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Abstract.This work seeks to present a way to calculate the mean stress under conditions of 
random loading, as well as to show the effect of the third invariant of the deviatoric stress 
tensor in the prediction of fatigue life, under low and high number of cycles. Thus, it is 
proposed to use the so-called “exponential moving average scheme” to determine the mean 
stress, as well as a modification of the Gao yield criterion, to couple the effect of the mean 
value and use the third invariant to calculate the equivalent stress.The fatigue life is calculated 
based on incremental damage proposed by Lemaitre and modified by Malcher & Mamiya. 
The proposed approach shows that the reduction of the mean stress transient strongly affects 
the calculation of fatigue life. In addition, the calculation of the equivalent stress, taking into 
account the third invariant, mainly under shear loading conditions, also has a great influence 
on the life calculation. Finally, the proposal shows that incremental damage is a valid 
alternative for calculating fatigue life under random loading conditions.  

 
 
1 INTRODUCTION 

 
Determining the mean value in a random loading history is an important task and a 

fundamental data in the correct determination of fatigue life. Through traditional strategies, as 
the simple weighted average (SWA), the behaviour of the mean stress value can present a 
large transient until the values felt by the material, see Desmorat et al (2015). This stress 
transient causes the wrong calculation of the degradation value of the material and therefore 
the fatigue of a mechanical component in life. Thus, new strategies must be proposed in order 
to reduce the stress transient, when there is a variation in search of the mean stress levels. In 
this sense, it is proposed to use the exponential moving average (EMA) to calculate the mean 
stress under random loading conditions. 
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2 DEFINITION OF THE MAIN EFFECTS 

2.1 – Mean value in random loading. 
 
Regarding 𝑥 as a variable dependent on the pseudo-time 𝑡, and assuming a distribution with 
constant amplitude, the mean value of 𝑥 is define based on maximum e minimum values, as: 
 

𝑥௠௘௔௡ =
(𝑥௠௔௫ + 𝑥௠௜௡)

2
 (1) 

where, 𝑥௠௘௔௡ represents the mean value for a constant amplitude history, 𝑥௠௔௫ is the 
maximum value and 𝑥௠௜௡ is the minimum value. Regarding a random history, the mean value 
can be defined as the simple weighted average (SWA), as shown in Eq. (2): 

𝑥෬ =
∫ 𝑥̅|𝑑𝑥|

௫

଴

∫ |𝑑𝑥|
௫

଴

 

𝑥̅ =
1

2
(𝑥௡ାଵ + 𝑥௡) 

𝑑𝑥 = 𝑥௡ାଵ − 𝑥௡ 

(2) 

where, 𝑥෬ represents the mean value of 𝑥 in a random history, based on the single weighted 
average approach, 𝑥௡ାଵand 𝑥௡are the values of 𝑥at the pseudo-time 𝑡௡ାଵ and 𝑡௡, respectively. 
The terms 𝑑𝑥 and 𝑥̅ represent the incremental value of 𝑥and its mean value, calculated 
between the pseudo-time 𝑡௡ାଵ and 𝑡௡. Alternatively, in order to reduce the transient during the 
pseudo-time, the called exponential moving average (EMA), as mathematically represented 
by Eq. (3), can be written. 

 

𝑥෬෰ =
(1 − 𝑤) ∫ 𝑥̅|𝑑𝑥|

௫೘

଴
+ 𝑤 ∫ 𝑥̅|𝑑𝑥|

௫మ೘

௫೘శభ

(1 − 𝑤) ∫ |𝑑𝑥|
௫೘

଴
+ 𝑤 ∫ |𝑑𝑥|

௫మ೘

௫೘శభ

 

 

(3) 

where 𝑧 is the number of integration intervals, 𝑚 is the number of increments by integration 
intervals, ℎ is the number of increments of the total loading and 𝑤represents the weight of the 
exponential moved average. The relation between 𝑧, 𝑚 and ℎ can be observed by Eq. (4). 

 

𝑧 =
ℎ

𝑚
 (4) 

Figure 1 presents a schematic representation for the EMA and Box 1 contends the algorithm 
for its implementation. The idea of the EMA is that the values in 𝑡௡ାଵ have different weights 
than the past values, in 𝑡௡. In this way, the average values converge more quickly to the 
current values than in the SWA method. Figure 2 presents the mean value calculated by SWA 
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and EMA. It is important to observe that the transient until de new mean value, according to 
EMA is smaller than SWA.  

 
Figure 1. Schematic representation of the EMA approach. 

 
Box 1: Exponential moving average scheme for 𝑥 

 



 

Figure 2. Difference between EMA e SWA approaches and the size of the transient to the new 

 
 

3 MEAN STRESS AND YIEL

3.1 – Coupling mean stress effect in the yield criterion.
 
