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Summary. This paper shows how probabilistic limit analysis of statically indeterminate truss 

structures can be done with the same simplicity as the deterministic limit analysis.  
 

1 INTRODUCTION 

As alternative to plastic reliability analysis [1] the authors have developed FEM based limit 

and shakedown analysis of structural problems with uncertain data by stochastic optimization 

[2,3]. They have developed chance constrained programming with individual chance 

constraints for normally and lognormally distributed strength and loading to calculate limit and 

shakedown loads for prescribed reliability levels. 

Plastic limit analysis of structures can be formulated as a linear program (LP) [4,5]. It is the 

mainly used plastic design method in civil engineering practice and teaching in the analysis and 

design of statically indeterminate truss and frame structures. Therefore the chance constrained 

program with individual constraints is formulated here for trusses to demonstrate the 

application of the concept to typical truss girder problems. Limit analysis of frame structures is 

discussed in [6]. 

2 STATIC APPROACH FOR LIMIT ANALYSIS OF TRUSS UNDER RANDOM 

STRENGTH 

For the static approach, we are looking for the maximum safe load for a statically admissible 

stress field: 
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lim max

s.t.:

 







  

BS f

S S S0 0

  (1) 

In (1) the equality constraint are the equilibrium equations. 

B  is the equilibrium matrix; vector S contains internal the forces of bars 

 , ...,
T

nS SS 1  

 

 , , , ...,
T

nA A A A   S0 1 0 2 0 3 0 0   

f  is the vector of members forces acting on the joints of the truss 

 

The problem (1) can be rewritten as 

 

lim max

s.t.:

 








 

BS f

S S0 0
  (2) 

The maximum problems (1) and (2) are linear programs (LP). 

Consider the situation that the yield stress of the material is not given but must be modelled 

through random variables ( )r r   in a certain probability space. Under uncertainty, the 

inequalities of are not always satisfied, the probability of the thi  yield condition being satisfied 

is required to be greater than some reliability level i . Problem (2) becomes an individually 

chance constrained programming problem: 

 

 

  

lim max

s.t.:
Prob

 



 






  

BS f

S S0 0
  (3) 

 

Let us consider the individual chance constraint: 

 

 0Prob ( ) 0i i iS       S         (4) 

 

2.1 The normally distributed strength 

 

We assume that the fully plastic internal forces 0 ( )iS   of the material follows a Gaussian 

distribution ( , )i i   with mean value i  and standard deviation i . Let us transform to a 

standard normal distribution. The yield condition can be written as 0 ( )i i i i

i i

S S  

 

 
  and 

we have: 
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0

0

( )
Prob ( ) Prob

i i i i

i i

i i

S S
S S

  


 

  
      

 
 

Using the property of the cumulative distribution function (c.d.f.) of the standard normal 

distribution ( ) 1 ( )x x    , we can write as follows: 

0 ( )
Prob 1

i i i i i ii i

i i i i

S S SS   

   

        
        

     
 

 

Now the probabilistic condition (4) is replaced by  

 
i i

i

i

S




  
  
 

.         (5) 

Introducing a new variable 1( )i i    so that ( )i i   , inequality (5) becomes: 

 ( )i i
i

i

f




 
   
 

.         (6) 

Because   is monotonic it holds 

 
i i

i

i

S





      or         i i i iS     .      (7) 

Finally we get an equivalent deterministic formulation of the static approach: 

lim max

s.t.:
...i i i i i i i bS i N

 



     





     

BS f

1
  (8) 

bN is the number of bar of truss. 

 

2.2 The lognormally distributed strength 

If the yield limit of truss bars 0 ( )iS   is distributed lognormally with parameters i  and i then 

 0ln ( )iS   is distributed normally with mean i  and standard deviation i , in short 

2

0ln ( , )( ) ii iS    . 

