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Abstract. We consider the Picard-Newton and Anderson accelerated Picard-Newton solvers
applied to the Boussinesq equations, nonlinear Helmholtz equations and Liouville equation,
for the purpose of accelerating convergence and improving robustness with respect to problem
parameters. In all cases, we show the proposed solvers improve efficiency over the commonly
used solvers and are able to find solutions for a much larger set of problem parameters.

1 INTRODUCTION

There will always be a need for faster and more robust nonlinear solvers, and in particular
for nonlinear partial differential equations (PDEs). For PDEs arising from physics applications,
solvers typically work well in the (easy) case when the parameters are such that the effect of the
nonlinear terms is small compared to the linear terms. However, for problems such as Navier-
Stokes equations (NSE) with large Reynolds number, Boussinesq equations with large Rayleigh
number, Oldroyd-B with large Weissenberg number, nonlinear Helmholtz with large wave num-
ber and Kerr coefficient, and so on, nonlinear solvers can be slow or even fail when parameters
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are sufficiently large. While techniques such as continuation methods can sometimes be used to
“climb the ladder” up to larger parameters, such methods are typically slow, are not robust with-
out frequent user intervention, and thus developing solvers that directly solve nonlinear PDEs
with these larger parameters can provide dramatic efficiency gains and can even be an enabling
technology.

Newton’s method is a very widely used solver, and when it works it typically converges
quadratically. In general, Newton takes the form

xk+1 = gN(xk) = xk − (f ′(xk))
−1

f(xk),

where f is the function for which a root x∗ is desired, f : X → X where often X ⊆ Rn, and
quadratic convergence is achieved when gN ∈ C2 around x∗, g′N(x

∗) = 0, and x0 is sufficiently
close to x∗. For nonlinear PDEs, gN represents a solution operator to a Newton-linearized
system. For most problems, a first attempt at a nonlinear solver is often to try Newton, and if it
works then you are done [11]. However, Newton has a significant drawback in that it requires
a good initial guess, and when it does not have a good guess it often will quickly diverge and
even blow up [11, 13, 17, 19]. Moreover, in nonlinear PDEs from physics, as the important
parameters increase, the size of the convergence basin for both initial guesses and problem
parameters decreases.

An alternative to Newton that typically has less restrictions on the initial guess (i.e. has a
larger convergence basin than Newton) is the Picard iteration, which takes the form

xk+1 = gP (xk),

and often (for a carefully designed Picard iteration)

∥g′P∥ ≤ α < 1

in an appropriate norm, in some region containing x∗. For nonlinear PDEs, gP typically repre-
sents a solution operator to a (Picard-) linearized system. The Picard iteration converges linearly
under this assumption, and other nice properties of Picard are that it often has better stability
properties than Newton, and for coupled problems is generally more efficient since it can allow
for more stable decoupling of the system in the linear solve. Unfortunately, convergence of Pi-
card is slow, often just linear, and the rate gets worse as the important PDE parameters increase
- and then once the parameters are large enough, it fails. It is shown in [18, 8, 16] how Anderson
acceleration (AA) can improve the convergence properties of Picard in many cases. It was also
shown in [21] how AA often decreases the convergence rate of Newton (in general, although it
can help when the Jacobian is close to singular [5, 6] or Newton converges linearly or does not
converge at all).

In the recent paper [17], the Picard-Newton (PN) and Anderson accelerated Picard-Newton
(AAPN) iterations were proposed as solvers for the NSE. While various combinations of Picard
and Newton have been considered over the years [22, 14, 20, 15], the paper [17] showed that a
direct composition of these solvers, i.e.

gPN = gN ◦ gP ,
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were remarkably effective for the NSE and allowed convergence for much higher Reynolds
number than Picard or Newton on their own. We note that composition of nonlinear solvers
in general has recently been found to be an effective strategy [4], and can combine the good
properties of the solvers being combined; in the case of Picard-Newton, the aim is to combine
the speed of Newton with the robustness and stability of Picard. Mathematical theory was also
developed in [17] that showed for the NSE the proposed Picard-Newton and AA-Picard-Newton
algorithms had better stability and convergence properties than Picard or Newton individually.

For simplicity, for AA we will consider only depth m = 1 AA applied to Picard, and without
relaxation. This takes the form: Given xk,

Step 1. Find x̃k+1 = g(xk).

Step 2. Find x̂k+1 = g(x̃k+1).

Step 3. Find αk+1 satisfying

αk+1 = argminα∥α(x̂k+1 − x̃k+1) + (1− α)(x̃k+1 − xk)∥.

Step 4: Set xk+1 = αk+1x̂k+1 + (1− αk+1)x̃k+1.

