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2 Université de Bordeaux, Arts et Métiers Institute of Technology, CNRS, INRA, Bordeaux
INP, I2M UMR 5295, F-33405 Talence, France, firstname.surname@ensam.eu

3 Institut de Recherche, ESTP, 28 Avenue du Président Wilson, F-94230, Cachan, France,
jgardan@estp.fr

Key words: Aleatory Uncertainty, Epistemic Uncertainty, Topology Optimisation, Design for
Robustness, Additive Manufacturing

Summary. In the last decade, new topology optimisation (TO) algorithms have been pro-
posed, with special features associated with Additive Manufacturing (AM) processes. However,
AM is affected by a lack of repeatability: the integration of uncertainty is thus important. In
this article, the integration of uncertainties that affect the part geometry in TO algorithms
is considered. On the one hand, the proposed approach is based on a classic density-based
TO algorithm. On the other hand, the uncertainty of geometrical features is handled through
process-related variables. Furthermore, uncertainty characterisation of AM processes shows the
need to integrate epistemic uncertainties as aleatory uncertainty. In this context, the math-
ematical framework related to uncertainty is based on Dempster-Shafer or probability boxes
structures, instead of the classical probability one. The effectiveness of the approach is tested
on various benchmark structures taken from the literature. Obtained geometries are consistent
with the robust design approach, thanks to the integration of AM process-related variables into
the topology optimisation process.

1 INTRODUCTION

Including information from the manufacturing process is crucial when considering generative
design approaches, such as the Topology Optimisation (TO) algorithms. Process information
can be included in different manners, but for one purpose: increase the performance of a product
or a part. For instance, one can integrate the specificities of the process inside the optimisation
procedure [18], in the spirit of the so-called Design for Manufacturing (DfM) approach. An
alternative strategy consists of including information about the variability of the process, in
order to design parts that are robust (or reliable) by taking into account the process deviations
[11]: the resulting approach is often referred to as Design for Robustness (or Reliability) (DfR)
approach. In this framework, two alternative design strategies can be considered: robust-based
design or reliability-based design approaches. In the former, also called reliability-based opti-
misation, the designed part must meet its performance objective (despite uncertainties) over
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a period of time. For this purpose failure probability should be estimated [16]. In the latter,
unexpected behaviours of a part, under various uncertainty sources, are minimised [16]. It is
worth noting that some cases in the literature are labelled as reliable, but they might be seen
as robust design optimisation methodologies with probability constraints [16]. In robust design
approaches, using statistical moments to optimise a design is a common practice. Regarding the
reliability-based optimisation approaches, they allow determining optimised solutions in accor-
dance with a prescribed probability of a failure event. In the following, only robust-based design
methods will be considered, since the TO method presented in this paper belongs to this class.

Uncertainty sources of a physical system are the surroundings of the system, such as its
boundary conditions or its main features, such as geometrical and material or physical proper-
ties, initial state, etc., [14]. Many works have been made in the context of Robust Topology
Optimisation (RTO) by considering different uncertainty sources. For instance, material prop-
erties uncertainty was addressed in [11], representing the uncertainty of the Young’s modulus
through a Gaussian stochastic field. Regarding uncertain boundary conditions, in [7] the posi-
tion of the applied load is considered uncertain. Including the uncertainty on the geometry is
anything but trivial. In the literature, one can find different modelling strategies. For example:

• Uncertainty can be integrated indirectly by introducing uncertain hyperparameters, i.e.,
parameters that are neither design variables nor physical parameters. In this context, in
[3], the authors consider the velocity field, which is used to update the geometry in the
framework of a level-set algorithm, as uncertain.

• Uncertainty can be integrated directly on the design variables of the TO algorithm. In [5],
the authors consider that the design variables, described through geometrical primitives,
are affected by uncertainty. In that way, the shape of the primitives are tuned in line with
uncertainty.

