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ABSTRACT  

Stratification identification and spatial interpolation play a fundamental role in geotechnical site characterization. A 

unified approach is needed to perform these two tasks simultaneously to reduce overall uncertainty in site 

characterization. This paper explores the applicability of the Mixture of Gaussian Processes (MoGP) to address this gap, 

with a specific focus on characterizing and completing missing CPT data. The investigation encompasses both synthetic 

and real-world field CPT datasets and includes a comparison of the MoGP's interpolation accuracy with the use of a 

single GP for entire datasets. Additionally, the study examines the sensitivity of the model's performance with respect to 

the number of training data points. Although the interpolation performance of the MoGP model is promising with 

synthetic data, limitations appear in its application to real-site CPT data.  
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1. Introduction 

Stratification identification and interpolation are 

essential components of data-driven site 

characterization. Identifying stratification involves 

recognizing layers with distinct behaviors and all 

associated geometric features, including boundaries, 

discontinuities, and anomalies (Phoon, Ching, and 

Shuku 2022). To address this challenge, several 

methods have been proposed (Depina et al. 2016; Cao 

and Wang 2014; Cao et al. 2019; Wang et al. 2018). 

Spatial interpolation, on the other hand, aims to fill in 

missing data arising from sensor failure or sparse 

geotechnical data. The point and spatial statistics of 

underground attributes, such as mean function (or 

trend), standard deviation, and scale of fluctuation, are 

used when completing missing data. Therefore, these 

parameters should also be determined during site 

characterization. 

While soil layers exhibit distinctive behaviors, they 

also possess unique statistical properties. For example, 

layers of clay, sand, and silt often vary in their scale of 

fluctuation (Phoon et al. 2022). Therefore, stratification 

refers to both behavioral change and non-stationarity. 

Although some methods can estimate both stratification 

and point and spatial statistics (Cao and Wang 2014; 

Cao et al. 2019), they do not provide any method to 

complete missing data. Completing missing data in the 

presence of heterogeneity is challenging because both 

feature values (such as soil behaviour type index, 𝐼𝑐) 

and layer information are missing at unobserved 

locations. Therefore, the statistic to be used for 

prediction is unknown. Some studies have attempted to 

tackle this problem with two-step approaches, which 

involve interpolating data with stationary assumptions 

and then deterministically assigning each unobserved 

point to the layers (Ching and Yoshida 2023; 

Mavritsakis et al. 2023).  

This paper explores the application of the Mixture of 

Gaussian Processes to address both stratification 

identification and the completion of missing 

geotechnical data. The proposed method also considers 

the uncertainty in layer boundaries during data 

interpolation. The accuracy of the approach is evaluated 

using both synthetic and real Cone Penetration Test 

(CPT) data.  

2. Mixture of Gaussian Processes 

The Mixture of Gaussian Processes (MoGP) model 

proposed by Chen, Ma, and Zhou (2014) is adopted in 

this paper. The MoGP model comprises two primary 

components: Gaussian processes (GPs) in feature space 

(𝐼𝑐) and Gaussian distributions (GDs) in input space 

(depth). In our formulation, the GP serves as the 

regression model, while the GD acts as the probabilistic 

allocation model determining the selection of GPs at 

specific locations. In other words, the GD indicates the 

likelihood of a layer's presence at a specific location. 

GPs can be described as the generalization of 

probability distributions to functions (Rasmussen and 

Williams 2006). According to this definition, functions 

estimating the outputs are drawn from a multivariate 

Gaussian distribution characterized by a covariance 

matrix 𝐶, so that: 

 

𝑝(𝒚|𝒙)~𝑁[𝑚(𝒙), 𝐶(𝒙, 𝒙)]   (1) 

 

where 𝒚 = [𝑦1, 𝑦2 , 𝑦3 , … 𝑦𝑛] is a collection of 

observations, 𝒙 = [ 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛] is the input vector, 