We note that AA applied to gP can itself be considered a fixed point iteration, and we denote
it as gAAP . As proven in [12], since gP is assumed contractive in a region around x∗, gAAP

is contractive in a region that is at least almost as big (and asymptotically at least as big). In
practice, the contractive region is usually significantly bigger for gAAP compared to gP , [16],
however, theory to classify this remains an open problem.

The purpose of this paper is to extend the ideas of [17] beyond the NSE. To give the reader
some intuition for why (AA-)Picard-Newton works, consider the simple case of real-valued
functions with the Picard-Newton iteration gPN , where x∗ ∈ Ω,

gN(x
∗) = gP (x

∗) = 0

with gN ∈ C2(Ω), gP ∈ C2(Ω), g′N(x
∗) = 0 and ∥g′P∥ ≤ α < 1 on Ω. A straightforward

calculation using the chain rule shows that for x ∈ Ω,

g′PN(x) = g′N(gP (x)) · g′P (x),

and thus for x = x∗,

g′PN(x
∗) = g′N(gP (x

∗)) · g′P (x∗) = g′N(x
∗) · g′P (x∗) = 0, (1)

and additionally

∥g′PN(x)∥ = ∥g′N(gP (x)) · g′P (x)∥ = ∥g′N(gP (x))∥∥g′P (x)∥ ≤ α∥g′N(gP (x))∥. (2)
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From (1) we observe that Picard-Newton is quadratically convergent. From (2), in the region
where ∥g′N∥ is a monotonically increasing function of (x − x∗) (which is at least an interval
around x∗ with positive radius), then since x ∈ Ω we can infer that ∥g′PN(x)∥ ≤ α∥g′N(x)∥.
Since α < 1, this suggests that Picard-Newton will have a larger contractive region than New-
ton, which is exactly what we observed for Picard-Newton applied to NSE in [17].

This simplified analysis above gives results very similar to what was found with a much
more technical analysis for the Picard-Newton iteration for the NSE. Hence it is reasonable
to conjecture that we will see similar behavior for Picard-Newton applied to other types of
nonlinear PDEs. We consider herein the Picard-Newton and AA-Picard-Newton solvers to
the nonlinear Helmholtz equation, Liouville equation, and Boussinesq system, which show the
proposed methods are very effective nonlinear solvers that can improve both efficiency and
robustness compared to Picard and Newton.

2 APPLICATION 1: NONLINEAR HELMHOLTZ EQUATION

We consider as a first application the nonlinear Helmholtz equation from optics, where the
interest is in the propagation of continuous-wave laser beams through transparent dielectrics.
The system we consider is taken from [1] and takes the following form: Find u : [0, 10] → C
satisfying

d2u

dx2
+ k2(1 + ϵ(x)|u|2)u = 0, 0 < x < 10 (3)

du

dx
+ iku = 2ik, x = 0,

du

dx
− iku = 0, x = 10,

where u represents the unknown complex scalar electric field, k is the linear wavenumber, ϵ(x)
is a material dependent quantity depending on the linear index of refraction and Kerr coefficient,
and the boundary conditions are known as two-way boundary conditions that allows waves to
enter and exit the domain in a physically consistent manner [9]. Despite being 1D, this system
is well known to be quite challenging due to the cubic nonlinearity, especially as ϵ and k get
larger. Solutions for k = 5, ϵ = 0.1 and k = 10, ϵ = 0.3 are shown in figure 1, and we observe
a more complex behavior as the parameters increase.

We test here the Picard, Newton, Picard-Newton, and AA-Picard-Newton iterations for the
nonlinear Helmholtz equation. The Picard iteration takes the form

(uj+1)xx + k2uj+1 + k2ϵ(x)|uj|2uj+1 = 0, 0 < x < 10,

(uj+1)x + ikuj+1 = 2ik, x = 0,

(uj+1)x − ikuj+1 = 0, x = 10,

and the Newton iteration is similar to Picard except that the nonlinear term is instead

k2ϵ(x)
(
(u∗

juj)uj+1 + (u∗
j+1uj)uj + (u∗

juj+1)uj − 2(u∗
juj)uj

)
.
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Figure 1: Shown above are solutions (real part only) for nonlinear Helmholtz problem with varying ϵ and k

We discretize the linearized systems in space with a second order finite difference approxima-
tion using N equally spaced points (we tested 1001, 2001 and 4001, and observed very similar
results for each, and so results below are only for N = 4001), and for an initial guess we use
the nodal interpolant of

u0 = (cos(kx) + i sin(kx)),

i.e. the linear (ϵ = 0) Helmholtz equation solution for a given k.
Our objective centers around achieving convergence specifically for larger values of k and

ϵ. Table 1 shows the number of iterations needed for Picard, Newton, Picard-Newton and AA-
Picard-Newton iterations to achieve convergence for k = 5 and varying values of ϵ. Newton
iteration converges up to a value of ϵ = 0.12, Picard iteration has a slightly better behavior,
achieving convergence for ϵ values up to 0.23. We observe that both Picard-Newton and AA-
Picard-Newton iterations converge up to an ϵ value of 0.45, and in most cases AA-Picard-
Newton converges faster.

