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Summary. A numerical model for the analysis of reinforced concrete structures must 

incorporate tools capable of representing the formation and propagation of cracks, their effect 

on the overall behavior of the structure, and the interaction between reinforcement and concrete. 

Detailed rigid particle models (PM) that take directly into consideration the physical 

mechanisms and the influence of the material aggregate structure have gained relevance and 

have shown to be able to predict, evaluate and understand cracking phenomena in concrete. The 

3D particle models correlate well with experimental results from concrete specimens, 

particularly in terms of elastic response, peak values, fracture process and fracture location. 

This paper presents the 3D explicit formulation of steel reinforcement bars using discrete 

elements with cylindrical geometry. The incorporation of steel elements allows the particle 

model to be applied to the analysis of fracture in reinforced concrete structures. The rigid 

elements of cylindrical geometry interact with the concrete, modeled by spherical particles, 

through a contact interface. The model is validated in three-point beam bending tests, without 

transverse steel reinforcement. The numerical results obtained show that the proposed model 

correctly simulates the actual behavior, representing the fracture evolution process and the load-

displacement relationship for different steel ratios. 
 

1 INTRODUCTION 

It is possible to predict, evaluate and understand cracking phenomena in quasi-brittle 

materials through numerical models, among them detailed rigid particle models (PM) have 

emerged. PMs by taking directly into consideration the material grain structure and the granular 

physical interaction mechanisms can reproduce complex crack patterns and macroscopic 

behaviours, similar to those observed in laboratory tests, in rock [1, 2], concrete [3-5], 

reinforced concrete [6, 7], old masonry [8, 9] and asphalt mixtures [10, 11]. PM models are 

conceptually simpler than models based on a continuous approach and, since they are based on 

an idealized discontinuous medium, the development of failure surfaces and their interaction 

occurs naturally.  

To evaluate reinforced concrete structures, a numerical model must include tools that can 

accurately represent crack formation and propagation, and their effect on the structure's overall 

behaviour. To model reinforced concrete structures with a PM, it is necessary to consider the 
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model for the steel reinforcement and consider steel/concrete interaction mechanisms. In the 

context of the continuum-based finite element method (FEM), there are three different 

approaches to represent reinforcement bars, depending on the type of problem being analysed 

[12]: i) discrete representation, ii) distributed representation and iii) embedded representation. 

In similar mesoscale models based either in the Rigid-Body-Spring Model (RBSM) or in the 

Lattice Discrete Particle Model, steel reinforcement bars can be represented by 1D bar 

elements, Euler or Timoshenko beams, that interact with the concrete particles via a spring 

interface [13-16]. In the RBSM a finer particle discretization of the steel reinforcement has also 

been adopted [17, 18]. When a finer particle discretization is followed, different material 

properties are adopted for the particles representing the reinforcement bars, and the 

steel/concrete interface is handled as a usual particle/particle interaction.  

In 3D DEM based PMs, the most straightforward way to include the reinforcement is to 

discretize the reinforcement bars using lines of sphere particles of diameter equal to the bar 

diameter [7], but this may lead to a higher number of particles to be adopted given the particle 

size. This paper presents a 3D explicit formulation of reinforcement bars using discrete 

elements with cylindrical geometry, based on the 2D model proposed in [7] for concrete, that 

has also been applied in old masonry strengthening analysis [19]. The incorporation of steel 

elements allows the particle model to be applied to the analysis of fracture in reinforced 

concrete structures. The model is validated in three-point beam bending tests without transverse 

steel reinforcement. As shown here, there is a good correlation between the PM reinforced 

model and the experimental results, in terms of the load/displacement relationship and the 

fracture process for various levels of reinforcement.  

 

2 PARTICE MODEL (PM) 

2.1 Voronoi-generalized contact model (VGCM-3D) 

In this work, a 3D Voronoi-generalized contact model (VGCM-3D) [20, 21] is adopted. In 

the VGCM-3D  model, the contact surface and the contact point location are defined by the 

Voronoi tessellation of the spherical particles gravity centers, Figure 1. The common Voronoi 

facet is the contact surface and the vertexes of the Voronoi facet including the gravity centre of 

the Voronoi facet are considered to be the local contact points locations, Figure 1.  