Assuming von Mises yield criterion and the fact that is pressure insensitive, the mean stress 
effect can be coupled according to Eq. (5).
 

ඥ3𝐽ଶ +

where 𝐽ଶ represents the second invariant of the relative stress tensor 

which 𝑺 is the deviatoric stress tensor and 
represents exponential moving average of t
cyclic yield stress of the material. The parameter 
represents the hyperbolic function that try to couple the influence of the mean value by a non
linear function. The Eq. (5) can
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Figure 2. Difference between EMA e SWA approaches and the size of the transient to the new 
mean value. 

MEAN STRESS AND YIELD CRITERION 

Coupling mean stress effect in the yield criterion. 

Assuming von Mises yield criterion and the fact that is pressure insensitive, the mean stress 
effect can be coupled according to Eq. (5). 

ඥ + 𝑎 tanh ቈ
tr෭෱(𝝈)

3𝜎௙
ஶ ቉ = 𝑏 

econd invariant of the relative stress tensor ቀ𝐽ଶ =

is the deviatoric stress tensor and 𝜷 is the backstress tensor. The term 
represents exponential moving average of the trace of 𝝈 and 𝑏can be the fatigue strength or 
cyclic yield stress of the material. The parameter 𝑎 is a fitting term and the function 
represents the hyperbolic function that try to couple the influence of the mean value by a non
linear function. The Eq. (5) can be rewritten in the normalized form as: 

 

 

 
Figure 2. Difference between EMA e SWA approaches and the size of the transient to the new 

Assuming von Mises yield criterion and the fact that is pressure insensitive, the mean stress 

(5) 

ଵ

ଶ
𝜼: 𝜼ቁ, 𝜼 = 𝑺 − 𝜷, 

is the backstress tensor. The term tr෭෱(𝝈) 
can be the fatigue strength or 

is a fitting term and the function tanh (∗) 
represents the hyperbolic function that try to couple the influence of the mean value by a non-
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ඥ3𝐽ଶ

𝜎௙
ஶ =

𝑏

𝜎௙
ஶ −

𝑎

𝜎௙
ஶ tanh ቈ

tr෭෱(𝝈)

3𝜎௙
ஶ ቉ (6) 

where 𝜎௙
ஶ represents the fatigue strength of the material. Figure 3 presents the behavior of the 

Eq. (6) in Haigh diagram for TA6V at room temperature (Desmorat et al, 2015). The 
parameter 𝑏 can be calibrated according to tension-compression tests, with 𝑅 = −1, and the 
parameter 𝑎 is calibrated regarding axial tests, with 𝑅 ≠ −1. 

 
Figure 3. behavior of the Eq. (6) in Haigh diagram for TA6V at room temperature. 

 
 
3.2 – Define equivalent stress based on 𝐽ଶand 𝐽ଷ. 
 
For many authors, on the definition of the equivalent stress, the magnitude of the stress state 
can be represented by 𝐽ଶand effect of the form of the yield surface is better captured by third 
invariant of the stress tensor or relative tensor, 𝐽ଷ = det (𝜼). In this sense, if the yield surface 
of the material is fully regular and symmetric, the effect of 𝐽ଷcan be negligible and equivalent 
stress is defined as Mises. However, if the behavior of the material is different in traction and 
shear, the form of the yield surface can be assumed irregular and the 𝐽ଷeffect needs to be 
included on the definition of the equivalent stress. Thus, many authors are trying to redefine a 
generalized equivalent stress and governed by 𝐽ଶand 𝐽ଷ. Assuming a generalized equivalent 
stress, Eq. (5) can be rewritten as: 
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𝜎௘௤(𝐽ଶ, 𝐽ଷ) + 𝑎 tanh ቈ
tr෭෱(𝝈)

3𝜎௙
ஶ ቉ = 𝑏 (7) 

where 𝜎௘௤(𝐽ଶ, 𝐽ଷ) represents the generalized equivalent stress. In this setting, 𝜎௘௤ can be 
defined according to Gao (see Gao et al, 2011), Hosford (see Hosford, 1972), Bai et al (see 
Bai et al, 2007), and many others. Regarding this contribution, the Gao equivalent stress will 
be assumed, and Eq. (7) is rewritten in the form: 

 

𝑑ൣ27𝐽ଶ
ଷ + 𝑐𝐽ଷ൧

భ

ల + 𝑎 tanh ቈ
tr෭෱(𝝈)

3𝜎௙
ஶ ቉ = 𝑏 (8) 

where the parameter 𝑐 define the influence of the third invariant on the mechanical behavior 
of the material and needs to be calibrated according to reversible shear loading tests. The 
parameter 𝑑 is defined as: 