𝒎(𝒙) = [𝑚(𝑥1), 𝑚(𝑥2), 𝑚(𝑥3), … 𝑚(𝑥𝑛)] is the vector 

of mean values of 𝒚 and 𝐶(𝒙, 𝒙) =  [𝑐(𝑥𝑖 , 𝑥𝑗)] 𝑛×𝑛 is the 

covariance matrix. This study adopts a single 



 

exponential autocorrelation function; therefore, the 

elements of the covariance matrix are defined as: 

 

𝑐(𝑥𝑖 , 𝑥𝑗) =  𝜃0exp (−
𝜃1

2
|𝑥𝑖 − 𝑥𝑗|)   (2) 

 

where 𝜃0 and 𝜃1 represent the variance and correlation 

length of 𝑦, respectively. 

When accounting for noise in the observations, the 

noise variance should be included in the covariance 

matrix in Eq. (1). However, this paper does not consider 

such noise. Consequently, each Gaussian process is 

characterized by two hyperparameters, 𝜃𝐺𝑃 = {𝜃0, 𝜃1}. 

The maximum likelihood estimation is typically 

employed for estimating these hyperparameters.  

Once the hyperparameters are estimated, the 

predictive distribution of 𝑦 at a new input 𝑥∗ remains 

Gaussian, and is given by: 

 

𝑝(𝑦|𝑥∗)~𝑁[𝑦∗, 𝑉(𝑦∗)]    (3) 

 

where 𝑦∗ is the mean prediction, and 𝑉(𝑦∗) is the 

variance of the prediction. These values are calculated 

using the following formulae, as outlined by Rasmussen 

and Williams (2006):  

 

𝑦∗ = 𝐶(𝑥∗, 𝒙)𝐶(𝒙, 𝒙)−1[𝒚 − 𝑚(𝒙)] + 𝑚(𝑥∗) (4) 

 

𝑉(𝑦∗) = 𝐶(𝑥∗, 𝑥∗) − 𝐶(𝑥∗, 𝒙)𝐶(𝒙, 𝒙)−1𝐶(𝒙, 𝑥∗) (5) 

 

The Mixture of Gaussian Processes (MoGP) can be 

conceptualized as a weighted mixture of multiple 

Gaussian processes. A gating function - represented by 

a Gaussian distribution - is employed to combine these 

Gaussian processes across the input region. The overall 

model is described by Chen, Ma, and Zhou (2014) as 

follows.  

Firstly, given a data set {𝑥𝑛 , 𝑦𝑛}𝑛=1
𝑁 , the latent 

indicators {𝑧𝑛}𝑛=1
𝑁 , which indicate from which Gaussian 

process the data originates, are assumed to follow a 

multinomial distribution: 

 

𝑃(𝑧𝑛 = 𝑘) = 𝜋𝑘     (6) 

 

Given the indicator variable, each input has a Gaussian 

distribution: 

 

𝑝(𝑥𝑛|𝑧𝑛 = 𝑘) ~  𝑁(𝜇𝑘, 𝑠𝑘
2)   (7) 

 

where 𝜇𝑘 is the mean and 𝑠𝑘
2 is the variance. After 

specifying the input set with the indicator {𝑧𝑛 , 𝑥𝑛}𝑛=1
𝑁 , 

each observation fulfils the properties of a GP such that: 

 

𝑝(𝒚𝒌|𝒙𝒌)~𝑁[𝒎(𝒙𝒌), 𝐶(𝒙𝒌, 𝒙𝒌|𝜃𝐺𝑃,𝑘)]  (8) 

 

where 𝒙𝒌, 𝒚𝒌 denote the input and output vectors that 

are considered to be part of the 𝑘th component. 