• Uncertainty can be integrated directly thanks to the finite element mesh, either through
the position of the nodes (Lagrangian approach) [9] or on the physical pseudo-density field
[15]. The “physical pseudo-density field” is the field of pseudo-density that is used to com-
pute the part metrics. For example, in SIMP (Solid Isotropic Material with Penalisation)
penalty scheme, it is the field of pseudo-density that the designer uses to interpret and
produce a part. These two modelling strategies offer more compatibility concerning the
TO algorithms, since the uncertainty is applied on entities that are independent of the
hyperparameters or the design variables.

Of course, this short literature survey is not exhaustive at all. For instance, research works
have been conducted on this topic by using the Reliability-Based Design Optimisation (RBDO)
[15]. As uncertain sources have been elicited, their characterisation is necessary. Particularly,
uncertain variables are characterised either as aleatory or as epistemic; aleatory uncertainty is
irreducible, but epistemic uncertainty is reducible if more knowledge is added [14]. Uncertainty
Quantification (UQ) for Additive Manufacturing (AM) falls into both representations [13]. This
means that TO must be compliant with epistemic uncertainty, even if most works use an aleatory
characterisation for uncertainties. Epistemic uncertainty has been taken into account in [7],
wherein the uncertainty on load position and thickness of the 2D design space (the thickness
is optimised after the use of TO) was represented thanks to intervals, resulting in one robust
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geometry. In [12], the angle of the applied force is affected by epistemic uncertainty represented
by fuzzy method, the information of this uncertain parameter is integrated in the gradient,
resulting in a robust geometry. In [17], material property and load conditions are affected by
epistemic uncertainty, they are represented thanks to intervals in a multi-scale context.

Nevertheless, when using such approaches, the designer has only one choice despite the pres-
ence of epistemic uncertainty. Generally, this kind of uncertainty is illustrated through a set of
Cumulative Distribution Functions (CDFs), where the envelope of these CDFs is referred to as
a probability box [14]. Probability box might be used when RBDO method is chosen. In this
paper, an adaptation of the standard RTO framework is proposed and applied in order to fit
with this representation of epistemic uncertainty to robust design. Moreover, the geometry is
considered as uncertain with epistemic uncertainty modelled with Dempster-Shafer or proba-
bility boxes (p-boxes) like structures. Of course, this representation is integrated in the classic
RTO framework which is adapted accordingly.

The remainder of the paper is organised as follows. Section 2 introduces the model used to
describe the geometrical imperfection, by considering the AM process. Then, in Section 3, the
formulation of the optimisation problem is detailed, by focusing on the introduction of epistemic
uncertainty. In section 4, the obtained results are discussed. Finally, a conclusion is drawn, as
well as future work orientations.

2 GEOMETRICAL MODELLING FOR ROBUST TOPOLOGY OPTIMISATION

The proposed geometrical modelling aims at processing local imperfection for AM-like pro-
cesses. The approach described in this section is limited to TO algorithm using a field of
pseudo-density field (projected over the mesh) to describe the topology. When geometrical un-
certainties are taken into consideration, the perturbed part can extend beyond the design space,
but this aspect is often neglected in the literature. For instance, in [9] perturbation affects
both the design and non-design regions of the domain, whereas this aspect is not taken into
account in the approach presented in [15]. In the approach presented in this section, uncertainty
can affect both design and non-design regions of the definition domain. However, uncertainty
can affect only those non-design regions where boundary conditions are not imposed. In the
case of an Eulerian mesh, the overall definition domain is discretised by using a mapped mesh
composed of hexahedral elements in 3D and quadrilateral elements in 2D. The proposed model
takes advantage of this regular discretisation. Moreover, it is noteworthy that Verification and
Validation (V&V) procedures for AM and Eulerian meshes are being developed [8]: this fact
supports our choice to use models that are compatible with Eulerian meshes.