By incorporating the VGCM-3D contact model, the PM model takes into account the 

polyhedral shaped particles in an approximate way, but still keeps the simplicity of spherical 

particle models and does not require a significant increase in the computational effort. Given 

the normal (𝑘𝑛
[𝐽]

) and shear stiffness (𝑘𝑠
[𝐽]

) of each local contact point, the normal and shear forces 

increments are obtained following an incremental linear law: 

∆𝐹⬚
[𝐽,𝑁]

= −𝑘𝑛
[𝐽]

∆𝑥⬚
[𝐽,𝑁]

= −𝑘𝑛
[𝐽]

(𝑥̇𝑖
[𝐽]

∆𝑡)𝑛𝑖 
(1) 

∆𝐹𝑖
[𝐽,𝑆]

= −𝑘𝑠
[𝐽]

∆𝑥𝑖
[𝐽,𝑆]

= −𝑘𝑠
[𝐽]

  (𝑥̇𝑖
[𝐽]

∆𝑡)−∆𝑥⬚
[𝐽,𝑁]

𝑛𝑖 
(2) 

where ∆𝑥⬚
[𝐽,𝑁]

 is the contact displacement normal increment stored as a scalar,  ∆𝑥𝑖
[𝐽,𝑆]

 is the 

contact shear displacement increment stored as a vector and 𝑛𝑖 is the contact unit normal. 
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a) (t, n) plane b) (t, s) plane 

Figure 1: VGCM-3D contact model with variable number of local points given by the Voronoi facet vertexes 

and its gravity centre 

2.2 Local contact stiffness and local contact strength 

The VGCM-3D contact stiffness is defined based on the Young’s modulus of the equivalent 

continuum material (𝐸̅) and on a constant that relates the normal and the shear stiffness spring 

value (𝛼): 

𝑘𝑛
[𝐽]

=
𝐸̅

𝑑
𝐴𝑐

[𝐽]
 

(3) 

𝑘𝑠
[𝐽]

= 𝛼 𝑘𝑛
[𝐽]

 (4) 

where, 𝐴𝑐
[𝐽]

 is the contact area associated with the local point 𝑗 and 𝑑 is the distance between the 

particles centre of gravity. The contact strength properties are defined based on the maximum 

contact tensile stress (𝜎𝑛.𝑡)), the maximum contact cohesion stress (τ) and the local contact point 

area: 

𝐹𝑛.𝑚𝑎𝑥
[𝐽]

=  𝜎𝑛.𝑡  𝐴𝑐
[𝐽]

 (5) 

𝐶𝑚𝑎𝑥
[𝐽]

=  𝜏 𝐴𝑐
[𝐽]

 (6) 

2.3 PM Generation 

Figure 2 shows the adopted PM generation procedure for the uniaxial tests that are used for 

calibration proposed in Section 3. An aggregate quantity of 568.5 kg/m3 comprising particle 

dimensions ranging from 8.0 to12.0 mm in diameter was considered in the PMs. The particles 

representing the mortar are subsequently introduced adopting a porosity value of 0.1 and a 

uniform distribution, featuring diameters ranging between 8.0 and 9.0 mm. 
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a) aggregate particle insertion: 

particles with 8.0 to 12.0 mm 

diameter (black) 

b) compact assembly with 

particles with 8.0 to 9.0 mm 

diameter representing the mortar 

(red) 

c) Laguerre–Voronoi cells of the 

aggregate particles with 8.0 to 9.0 

mm diameter. 

Figure 2: PM generation steps for concrete. 

3.4 Vectorial bilinear weakening model (BL) 

A bilinear softening damage model, Figure 3, can be adopted for the contact in the normal 

and shear directions [2, 3, 4]. Given the current total contact damage the maximum values of 

tensile and cohesive strength are reduced accordingly. The contact damage is given in an 

approximate way by the sum of tensile and shear damage. In each direction, the damage value 

is defined as a function of the maximum contact displacement in that direction. The BL contact 

model can be used with confidence in PM fracture studies with the following advantages in 

detailed 3D PM DEM-based models: a reduced number of contact strength parameters requiring 

calibration and lower associated computational costs [21].  

