and at least 10% noise. The new approach is compared with the LS-SRBF
uncertainty estimation we presented in [2] (see section 2). For the new approach, the
neighbor count of equation (5) varies abruptly since the data are highly clustered, which
explains the rapid change to the default uncertainty in the top half of the domain. The
separation of training point and interpolation uncertainty ensures that the uncertainty
minima are in the training points. Also, the clustered data reduce the mean-value un-
certainty, which leads to minimum zones around the clusters. The LS-SRBF approach
however, predicts the minimum uncertainty in positions next to the data, which likely co-
incide with the RBF center positions. Altogether, the new uncertainty estimation seems
more credible and appears to be a good basis for adaptive sampling.

Figure 5: NACA airfoil 2D uncertainty with the new approach (left) and with LS-SRBF
from [2] (right).

Multi-fidelity Finally, a multi-fidelity case is performed with 21 equidistributed LF
points, 6 HF points, and noise σn2 = 1.5 / σn1 = 0.15. Figure 6 shows the surrogate model
predictions and uncertainty components and the LOOCV error and noise estimation for
the low-fidelity and error models. It is worth noting how the new uncertainty U2 mostly
encloses the true function f2, whereas the U interp is negligible for 21 training points. The

10
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Figure 6: Individual surrogate model predictions and uncertainty components for MF
Forrester with noise: LF 21 points, σn2 = 1.5 (left), HF 6 points, σn1 = 0.15 (right).
Right figures: the noise and errors of the fits with different M .

low-fidelity surrogate model is not accurate in modeling the actual function, likely due to
the high noise level which leads to low numbers of centers, see the top right figure. As a
consequence, the error surrogate model does not agree with the true error function, since
it compensates for the inaccuracy of the low-fidelity model. Thus, the final MF surrogate
model and the uncertainty estimation are accurate, see Figure 7.

The weighted uncertainty of the low-fidelity surrogate (figure 6 top) is low compared
with the error model uncertainty, which therefore makes up most of the MF uncertainty.
Since the error model must compensate for the deficiencies of the low-fidelity model, its
complexity is higher than the analytical error function, so it requires more training points
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Figure 7: Multi-fidelity prediction and uncertainty components for MF Forrester.
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for sufficient accuracy. In this situation, the uncertainty estimation shows that further
training points should mainly be added to the high-fidelity training set.

7 CONCLUSIONS

This paper presents several additions to SRBF uncertainty estimation for surrogate
models: a default estimation when few training data are available, and a noise canceling
procedure which estimates both the uncertainty in the estimated noise level and the
deviations due to the uncertain local means of the data. Finally, it is argued that for
multi-fidelity, LF uncertainty should be treated as conditional to the HF training data.

A common conclusion from all these additions is, that the training data do not contain
enough information to accurately compute both the surrogate model and its uncertainty.
Instead, the uncertainty has to be estimated using assumptions (such as default uncer-
tainty values, influence radii, etc.) which have to be provided separately from the data.
While the estimation methods provided in this paper are open to discussion, we think this
work shows that surrogate uncertainty estimation can, and should, be studied in detail.
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