In the context of density-based TO algorithms, the geometrical imperfections are modelled
indirectly by acting on the pseudo-density field. Therefore, the pseudo-density field is affected
by uncertainty, and a perturbed pseudo-density field is computed. For all elements i in the
overall space, Eq. 1 introduces the geometrical imperfection modelling :

ρ̃i = ρ̄i +∆ρi ∀i ∈ J1, NeK (1)

where ρ̄i is the physical (unperturbed) pseudo-density of the generic element i that belong to
the total space, whereas ρ̃i is the perturbed counterpart. ∆ρi is the variability (geometric
imperfection model) of the pseudo-density of the element i that belongs to the total space and
Ne is the number of elements composing the mesh of the FE model.
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Figure 1: Several boundary configurations and their metrics.

It is noteworthy that the perturbed density field ρ̃i can vary in the interval [0, 1], which
means that the perturbation ∆ρi is conveniently adjusted when ρ̄ = ρLB, ρUB. In other words,
all drawn numbers are put back in their physical quantity. Finally, if an element belongs to the
non-design region, then ρ̄i = 0 and ρ̃i = ∆ρi.

The geometric imperfection du to the manufacturing process (with the associated variability)
must be integrated inside the variable ∆ρi. This variation depends on the process and on local
geometric features. In the following, we assume that ∆ρi depends on the neighbourhood of the
element i, and only local information of the process is included in ∆ρi. For 2D problems, the
neighbourhood of the element is defined through a circle of radius rloc and the set containing
the indices of the elements falling in this circle is indicated as Si. The pseudo-densities of the
elements falling in the neighbourhood of the element i are denoted as ϱj , j ̸= i, j ∈ Si.

In the model of geometrical imperfections, if ϱj are close to zero or one ∀j ∈ Si, then
the probability of a boundary is null. The presence of a boundary (in or close) in Si can be
characterised by looking at the STandard Deviation (STD) of ϱj , as shown in Fig. 1. Moreover,
in order to take into account the boundary smoothness, we propose a statistical model, where
the boundary curvature is related to the skewness of density of the densities of nth elements
belonging to Si. This aspect is of paramount importance because there is a correlation between
curvature of the boundary and geometrical imperfections in AM processes. Figure 1 illustrates
various boundary configurations and the values of local skewness and STD for the elements
falling in Si. Cases A and B are characterised by a straight boundary, resulting in a high STD
and null skewness. Cases C and D have a fillet radius near the element i, resulting in a smaller
STD but higher skewness. In the last case, an element in an arm connection is considered,
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Figure 2: Probability boxes of a normal distribution, on the left; and its repercussion in robust design
approach, on the right.

resulting in a smaller STD and skewness. Therefore, the proposed modelling of geometrical
imperfections is suited for TO density-based methods and can consider the local curvature of
the boundary. Based on the modal decomposition [4], we propose a statistical decomposition of
∆ρi given as follows:

∆ρi = H (STD (ϱ̄i))× (kSTDSTD (ϱ̄i) + kSk |Sk (ϱ̄i)|)×XAM (2)

where STD (ϱ̄i) and Sk (ϱ̄i) are the standard deviation and the skewness of the elements falling
in Si. XAM is a random variable associated with the local geometric imperfection (and its
distribution) due to the AM process. kSTD and kSk are two model parameters, while H (x) = 1
if x > 10−4 and H (x) = 0 otherwise.

The next section will discuss the application of Eqs. 1 and 2 in the context of epistemic
uncertainty that arise when evaluating XAM.

3 PROBLEM FORMULATION IN CASE OF EPISTEMIC UNCERTAINTY

3.1 Numerical implementation

Dempster-Shafer and p-boxes structures have the advantage to process epistemic uncertainty
and when the distribution is imprecisely specified, this approach is called direct assumption [6].
Both structures describe a bounded randomness for a random variable. Instead of having only
one distribution, two distributions are defined (lower and upper bounds). It follows that the
imprecisely known distribution lies between these two distributions, as shown in the left image in
Fig. 2. For Dempster-Shafer structures, the upper bound is denoted as cumulative plausibility
function, while the lower bound is indicated as cumulative belief function [6]. Dempster-Shafer
and p-boxes structures are interconvertible, even if Dempster-Shafer structures can contain more
information [6]. Probability boxes are useful when a probability computation is needed, thus
they are better suited for RBDO.