 

 

 

 

a) Normal direction b) Shear direction 
 

Figure 3: Bilinear softening under tension and shear contact constitutive model 

2.5 Reinforcement model 

A given steel reinforcement is modeled using several rigid cylinders that interact with each 

other at the connection nodes. In this model, the elastic and strength properties are concentrated 

in the connection zones. Figure 4 shows the interaction model between two rigid cylinders at a 

given interaction node.  

As in the MP model, each rigid cylinder has six degrees of freedom. It should be noted that 

the lumping of elastic and strength properties at the interaction node simplifies the 

1

= 2 Gf.n ( / )#

= 0.75 ( )+ 

= 5 ( - )+ 

0.25 
1

ks

= + uc

= 2 Gf.s ( / )#

= 0.75 ( )+ 

= 5 ( - )+ 
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establishment of non-linear constitutive models (axial, shear, bending and torsion) when 

compared to equivalent FEM-based formulations. The laws of interaction at the point of 

connection between the cylindrical elements representing the reinforcement bar follow the 

principles defined for the Parallel Bond contact model [1], with the exception of how to 

calculate the location of the interaction node and the definition of the axial direction at the same 

point, defined below. A similar reinforcement model that adopts spherical particles with a given 

inter-particle distance and a cylindrical cover has been proposed for 3D DEM based PMs [22]. 

 

 

Figure 4: Steel bar model - Lumped properties at the interaction node. 

The location of the interaction node, 𝑥𝑐
[𝐶]

, where the elastic and strength properties are 

concentrated, is given by the average of the coordinates of the end nodes of each rigid cylinder 

adopted in the discretization of the steel element: 

𝑥𝑐
[𝐶]

=  0.5 (𝑥𝑖
[𝐴𝐽]

+ 𝑥𝑖
[𝐵𝐼]]

) (7) 

where 𝑥𝑖
[𝐴𝐽]

 is the location of the center of gravity of the final end of rigid cylinder A, and 𝑥𝑖
[𝐵𝐼]

is 

the location of the center of gravity of the initial end of rigid cylinder B. Both the final and 

initial locations are obtained in each calculation step from the member's center of gravity, its 

length and the axial direction. In each calculation step, the axial direction of the connection 

node is given by the average of the axial directions of the rigid members under analysis: 

𝑎𝑖
[𝐶]

=  0.5 (𝑎𝑖
[𝐴]

+ 𝑎𝑖
[𝐵]

) (8) 

The stiffness values adopted for a given connection zone of a steel beam are given by: 

 

𝑘𝑎
⬚ =  

𝐸𝐴

𝐿
 ;  𝑘𝑡

⬚ =  
𝐺𝐼

𝐿
; 𝑘𝑏

⬚ =  
𝐸𝐼

𝐿
; 𝑘𝜃

⬚ =  
𝐸𝐽

𝐿
    

(9) 

where 𝑘𝑎
⬚ and 𝑘𝑡

⬚ are, respectively, the axial and shear stiffness of the connection node, 𝑘𝑏
⬚ 

and 𝑘𝜃
⬚ are, respectively, the bending and torsional stiffness of the connection node, L = (L[A] 

+ L[B]) / 2.0 is the length associated with the connection node given as a function of the 

neighboring cylindrical elements, 𝐴 =
𝜋𝐷2

4
 is the cross-sectional area of the steel beam and D 
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is the bar diameter, 𝐼 =
𝜋𝐷4

64
 is the moment of inertia of the cross-section, 𝐽 =

𝜋𝐷4

32
 is the polar 

moment of inertia of the cross-section of a circular section of diameter D, E is the Young's 

modulus of the steel beam and G is the shear modulus of the steel beam. In the numerical 

examples presented in section 3, an elastic model is used followed by a yield plateau to 

reproduce the axial behaviour of the interaction node. 

2.6 Reinforcement/particle interaction model 

The interaction between the spherical particles representing the concrete and the cylindrical 

elements representing the reinforcements could be carried out using cylinder/spherical particle 

detection/interaction schemes. To ease the contact detection process and the contact interaction, 

each cylindrical element, adopted in the discretization of each reinforcement, is discretized with 

spherical particles along its length. In this way, it is possible to adopt the spherical 

particle/spherical particle interaction model previously defined. The spherical particles are 

rigidly associated with the cylindrical element to which they belong. With this type of model, 

the discretization of a given reinforcement (a function of the number of cylindrical segments 

adopted) is independent of the discretization adopted for the particle/steel element interaction. 