2.1. Hard-cut EM algorithm 

This model requires learning five hyperparameters  

{𝜋𝑘 , 𝜇𝑘, 𝑠𝑘 , 𝜃0
𝑘, 𝜃1

𝑘} for each component. To achieve this, 

the hard-cut Expectation Maximization (EM) algorithm, 

as implemented by Chen, Ma, and Zhou (2014), is 

utilized. The EM algorithm enables the maximization of 

the likelihood function for problems involving hidden 

variables. During training, the parameters are updated 

iteratively through two steps: expectation and 

maximization. In the expectation step, the complete 

likelihood is calculated based on the posterior 

probability of the latent variable. Subsequently, in the 

maximization step, the model parameters are updated to 

maximize the likelihood.  The complete likelihood of 

the current model is expressed as follows: 

 

𝑝(𝑧𝑛 = 𝑘, 𝑥𝑛, 𝑦𝑛) = 𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , 𝑠𝑘)𝑁(𝑦𝑛|𝑚(𝑥𝑛), 𝜃0
𝑘)

                            (9) 

 

The posterior probability of the latent variable is 

calculated by: 

𝑃(𝑧𝑛 = 𝑘|𝑥𝑛 , 𝑦𝑛) =   
𝑝(𝑧𝑛=𝑘,𝑥𝑛,𝑦𝑛)

∑ 𝑝(𝑧𝑛=𝑘,𝑥𝑛,𝑦𝑛)𝑘=𝐾
𝑘=1

              (10) 

 

where 𝐾 is the number of components (i.e. the number 

of GPs). 

 

Subsequently, the hard-cut EM algorithm is 

implemented as follows: 

 

1. Firstly, clusters are initialized by using K-

means clustering. The indicator variable 𝑧𝑛 is 

initialized by assigning the cluster index of 

each point. 

2. M-step: 𝜇𝑘 and 𝑠𝑘 are calculated in the same 

way as in the Gaussian Mixture model as 

follows: 

𝜇𝑘 =  
∑ 𝐼(𝑧𝑛=𝑘)𝑥𝑛

𝑛=𝑁
𝑛=1

∑ 𝐼(𝑧𝑛=𝑘)𝑛=𝑁
𝑛=1

            (11-a) 

 

𝑠𝑘 =
∑ (𝑧𝑛=𝑘)(𝑥𝑛−𝜇𝑘)(𝑥𝑛−𝜇𝑘)𝑇𝑛=𝑁

𝑛=1

∑ 𝐼(𝑧𝑛=𝑘)𝑛=𝑁
𝑛=1

          (11-b) 

where 𝐼(. ) is the indicator function, which 

equals 1 if 𝑧𝑛 = 𝑘, otherwise 0. In contrast to 

the original algorithm (Chen, Ma, and Zhou 

2014), 𝜋𝑘 is calculated as 1/𝐾 in this paper. 

Subsequently, the GP parameters are obtained 

by maximum likelihood estimation after 

subtracting the mean of each cluster from the 

data within that cluster. 

3. E-step: Each sample is classified according to 

the maximum a posteriori probability (MAP) 

criterion as follows:  

 

𝑧𝑛 = argmax
𝑘

[𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , 𝑠𝑘)𝑁(𝑦𝑛|𝑚(𝑥𝑛), 𝜃0
𝑘)]      (12) 

 

Steps 2 and 3 are repeated until the indicators no longer 

change with increasing iteration number.  

2.2. Prediction 

This paper diverges from the prediction strategy 

outlined by Chen, Ma, and Zhou (2014). While they 

suggested making predictions using the Gaussian 

process with the maximum posterior probability at the 

prediction point, this paper adopts a complete 

probabilistic approach for the prediction. 