The probabilistic constraint (4) can be rewritten with the complementary cumulative 

distribution function:  

 01 Prob ( )i i iS S               (9) 
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Similar to the case of normally distributed strength, we would like to find an equivalent 

deterministic of problem (3). Let us make some transformations: 

  

 

0 0

0

Prob ( ) Prob ln ( ) ln

lnln ( )
                          Prob ln

ln
                          

i i i i

i ii i

i i

i i

i

S S S S

SS

S

 

 

 





         

      
    

    

    
   

  

   (10) 

By the same argument of the case of normally distributed strength of bars, we can prove that 

inequality (9) is equivalent with 

 
 lni i

i

i

S





          (11) 

From (11) we have: 

i i i

iS e
  

           (12) 

Finally we get an equivalent static deterministic program for lognormally distributed strength: 

 

lim max

s.t.:
,...,i i i i i i

ie S e i n
 





   

BS f

     

 



1
    (13) 

Note that in (13) ,   are parameters of lognormal distribution and they relate with 0S by 

following equations: 

 

   

 

 

2

0 0

22
00 0

ln , ln 1
E s Var s

E sVar s E s

   
         

   
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3 EXAMPLES 

3.1 Example 1 

Consider a truss structure subjected to a horizontal force F  with the topology shown in 

Figure 1. All bars of the truss have the same cross section area 1 2 3 4 5A A A A A A     . 

They are made from a material with the yield stress 0̂ , which has the same value in tension 

and compression. Thus for all member forces iS S S  0 0  with 0 0S A  for 1,...,5i  . We 

compute the limit load limF  in the following situations: 

- The yield stress is deterministic  

- The yield stress is a random variable, which is distributed normally or lognormally with 

the mean value  0
ˆ ( )E    and the standard deviation  0

ˆ0.1 ( )E    

 

Figure 1: Truss girder loaded by a horizontal load F  [5] 

For the deterministic analysis, we use the LP (1) 

Equilibrium equations are written for joints 1 and 2: 

Joint 1:                                                        Joint 2: 

2 3

1 3

cos 0

sin 0

X S S F

Y S S





   

  




                 

2 4

1 4 5

cos 0

sin 0

X S S

Y S S





  

  




   (14) 

L

1

0
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5
L

2

3 4

5

F

3

1 2
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lim max

cos

sin

cos

sin

s.t. 

F F

S S F

S S

S S

S S

S S S

S S S

S S S

S S S

S S S











  


 
  


 

  
  

  

  
  

2 3

1 3

2 4

4 5

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0

0

0

0

       (15) 

Problem (15) is equivalent to problem (1) with 

0 1 cos 0 0

1 0 sin 0 0

0 1 0 cos 0

0 0 0 sin 1









 
 
 
 
 
 

Β ,  1 2 3 4 5, , , ,
T

S S S S SS ,  1 0 0 0
T

 f  

Problem (15) is a LP, which can be solved by the linprog or the fmincon function of the 

optimization toolbox of MATLAB. The results are listed in Table 1, they are the same as the 

results in [5]. 

Table 1: Results for the case of the determinsitic problem 

Unknowns Present Jirásek, Bažant [5] 

1S  
00.6S  

00.6S  

2S  
00.8S  

00.8S  

3S  
0S  

0S  

4S  
0S  

0S  

5S  
00.6S  

00.6S  

Limit load 

factor   
1.6 1.6 

 

- For the normal distribution of the yield stress, the reliability level 0.9999   gives us 

3.719  . For this example the limit load factor is obtained by solving LP (8) with 

0 0, 0.1 , 3.719i i iS S      

- For the lognormal distribution of yield stress, we solve LP (13) with the parameters 



Ngoc Trinh Tran and Manfred Staat 

 7 

 

   

 

 

2

0 0

22
00 0

ln 0.004975 ln 1  0.09975
E s Var s

E sVar s E s

   
            

   

The results for the case of random strength are shown in Table 2. The results for different 

reliability levels are shown in Table3 and Figure 2. 