The unit normal of the concrete spherical particle/steel element spherical particle contact is 

corrected considering the axial direction of the cylindrical element to which the spherical 

particle representing the steel element belongs. In this way, the roughness associated with 

discretizing a cylindrical element as a particle model is eliminated, avoiding the appearance of 

artificial interlocks.  

The elastic and strength properties of the reinforcement/particle contacts are defined using 

the same methodology adopted for the particle/particle contacts. It is also required that a given 

concrete particle can only interact with a single contact point of a given group of representative 

elements of the same steel beam. For the concrete particle/steel particle contact a BL contact 

model similar to the model adopted for concrete particles interactions is adopted. 

 

  

a) 4 cylindrical elements representing steel 

reinforcement 

b) Discretization of each cylindrical element with 

spherical particles for interaction reasons 

Figure 5: Discretization of cylindrical elements with spherical particles. 
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3 CASE STUDY: THREE POINT BENDING TEST 

The PM model was applied to the numerical analysis of experimental bending tests of a 

three-point beam [23], in which the minimum amount of bending reinforcement in high-

strength concrete beams was studied. Three different geometries were considered in the 

experimental test, in this study only the smallest beam was investigated numerically, Figure 6. 

The concrete used consists of an aggregate with a maximum size of 12.7 mm in diameter, an 

average ultimate compressive stress of 91.2 MPa (measured in 160 mm × 160 mm cubic 

specimens) and a modulus of elasticity of 34.2 GPa, see Table 1. A Poisson’s coefficient of 

0.15 and a maximum tensile strength of 4.0 MPa was adopted for calibration purposes.   

The contact properties, Table 2, were obtained through a simple calibration process, by trial 

and error, on 160x160x160mm3 numerical specimens. The elastic contact properties were 

calibrated, followed by the strength properties adopting uniaxial compression and tensile tests. 

Due to the computational costs associated with PM models, it was necessary to adopt a particle 

size higher than the actual concrete particle sizes, thus making it impossible to represent the 

heterogeneity of the concrete.  

 
Figure 6: Three point bending test geometry 

Table 1: Three point bending test - Elastic and strength BL macroscopic numerical properties  

 

E 𝜐 
c  

t  

(𝐺𝑃𝑎)  (𝑀𝑃𝑎) (𝑀𝑃𝑎) 

34.2 0.15 91.2 4.0 

 

Figure 7 shows the stress-strain curves and the contact damage evolution obtained in uniaxial 

compression and uniaxial tensile tests. As shown, it is possible to obtain with a VGCM-3D 

contact model a compression/tensile maximum stress ratio of approximately 22. 
 

Table 2: Three point bending test - Elastic and strength calibrated VGCM3D contact properties.  

𝐸̅  
(𝐺𝑃𝑎) 

𝛼 𝜇𝑐 
𝜎𝑛.𝑡  

(𝑀𝑃𝑎) 

𝜏  
(𝑀𝑃𝑎) 

𝐺𝑓.𝑛  

[𝑁 𝑚⁄ ] 

𝐺𝑓.𝑠  

[𝑁 𝑚𝑚⁄ ] 

48.7 0.3 0.50 4.15 21.00 9.002 2380.785 
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a) Tensile test b) Compression test 

 

Figure 7: Vertical stress-strain curves for uniaxial tensile and compression tests. 

 

Similarly to the experimental tests [23], different steel content and reinforcement bar sizes 

were considered, as presented in Table 3. Each steel reinforcement bar was discretized with 

rigid cylindrical elements with a length of 32 mm. A modulus of elasticity of 200.0 GPa was 

assumed for the reinforcement. Like in the experimental program, the distance of the 

reinforcement bars from the lower beam edge was equal to one-tenth of the total beam depth. 

The PM for a 10 mm reinforcement (AN10) has 5987 particles representing the aggregate, 

17608 smaller particles representing the cement paste and 260 particles adopted in the 

discretization of the cylindrical elements representing the reinforcement. The adopted PM 

models have an average of around 153,165 VGCM-3D contacts. 