Shown in table 2 are results for k = 20 and varying ϵ, as number of iterations needed to
converge for Picard, Newton, Picard-Newton and AA-Picard-Newton. We observe that Picard
iteration achieves convergence up to an ϵ of 0.07, whereas Newton iteration only converges for
smaller ϵ values (up to 0.03). AA-Picard-Newton and Picard-Newton show notable improve-
ments in comparison to Picard and Newton iterations. AA-Picard-Newton achieves convergence
for ϵ values up to 0.14, while Picard-Newton achieves convergence for slightly higher ϵ values
(up to 0.18).

3 APPLICATION 2: BOUSSINESQ EQUATIONS

For our next application problem, we consider the Boussinesq equations, which describe
non-isothermal flow. Typically such are flows driven by buoyancy in applications such as ven-
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Table 1: Shown below are the number of iterations needed for convergence with k = 5, N = 4001 and varying ϵ
for the nonlinear Helmholtz problem, using a tolerance of 10−8 in the l2 norm. .

ϵ Picard Newton PN AAPN
0.01 8 4 3 3
0.03 11 5 3 3
0.06 16 6 4 3
0.09 19 7 4 3
0.12 29 8 4 4
0.15 46 F 5 4
0.18 59 F 5 4
0.21 61 F 6 5
0.23 237 F 7 5
0.24 F F 8 5
0.27 F F 231 7
0.3 F F 607 34

0.33 F F 248 11
0.36 F F 20 33
0.39 F F 733 200
0.42 F F F 285
0.45 F F 157 15
0.48 F F F F

Table 2: Shown below are the number of iterations needed for convergence with k = 20, N = 4001 and varying ϵ
for the nonlinear Helmholtz problem, using a tolerance of 10−8 in the l2 norm.

ϵ Picard Newton PN AAPN
0.01 12 5 3 3
0.03 21 8 4 3
0.04 34 F 4 4
0.06 89 F 5 4
0.07 160 F 5 5
0.08 F F 6 5
0.09 F F 7 5
0.12 F F 51 445
0.14 F F 132 409
0.15 F F 251 F
0.18 F F 1871 F
0.21 F F F F

tilation, solar collectors, and window insulation. The steady Boussinesq system takes the form,
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Figure 2: The Ra = 105 Boussinesq velocity (left) and temperature (right) solutions are shown above for the
differentially heated cavity problem.

let Ω ⊂ Rd (d=2 or 3):

u · ∇u− ν∆u+∇p = Ri⟨0, θ⟩T + f,

∇ · u = 0,

u · ∇θ − κ∆θ = γ, (4)

with u representing the velocity, p the pressure, θ the temperature (or density), and f and γ the
external momentum forcing and thermal sources. The kinematic viscosity ν > 0 is defined as
the inverse of the Reynolds number (Re = ν−1), and the thermal conductivity κ = Re−1Pr−1

where Pr is the Prandtl number and Ri is the Richardson number. Appropriate boundary con-
ditions are required to determine the system. The Rayleigh number is defined by

Ra = Ri ·Re2 · Pr,

and higher Ra leads to more complex physics as well as more difficulties in numerically solving
the system.

The Newton iteration for the Boussinesq system takes the form

uk · ∇uk+1 + uk+1 · ∇uk − uk · ∇uk − ν∆uk+1 +∇pk+1 = Ri⟨0, θk+1⟩T + f, (5)
∇ · uk+1 = 0, (6)

uk · ∇θk+1 + uk+1 · ∇θk − uk · ∇θk − κ∆θk+1 = γ, (7)

together with appropriate boundary conditions.
The Picard iteration for Boussinesq takes the form

uk · ∇uk+1 − ν∆uk+1 +∇pk+1 = Ri⟨0, θk+1⟩T + f, (8)
∇ · uk+1 = 0, (9)

uk · ∇θk+1 − κ∆θk+1 = γ. (10)
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We note that the Picard iteration will decouple into a temperature equation which is solved
first and then an Oseen type solve is done to recover the next velocity and pressure. Effective
preconditioners for these systems exist in the literature [2, 7, 10, 3].

We consider the test problem often called the ‘differentially heated cavity’, which models
internal flow in a square cavity where horizontallly opposite walls have different fixed temper-
atures, and the top and bottom are insulated. We take Ω = (0, 1)2, no forcing of the momentum
or temperature f = 0, γ = 0, no slip velocity boundary conditions on all sides, perfect insula-
tion on the top and bottom ∇T · n = 0 where n is the outward unit normal, T = 1 on the right
side and T = 0 on the left. The solution for Ra = 105 is shown in figure 2.