 

𝑑 = ൤
4

728
𝑐 + 1൨

ି
భ

ల

 (9) 

The behavior of Eq. (8) can be observed as: a) If 𝑎 is equal to zero, the mean stress effect is 
negligible; b) If 𝑐 is equal to zero, the parameter 𝑑 = 1 and the third invariant effect is lost; c) 
If 𝑎 and 𝑐 are equal to zero, both effects are uncoupled and the model recover the von Mises 
behavior; d) If 𝑎 is equal to zero and 𝑐 assumes large values, the model recover the Tresca 
behavior; e) Regarding shear loading, the trace of 𝝈 is equal to zero and the mean stress does 
not affect the behavior of the material, which is observed in the literature. 

 

4 INCREMENTAL DAMAGE IN FATIGUE LIFE 

4.1 – Incremental damage and 𝑆(Γ). 
 
Assuming the incremental damage to estimate fatigue life, in this contribution, the fracture 
indicator proposed by Vaz (see Vaz, 1998) is modified including a generalized equivalent 
stress, a denominator of function dependent on the stress state and an application in random 
loading. In this setting, the original fracture indicator proposed by Vaz can be mathematically 
represented, as: 
 

𝐼 = න ቈ
1

𝑆଴
ቆ

𝜎௘௤
ଶ

6𝐺
+

𝑝ଶ

2𝐾
ቇ቉

௦

𝑑𝜀̅௣
ఌത೑

೛

଴

 (10) 

where 𝜀௙̅
௣ represents the accumulated plastic strain at fracture, 𝜎௘௤ is the Mises equivalent 

stress, 𝑝 =
୲୰(𝝈)

ଷ
is the hydrostatic pressure, 𝐺 and 𝐾 are the shear and volumetric modulus, 
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𝑑𝜀̅௣is the incremental equivalent plastic strain and 𝑆଴and 𝑠 are, respectively, the denominator 
and exponent of damage. Regarding the proposition of Malcher and Mamiya (see Malcher 
and Mamiya, 2014) that 𝑆଴cannot be a constant, but a function of the stress triaxiality and 
third invariant, as: 

 

𝑆(Γ, 𝜉) =
𝑆భ

య

3|Γ| +
ௌభ

య

ௌబ
(1 − 𝜉ଶ)

 (11) 

where 𝑆 represents a function denominator of damage, 𝑆భ

య

and 𝑆଴ are the denominator of 

damage calibrated in axial and shear cyclic loading with 𝑅 = −1,  Γ =
௣

ఙ೐೜
 is the stress 

triaxiality and 𝜉 =
మళ

మ
௃య

(ଷ௃మ)
య
మ

 is the normalized third invariant. Assuming now a plane stress and 

the relation between Γ and 𝜉proposed by Wierzbickiand Xue (see Wierzbicki and Xue, 2005), 

𝜉 = −
ଶ଻

ଶ
 Γ(Γଶ −

ଵ

ଷ
), Eq. (11) can be rewritten as a function only the stress triaxiality. 

 

𝑆(Γ) =
𝑆భ

య

3|Γ| +
ௌభ

య

ௌబ
ቂ1 −

଻ଶଽ

ସ
Γଶ(Γଶ −

ଵ

ଷ
)ଶቃ

 (12) 

Regarding Eq. (12), the concept of Gao generalized equivalent stress and mean stress 
calculated by EMA, Eq. (10) can be rewritten for a random loading as: 

 

𝐼 = න

⎩
⎨

⎧ 1

𝑆(Γ)

⎣
⎢
⎢
⎡
𝑑ଶ൫27𝐽ଶ

ଷ + 𝑐𝐽ଷ൯
మ

ల

6𝐺
+

൬
୲୰෱෱ (𝝈)

ଷ
൰

ଶ

2𝐾

⎦
⎥
⎥
⎤

⎭
⎬

⎫
௦

𝑑𝜀̅௣
ఌത೑

೛

଴

 (13) 

where 𝐽ଶ and 𝐽ଷ are calculated at each pseudo-time 𝑡௡ାଵ. The stress triaxiality is determined 
as: 

 

Γ =

୲୰෱෱ (𝝈)

ଷ

𝑑൫27𝐽ଶ
ଷ + 𝑐𝐽ଷ൯

భ

ల

 (14) 

4 CONCLUSIONS 

The SWA method significantly reduces the transient in calculating the mean mechanical 
stress, compared to the EMA method. What can cause a significant change in the calculation 
of fatigue life under random loading conditions. It is also found that through a single 
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hyperbolic equation, it is possible to describe the relationship between equivalent stress 
amplitude and mean stress.  
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