Table 2: Results for the case of random strength and reliability level 0.9999  

Unknowns Normal Lognormal 

1S  
00.377S  

00.412S  

2S  
00.502S  

00.549S  

3S  
00.628S  

00.686S  

4S  
00.628S  

00.686S  

5S  
00.377S  

00.412S  

Limit load 

factor   
1.0049≈1 1.0986≈1.1 

 

Table 3: Limit load factors corresponding to some reliability levels and failure probabilities 

Reliability level   Failure Probability fP  Normal Lognormal 

0.9 110
 1.3949 1.4010 

0.99 210
 1.2278 1.2624 

0.999 310
 1.1056 1.1679 

0.9999 410
 1.0049 1.0986 

0.99999 510
 0.9176 1.0404 
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Figure 2: Relation between the failure probability and limit load factors 

3.2 Example 2 

 

In the second example, we consider a 10-bar truss with the topology shown in Figure 3. The 

force of full plasticity of the 5 bars 1 5,...,S S  in the botom part is 02S , the force of the full 

plasticity of the 5 bars 6 10,...,S S  in the top part of he structure is 0S . The forces of full plasticity 

are the same in compression and in tension. 

We calculate the maximum of applied horizontal loads F in the following situations : 

 The forces 02S , 0S  of full plasticity of the bars are deterministic 

 The forces of full plasticity of bars are normally distributed with mean i  and standard 

deviation 0.1i i  , respectively ( 02i S   for 1,...,5i   and 0i S  for 6,...,10i  ) 

The reliability level is assumed 0.9999   so that 3.719  . 
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Figure 3: Truss girder loaded by horizontal loads F  [7] 

For the deteministic problem, LP (1) is used with  

 

            

0 1 0.8 0 0 0 0 0 0.8 0

1 0 0.6 0 0 1 0 0 0.6 0

0 1 0 0.8 0 0 0 0.8 0 0

0 0 0 0.6 1 0 0 0.6 0 1

0 0 0 0 0 0 1 0.8 0 0

0 0 0 0 0 1 0 0.6 0 0

0 0 0 0 0 0 1 0 0.8 0

0 0 0 0 0 0 0 0 0.6 1

 
 
 
 
 
 

  
 
 
 
 
 
  

Β   

 

 1 2 3 4 5 6 7 8 9 10, , , , , , , , ,
T

S S S S S S S S S SS  

 1 0 0 0 1 0 0 0
T

  f  

The mean values and standard deviations of normally distributed full plasticity forces are: 

0 0

0 0

2 0.2 1,...,5

  0.1 6,...,10

i i

i i

S S i

S S i

  

  

 

 
 

For lognormally distributed full plasticity forces, ,i i   are the parameters of the respective 

lognormal distribution. 

In case of random full plasticity forces of each bar, we use LP (8) or (13). The results for 

different distributions are listed in Table 4.  

4m

1

3
m

2

3 4

5

F

6

6

3
m

7

8 9

10

F

3

1 2

4

5
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Table 4: Limit load factors and internal forces of bars for 0.9999  in comparison 

Unknowns 
Deterministic Deterministic Normal Lognormal 

Petrović et al. [7]  Present  

1S  
02.0S  

02.0S  
01.256S  1.373

0S  

2S  
00.533S  

00.533S  
00.335S  -0.366

0S  

3S  
01.667S  

01.667S  
01.047S  -1.144

0S  

4S  
01.667S  

01.667S  
01.047S  1.144

0S  

5S  
02.0S  

02.0S  
01.256S  -1.373

0S  

6S  
00.6S  

00.6S  
00.3768S  0.412

0S  

7S  
00.533S  

00.533S  
00.335S  -0.366

0S  

8S  
0S  

0S  
00.628S  -0.686

0S  

9S  
00.667S  

00.667S  
00.418S  0.458

0S  

10S  
00.4S  

00.4S  
00.251S  -0.275

0S  

limF  
01.333S  

01.333S  
00.837S  0.916

0S  

 

 

 

4 CONCLUSIONS 

Full Probabilistic limit analysis can be made with the deterministic equivalent of the chance 

constraints for normally or lognormally distributed strength data. Then the analysis is basically 

the same as a deterministic limit analysis. The limit loads are obtained for any target reliability 

level, if the mean value and standard deviation of strength are available. This is equivalent to 

material partial safety factors that depend on the target reliability level. The extension for load 

partial safety factors is discussed in [3]. Any statically indeterminate truss structure can be 

handled in the demonstrated way. 
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