We discretize using a barycenter refinement of a 1
64

uniform triangular mesh, using (P2, P
disc
1 )

Scott-Vogelius elements for the velocity and pressure, and P2 elements for temperature. The
Dirichlet boundary conditions are enforced strongly, and the perfect insulation condition is en-
forced weakly with a do-nothing condition.

We test the Picard, Newton, Picard-Newton and AAPicard-Newton solvers for this system,
for varying Ra. Results are shown in table 3, and we observe that both Newton and Picard
iterations converge up to Ra =10000 but fail at Ra=25000 and above. When Newton fails,
the residual grew very large, while for Picard the iterations remained stable even though con-
vergence was not reached in 200 iterations. A major improvement in seen from using Picard-
Newton, as here convergence is achieved up to Ra =250000, well over an order of magnitude
better than Picard and Newton on their own, and up to Ra =100000 the quadratic convergence
of Picard-Newton is observed. AA-Picard-Newton has slightly better convergence behavior
than Picard-Newton in that it can converge up to Ra =500000, and for moderate Ra AA-
Picard-Newton converges in fewer iterations (for small Ra they converge in the same number
of iterations).

Table 3: Shown below are the number of iterations needed for residual convergence for the heated cavity problem
with varying Rayleight number Ra for the Boussinesq problem, using a tolerance of 10−8 in the H1 ×H1 norm
for velocity and temperature. An F indicated the residual grew to above 105, and DNC indicates no convergence
in 200 iterations.

Ra Picard Newton PN AAPN
1000 12 6 5 5
5000 55 8 6 6

10000 144 9 7 8
25000 DNC F 9 8
50000 DNC F 13 10

100000 DNC F 16 11
250000 DNC F 159 16
500000 DNC F DNC 93

1000000 DNC F DNC DNC
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4 APPLICATION 3: LIOUVILLE EQUATION

For our final application we consider the Liouville equation which arises in fluid mechanics.
We consider it in the following form on Ω ⊂ Rd by

∆u+ eλu = 0,

u|∂Ω = 0,

and our tests use d = 2. A solution on Ω = (0, 1)2 and λ = 5 is shown in figure 3. The goal for
the solvers is to get solutions for λ as large as possible.

Figure 3: Shown above is a solution for Liouville equation with λ = 5.

The Picard iteration for this system is defined by lagging the unknown in the exponential via

−∆uk+1 = eλuk

uk+1|∂Ω = 0.

The Newton iteration is derived from defining

F (v) = ∆v + eλv

and then calculating using
uk+1 = uk − F ′(uk)

−1[F (uk)]

9
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to get the iteration
−∆uk+1 − λeλukuk+1 = −λuke

λuk + eλuk .

These iterations are solved using the finite element method with continuous P2 elements on a
uniform triangular h = 1

64
mesh (although we note we ran the tests for different h and obtained

very similar results). The initial condition for our tests is u0 = 0.
Results for the solvers are shown in table 4 for Picard, Newton, Picard-Newton and AA-

Picard-Newton, as well as AA applied to the Picard-Newton iteration itself (AAPicard-Newton
only applied AA to the Picard iteration step). We observe that Newton does slightly better than
Picard, and converges up to λ = 7 whereas Picard converges only up to λ = 6. Picard-Newton
also only converges up to 7 as does AA-Picard-Newton, although they need less iterations to
converge compared to Newton. AA applied to (Picard-Newton) performs the best for this test,
and is able to get solutions up to λ = 11.

Table 4: Shown below are iterations needed to converge solvers for the Liouville problem to 10−8 in the L2 norm
of the residual. An F indicates that the residual grew to bigger than 105.

λ Picard Newton PN APPN AAPN
1 7 4 3 3 2
2 9 5 4 3 3
3 11 6 5 3 3
4 13 8 6 4 3
5 18 11 8 4 4
6 27 18 12 6 4
7 F 41 24 16 5
8 F F F F 7
9 F F F F 11

10 F F F F 17
11 F F F F 41
12 F F F F F

5 CONCLUSIONS

We extended the Picard-Newton and AA-Picard-Newton solver methodology to three new
tests problems: nonlinear Helmholtz, Boussinesq and Liouville equations. In all cases we ob-
serve improvement from the composition of Picard and Newton (and with AA) over both Picard
and Newton, allowing for convergence for a wider range of physical parameters. The amount
of improvement varies across the test problems, with modest improvement for Liouville, sig-
nificant improvement for nonlinear Helmholtz, and remarkable improvement for Boussinesq.
Future work includes developing convergence analsysis for Picard-Newton and AA-Picard-
Newton for these systems as well as a general theory.
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