 

In a single GP, the prediction at a new input location 

follows a Gaussian distribution as shown in Eq. (5) and 

(6). However, in the Mixture of Gaussian Processes 

(MoGP), the predictive distribution becomes a mixture 

of Gaussians, as it is a weighted combination of the 

predictions made by each GP. Therefore, the predictive 

distribution can be expressed as:  

 

𝑝(𝑦𝑛
∗|𝑥𝑛

∗ ) =  ∑ 𝑃(𝑧𝑛 = 𝑘|𝑥𝑛
∗ )𝑁 [𝑦𝑛,𝑘

∗ , 𝑉(𝑦𝑛,𝑘
∗ )]𝑖=𝐾

𝑖=𝑘     (13) 

 

where 𝑦𝑛,𝑘
∗  and 𝑉(𝑦𝑛,𝑘

∗ ) represent the mean and 

variance predicted by an individual GP (Eq. (4) and 
(5)). 𝑃(𝑧𝑛 = 𝑘|𝑥∗) is the posterior probability of the 
indicator variable of the new input and is calculated 
as follows:   
 

𝑃(𝑧𝑛 = 𝑘|𝑥∗) =  
𝜋𝑘𝑁(𝑥∗

|𝜇𝑘, 𝑠𝑘)𝛼𝑘,𝑥∗

∑ 𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , 𝑠𝑘)𝛼𝑘,𝑥∗
𝑘=𝐾
𝑘=1

              (14) 

 

The term 𝛼𝑘,𝑥∗ is introduced to Eq. (14) in this 

paper. The motivation for incorporating this term is that  

the calculation of the posterior probability of the latent 

variable in the training stage (Eq. (12))  includes both 

similarity in input space, {𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , 𝑠𝑘)}, and 

similarity in output space, {𝑁(𝑦𝑛|𝑚(𝑥𝑛), 𝜃0
𝑘)}. However, 

in the original algorithm by Chen, Ma, and Zhou (2014), 

the probability of the latent variable at a prediction point 

is based only on the input space, which often leads to 

unreasonable results. On the other hand, since the 

prediction 𝑦𝑛
∗  is unknown, Eq. (12) cannot be directly 

utilized here. Thus, this paper includes similarity in the 

output space in a different way through the 

incorporation of 𝛼𝑘. 

For a deeper understanding, readers can first refer to 

Fig. 2b. When a single GP is utilized for the entire 

profile, nearby points have a greater influence on the 

prediction, although the GP is trained by the entire 

dataset. Consequently, the predictive distribution in the 

middle of a layer resembles the distribution obtained by 

a GP trained solely on data from that layer. In contrast, 

in the transition zone between two layers (Fig. 2b), the 

GP's prediction distribution evolves to become more 

similar to the distribution obtained by data from the 

layer it is approaching (Fig. 2a). The overlapping area is 

one way to quantitatively measure the similarity 

between the distributions (Inman and Bradley 1989). 

Therefore, 𝛼𝑘 is calculated to be proportional to the 

overlapping area of each GP's predictive distribution 

with the single GP's predictive distribution, as illustrated 

in Fig. 1. 

In addition, the mean prediction of the MoGP, �̅�∗, is 

equal to ∑ 𝑃(𝑧𝑛 = 𝑘|𝑥∗)𝑦𝑘
∗𝑖=𝐾

𝑖=𝑘 . 

2.3. Implementation 

2.3.1. Synthetic Data 

The MoGP model is tested using a synthetic dataset 

under two scenarios. The dataset represents the Soil 

Behavior Type Index (𝐼𝑐) (Robertson, 2016) values of a 

3-layer soil profile. In the first scenario, the layer 

thicknesses are considered equal, whereas they differ in 

the second scenario. The layer properties are provided 

in Table 1. Correlation lengths for the layers were based 

on the literature (Phoon et al. 2022; Shuku and Phoon 

2023). The variance values were chosen to avoid 

significant overlap between the 𝐼𝑐 distributions of the 

layers. For the second scenario, the layer depths are 

shown in Table 1 in parentheses. 

 

 
Figure 1. Illustration of the calculation of 𝛼𝑘. The 

distributions show the predictive distributions at a test point 

obtained by each GP component of the MoGP and the GP 

trained with all data. 

To assess the accuracy of parameter estimation for 

the models, 50 datasets were generated for each 

scenario with a sampling interval of 0.05 m. 