In this article, the random variable XAM follows a normal distribution, where its mean is
equal to zero and its STD is uncertain and defined on an interval σAM = [0.2, 0.6]. Now, since
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XAM ∼ N (0, [0.2, 0.6]), a p-box is defined and epistemic uncertainty is revealed. In this article, as
a RTO method is used, the formulation of the problem needs to be reviewed. In our proposition,
two geometries at the end of the optimisation process are generated: an optimist geometry and a
pessimist geometry; helping the designer to make a choice by considering epistemic uncertainty.

TO method used in this work makes use of an element-wise description of the pseudo-density
field and it is based on the SIMP penalty scheme. In this background, the robust optimisation
problem consists of minimising the mean and the STD of compliance, with a constraint on the
volume of the produced geometries: optimist (op) and pessimist (pe). The optimisation problem
is formulated as follows:

min
ρop|pe

Ĉ
(
ρop|pe

)
= m̂1

(
C
(
ρ̃op|pe

))
+
√

µ̂2

(
C
(
ρ̃op|pe

))
(3)

s.t. V
(
ρ̄op|pe

)
= V ∗

f = Ku

0 ≤ ρi ≤ 1 ∀i ∈ J1, NeK

where Ĉ is an estimation of a robust metric used for part compliance. m̂1 is a function that gives
an estimation of the mean and µ̂2 is a function that gives an estimation for the variance. ρop|pe
is the design field, made up of pseudo-densities in SIMP, of the optimist or pessimist geometry.
ρ̄op|pe is the unperturbed (physical) density field of the optimist or pessimist geometry. C is
a function that computes the compliance of a given density field and V is a function that
computes the volume of a given density field, V ∗ is the desired volume. Finally u, f and K are
the displacement, force vectors and stiffness matrix, respectively.

According to Eq. 3, two optimisation problems must be solved in order to compute the
optimist and pessimist topologies and get, accordingly, bounded results in the same spirit of
p-boxes. However, these problems are coupled, in terms of compliance bounds, due to epistemic
uncertainty. For a normal distribution, where its standard deviation is described as an interval,
two CDFs are needed to define the p-box. One uses the lower bound of the STD interval and the
other the upper bound [6]. Unfortunately, non-linearity might affect the estimation of the lower
and upper bounds of Ĉ. As illustrated on the right side of the Fig. 2, the impact of epistemic
uncertainty on the system (modelled by a function f in the Fig. 2) might change the bounds
order. Particularly, the distributions that describe the bounds are inverted and one almost lies
entirely inside the p-box.

Accordingly, a new optimisation workflow needs to be defined for the objective functions
estimation. However, to simplify the problem, only some values in the interval are used to
compute the lower and upper geometries.

In Eq. 3, the CDF (that can be used to estimate probabilities) is not used as a robust metric.
In place of the CDF, the summation of the mean and the STD is used; both are estimated
thanks to a Probability Distribution Function (PDF). It is not a problem to define a “lower”
and “upper” PDF, as PDFs are derivatives of CDFs, see, for instance the right side of the Fig.
2. In this framework, each PDF is used to update the two geometries, thanks to the estimation
of its mean and STD. In fact, in a standard RTO scheme, the mean and the STD are used to
compute the gradient and update the geometry thanks to a function, h, that depends on the
chosen optimiser:

ρj+1 = h
(
Ĉ
(
ρj
)
,V
(
ρj
)
− V ∗,∇Ĉ

(
ρj
)
,∇V

(
ρj
))

(4)
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where j is the iteration index. The coupling act happens during the update of the two pseudo-
density fields. Because the parameters of the probability distribution are sampled, the optimist
solution is updated according to this scheme:

ρj+1
op = argmin

ρop|pe

{
C
(
ρj+1
op

(
σ0
AM

))
, C
(
ρj+1
pe

(
σ0
AM

))
, . . . , C

(
ρj+1
pe

(
σk
AM

))}
(5)

where k is the length of the sampled values to estimate the p-box like structures or the impact
of epistemic uncertainty. Similarly, the pessimist solution update is defined as:

ρj+1
pe = argmax

ρop|pe

{
C
(
ρj+1
op

(
σ0
AM

))
, C
(
ρj+1
pe

(
σ0
AM

))
, . . . , C

(
ρj+1
pe

(
σk
AM

))}
(6)

Eqs. 5 and 6 will provide the designer two optimised topologies, which can be seen as the
upper and lower bounds of a p-box. Notice that, as stated before, the minimum and maximum
of the Eqs. 5 and 6 should be computed by varying the values of the epistemically affected
distribution parameters; but here, values are sampled inside an interval. Lastly, the convergence
criterion is either based on the maximum number of iterations set by the user or when the
following criterion is met:

ϵ =

∣∣∣Ĉ (ρj
op

)
− Ĉ

(
ρj+1
op

)∣∣∣∣∣∣Ĉ (ρj
op

)∣∣∣+ ∣∣∣Ĉ (ρj+1
op

)∣∣∣ +
∣∣∣Ĉ (ρj

pe

)
− Ĉ

(
ρj+1
pe

)∣∣∣∣∣∣Ĉ (ρj
pe

)∣∣∣+ ∣∣∣Ĉ (ρj+1
pe

)∣∣∣ (7)

3.2 Sensitivities

Monte Carlo Sampling (MCS) with n samples is used for the estimation of the mean and
STD. Given a sample of size n, then it is possible to compute the unbiased moments of the
compliance C and use them in equation 3:

m̂1 =
1

n

n∑
l=0

C (ρ̃l) (8)

µ̂2 =
1

n− 1

n∑
l=0

(C (ρ̃l)− m̂1)
2

where ρ̃l is the lth sample from the population. The computation of the sensitivities, for the ith

element reads:

∂m̂1

∂ρi
=

1

n

n∑
l=0

∂C (ρ̃l)

∂ρi
(9)

∂µ̂2

∂ρi
=

2

n(n− 1)

[
n

n∑
l=0

(C (ρ̃l)− C)
∂C (ρ̃l)

∂ρi
−

(
n∑

l=0

(C (ρ̃l)− C)

)(
n∑

l=0

∂C (ρ̃l)

∂ρi

)]

where the partial derivative of the compliance for the lth sample, i.e. ∂C (ρ̃)/∂ρi, is already
available in the literature (see details in [1] and [10] regarding the expression of the partial
derivative of the compliance). It is noteworthy that C is the compliance of the current design
(without uncertainty), which is used to reduce the numerical errors when computing the variance
and its gradient. This information can be used because the following property holds: V (X) =
V (X − C).
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Figure 3: Boundary condition and total space of the study case.

4 NUMERICAL RESULTS

The use case that will be used in this paper is a rectangular design space, with a length to
width ratio of 4. The boundary conditions are the following: a downward force in the middle of
the right face and fully clamped left face (except on the non-design space). A non-design space
is defined at the top and at the bottom of the rectangular design space. The number of elements
along the length is 160 and along the height is 40 plus 2 for each non-design space rectangle;
as the geometric perturbation is local and depends on the size of the elements, this number is
sufficient. Moreover, the side of an element is one. The figure 3 shows the boundary setting.