Table 3 also shows the maximum values of the load obtained in the experimental test [23], 

and the maximum values predicted with a perfectly elastic interface model of the 

concrete/reinforcement contact (EL), and with a BL model for the steel/concrete interfaces with 

contact properties similar to  the concrete contact properties (NL-A) and with a BL model for 

the steel/concrete interface following a 50% reduction of the contact strength properties of the 

VGCM-3D contact that represents concrete (NL-B). As expected, the elastic contact model has 

higher maximum ultimate strength load values than those obtained with the BL contact models, 

in which the predicted maximum strength load values are close to the experimental values, 

namely when a 50% reduction is adopted (NL-B). 

Table 3: Reinforcement properties and corresponding maximum loads.  

Experimental Steel  

content 

 Yield  

limit 

PExperimental 

 

PNumerical 

(EL) 

PNumerical 

(NL-A) 

PNumerical 

(NL-B) 
 

  (MPa) (kN) (kN) (kN) (kN)  
AE 0 0 - 11.8 11.7 - -  
AE 1 1 Φ 4 637 11.9 13.6 11.0 11.0  
AE 2 2 Φ 5 569 15.2 26.8 16.4 16.3  
AE 3 2 Φ 8 441 27.9 38.9 33,2 30.7  
AE 4 2 Φ 10 456 48.7 43.8 39.1 36.0  

 

Figure 8 shows the predicted numerical final deformation, magnified 20 times and Figure 9 

presents the predicted final crack patterns, for each steel content and adopted reinforcement bar 
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size. In all numerical models, cracking initiates at the lower zone of the central part, close to 

the zone of maximum bending moment. The fractured surface later evolved inwards, towards 

the area where the vertical load is being applied. For higher reinforcement steel ratios diagonal 

cracking due to shear loading occurs at later loading stages due to the arc effect from the upper 

plate in the central zone to the lower supporting plates which is allowed due to the presence of 

the reinforcement bars. 

 

 
 

a) 1Φ4 a) 2Φ5 

 

 

c) 2Φ8 d) 2Φ10 

 
Figure 8: Three point bending test – Amplified deformation. 

 

 

  
a) 1Φ4 a) 2Φ5 

 
 

c) 2Φ8 d) 2Φ10 

 
Figure 9: Three point bending test – Final crack patterns. 

 

Figure 10 shows the numerical and experimental load-displacement diagrams for different 

reinforcement solutions that were evaluated. For the case without reinforcement, the numerical 

solution shows a good correlation until the peak value is reached, with the numerical response 

being more brittle than the real one. It would be possible to obtain better performance with a 

more detailed MP model. In the cases where a BL contact model was adopted for the 

steel/concrete interaction, there was a much better agreement with the experimental tests, 

namely when a 50% strength reduction was adopted (NL-B). Figure 10 f) shows that the 

reinforced PM model can predict the amount of reinforcement for which there is a transition 

between a ductile and a brittle response. In both the experimental and numerical tests, this 
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transition occurred for a level of reinforcement corresponding to 2Φ5. 

 

   
a) Φ 0 b) 1 Φ 4 c) 2 Φ 5 

   
d) 2 Φ 8 e) 2 Φ 10 f) All numerical (NL-B) 

 

Figure 10: Three point Bending test: Load-displacement diagrams (experimental (AE) [23], elastic concrete/reinforcement 

interface (AN-EL) and BL concrete/reinforcement interfaces for different contact strengths (AN-NL-A and AN-NL-B). 

 

4 CONCLUSIONS 

A reinforced PM model is presented which simulates the fracture mechanisms existing in 

reinforced concrete by considering the aggregate structure, the contact mechanisms and the 

interaction between the particles and the reinforcement elements modelled with rigid elements 

of cylindrical geometry, sub-discretized with spherical particles along their length to ease the 

contact interaction process.  The elastic and strength properties of the reinforcement are lumped 

in the connection zones between cylindrical elements.  

As shown, it is possible to calibrate the contact properties of the model in simple tests 

(uniaxial compression and uniaxial tension), obtaining for different steel contents responses 

close to those observed experimentally. For a three-point bending test, the reinforced PM model 

adequately simulates the load-displacement relationship, the maximum load value and the 

fracture process for different levels of reinforcement. The PM model is shown to predict the 

transition from a brittle response to a ductile response as the amount of reinforcement increases.  
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