Subsequently, the Mixture of Gaussian Processes 

(MoGP) with three components was trained using all 

available data. During training, 𝜃0 was constrained 

between half and twice the variance of the data, while 

𝜃1 was constrained between 0.1 m and 10 m. The means 

of the estimated parameters for each scenario are 

presented in Table 2. 

The mean values of the estimated parameters closely 

align with the values used to generate the data. It is 

anticipated that this difference will decrease with an 

increase in the number of datasets. Additionally, Table 2 

indicates that the accuracy of the parameter estimation 

is unaffected by the layer thicknesses, as the predicted 

parameters are nearly identical in both scenarios. 

In the equal thickness scenario, all data points are 

correctly classified into their respective layers, while the 

mean misclassification ratio is only 0.06% in the case of 

different thicknesses. 

To evaluate the interpolation performance of the 

MoGP model, each dataset was divided into training 

and testing groups. The training sizes ranged from 10% 

to 80% of the total data, to investigate whether the 

performance varied with the number of training data. 

Additionally, the number of components of the MoGP 

was changed from one to five for each simulation. 

Fig. 2 compares the predictions made by a single GP 

(Fig. 2b ) and the MoGP with 3 components (Fig. 2c). 

The first notable observation is that the MoGP exhibits 

a narrower confidence interval compared to the single 

GP. This is attributed to the fact that the MoGP utilizes 

only data from the same layer to make predictions, 

thereby reducing the variability in the data and resulting 



 

 
Figure 2. An example of 𝐼𝑐 estimates for the equal depth scenario with training data rate equal to 10%. (a) Training data; (b) 

single GP estimations; (c) 3-component MoGP estimations; (d) 95% maximum intensity interval in the transition regions between 

layers. Points in (b) and (c) are test points. The shaded area shows the 95% highest intensity range, which narrows at the training 

points. 

 

 
Figure 3. Comparison of interpolation accuracy of the MoGP with different numbers of components. 



 

in less uncertainty in the prediction. However, this 

reduced uncertainty should be validated with test data. 

Table 1. Parameters of synthetic data 

 

 
Thickness 

(m) 

Mean 

(Ic) 
𝜃0 

𝜃1 

(m) 

Layer 1 (sand-gravel) 3.5 (5) 1.3 0.01 0.4 

Layer 2 (sand-silt) 3.5 (2) 2.1 0.0225 0.8 

Layer 3 (clay) 3.5 (3.5) 3.2 0.04 1.2 

 

Table 2. Means of estimated parameters from 50 

simulations. S1 and S2 denote equal thickness and different 

thickness scenarios respectively. 

 
Mean 

(𝐼𝑐) 
𝜃0 𝜃1 (m) 𝜇𝑘(m) 𝑠𝑘(m) 

S1 

S2 

1.30 

1.30 

0.0094 

0.0094 

0.39 

0.39 

1.75 

2.50 

1.065 

2.141 

S1 

S2 

2.10 

2.10 

0.0169 

0.0210 

0.62 

0.71 

5.28 

6.02 

1.035 

0.347 

S1 

S2 

3.21 

3.21 

0.0344 

0.0344 

1.03 

1.02 

8.80 

8.80 

1.065 

1.064 

 

The interpolation performances of models with 

different numbers of components are compared using 

three different metrics. For performance comparison, 

the root mean square error (RMSE) and the mean 

absolute error (MAE) are widely used performance 

metrics and are employed in this study. However, these 

metrics may not be sufficient for assessing the 

performance of Gaussian Processes (GPs) and the 

MoGP models, as the prediction is represented by a 

distribution. Therefore, the mean log probability loss 

(MLL), as proposed by Rasmussen and Williams 

(2006), is also utilized in this study. MLL is calculated 

by Eq. (14) and Eq. (15):  

 

𝐿𝐿𝑖,𝑘 = − log p(𝑦𝑖,𝑘
∗ |𝑥𝑖

∗) =
1

2
log(2𝜋𝜎𝑖,𝑘) +

(𝑦𝑖
𝑇−𝑦𝑖,𝑘

∗ )2

2𝜎𝑖,𝑘
2

                  (15) 