As the SIMP method is employed, different filters are available in order to: assure mesh
independence thanks to the enforcement of a minimal length scale, for this, a filter on the design
field is applied by using a moving average on elements that belong to a circle of radius rscale, see
details in [1]; and to render the solution black and white, for this, a filter based on a continuous
approximation of the Heaviside function is used, see details in [10]. The value of radius for the
first filter is rscale = 1.3. For the “Heaviside filter” η = 0.5 through all the optimisation (an
optimal value of η is not calculated at each iteration) and a continuation scheme is applied to
the parameter β, its value varies in this vector [1.0, 4.0, 8.0, 16.0, 32.0, 64.0] for this number of
iterations [60, 15, 5, 5, 5, 5]. The constraint on the volume is set at 40% of material of the design
space. Lastly, the SIMP law used in this article is :

D (ρ̄)/D+ = α+ (1− α)ρ̄p (10)

where α = D−/D+ = 1.10−6 and D+ and D− are the elasticity tensor for full and void materials
respectively. The value of the penalty stays at p = 3 and no continuation scheme is used.

For the statistical model presented in section 2, the following parameters are used: kSTD = 1.6
and kSk = 0.2; XAM ∼ N (0, [0.2, 0.6]). A hypothesis is made on the linearity of the framework
and only the extremal values are considered, i.e. σAM = [0.2, 0.6]; rloc = 1.5, which means, by
considering the size of an element, the configuration is similar to the ones shown in figure 1; and
the sample size for the MCS is n = 1000.

Finally, for the optimiser, the routine update function, h, used is the one that came from
this article [1]; even though, the MMA optimiser from NLopt can be used, but the comparison
between different optimisers is planned for a future paper. For the chosen optimiser, the tolerance
for the volume constraint is 0.001 and the “move” variable is 0.2. All the code is running
with Python 3.10; finite element simulations, for the linear elasticity problem, are made with
DOLFINx [2] and the mesh with Gmsh.

The figure 4 depicts the geometry obtained without uncertainties. The compliance is about
397 and the shape is classic for this kind of problem setting. It can be observed that the addition
of a non-design space has no influence on the result. The figure 5 represents the geometries
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Figure 4: Optimised geometry obtained without uncertainty.

Figure 5: Optimised geometries affected by uncertainties, on the left: the optimist geometry ; on the
right: the pessimist geometry.

obtained with epistemic uncertainty. Has mentioned previously, two geometries results from
this new optimisation process. The optimist geometry on the left of figure 5 and the pessimist
geometry on the right of figure 5. The table 1 sum-up the main metrics for all the geometries.
Regarding cases with uncertainty, the mean and the STD are higher for the pessimist geometry
as intended. The standard deviation is relatively small, which is consistent as the uncertainty
model is local. The shapes became thicker if the geometric uncertainty is considered and the
optimiser succeeded to distribute the material according to the levels of uncertainty. When
uncertainty is considered, shapes lose their symmetries, it is due to the sampling method; if the
number of individuals in the population is increased, then the shapes are more symmetric. As
the designer has more information on the relative shape that is produced by different levels of
uncertainty and as the shape is similar; it can help to know where to increase arm size. Finally,
the fact that the geometries look similar, with more or less thick arms is not a general conclusion;
precautions should be taken and further investigation needs to be made.

5 CONCLUSION

In this article process information is integrated thanks to DFR activity. A questioning on the
type and on the representation of uncertainties was asked. It follows that both, epistemic and
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Table 1: Comparison on different metrics between geometries.

Compliance Mean STD Max. Min.

No uncertainty 397 N/A N/A N/A N/A
Optimist 400 449 2.86 460 442
Pessimist 413 463 3.11 474 453

aleatory, uncertainty can emanate from the process. That is why, an adaptation of the classic
RTO framework is proposed and applied compared to the p-boxes that are found in RBDO. In
this framework, two geometries are produced at the end of the optimisation, in the spirit of the
classical p-boxes. The results are cohesive with what is expected. The optimist geometry has a
better performance in compliance, but result in a slender design.

The future steps of this work are to verify the hypothesis on the linearity of the framework.
Moreover, other optimisers can be used and other use cases are required to see if the three
geometries will stay similar. Finally, this work, can be extended to textbook cases of the robust
design community to have a deeper look inside the method fulfilled in this paper.
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