𝑀𝐿𝐿 =
∑ ∑ 𝑃(𝑧=𝑘)𝐿𝐿𝑖,𝑘

𝑘=𝐾
𝑘=1

𝑖=𝑁𝑡
𝑖=1

𝑁
               (16) 

 

In Eq. (15) 𝑦𝑖
𝑇 is the test data, 𝑦𝑖,𝑘

∗  is the mean 

prediction made by the kth GP and 𝜎𝑖,𝑘 is the variance of 

the prediction.  

MAE and RMSE are calculated using the mean 

prediction, 𝑦−
∗ . 

The mean error metrics from 50 simulations are 

summarized in Fig. 3. For illustrative purposes, all 

errors are normalized according to the single GP. 

Generally, RMSE exhibits an increasing trend with an 

increasing number of components. Conversely, the 

MoGP with 3 components demonstrates the lowest 

mean error in almost all cases according to MAE and 

MLL, with a few exceptions (Fig. 3b-c). The lower 

MLL in the 3-component case can be interpreted as a 

validation of the reduced uncertainty in the MoGP.  

The differing behaviors of MAE and RMSE can be 

attributed to the calculation methods. RMSE assigns 

more weight to points with higher error, while all points 

have equal weight in MAE. The mean prediction of the 

MoGP exhibits high curvature near layer boundaries 

(Fig. 2), resulting in some points having significantly 

deviated predictions compared to the real values, 

thereby amplifying the RMSE. 

2.3.2. Real-site CPT data 

The applicability of the MoGP model is tested on 

real Cone Penetration Test (CPT) data from the 

Groningen region in the Netherlands. Initially, the Soil 

Behavior Type Index (𝐼𝑐) profile of the CPT data is 

created with a 0.1 m interval (Fig. 4a). In real CPT data, 

the number of components is unknown. However, the 

results from synthetic data suggest that MAE and MLL 

can potentially be used to determine the number of 

components in a cross-validation framework. Therefore, 

10-fold cross-validation (CV) is utilized to decide on the 

number of components and to test the interpolation 

accuracy of the MoGP on real CPT data.  

 

 
Figure 4. Mean error metrics of real CPT data calculated 

with 10-fold cross-validation. 

The mean values of the error metrics calculated by 

10-fold CV are illustrated in Fig. 4. Contrary to the 

synthetic data experiment, the MLL and MAE results 

are not consistent with each other. MAE and RMSE are 

at their lowest when a single GP is used, indicating that 

the MoGP did not improve the interpolation accuracy. 

On the other hand, MLL is at its lowest for the three-

component model, although there is not much difference 

for any number of components. Consequently, 

determining the number of components by CV is not 

feasible in this case. 

Thus, the number of components is determined by 

visually inspecting the 𝐼𝑐 profile and evaluating the final 

layer distribution obtained by the MoGP. Looking at the 

profile in Fig. 5a, it can be observed that the 𝐼𝑐 value 

mainly fluctuates around two values. Moreover, while 

the 2-component model yields 7 layers, with a thin layer 

at around 10 m depth (Fig. 5b), the model with a higher 

number of components resulted in many very thin layers 

as is the case in the three-component model (Fig. 5c). 

Therefore, a 2-component model seems to be more 

suitable for this dataset. The parameters obtained by the 

2-component model are provided in Table 3. Although 

other component selection methods have been proposed 

in the literature (Zhao and Ma 2016; Zhao, Chen, and 

Ma 2015), they are beyond the scope of this paper.  

The limitation of the method implemented in this 

paper is that the model yields discontinuous layers (Fig. 



 

5b) in the vertical direction when similar values are 

grouped at different depths, leading to the overlap of 

components in input space with a high probability. 

Therefore, misclassification of new input becomes more 

likely. Consequently, higher interpolation errors are 

obtained with the MoGP compared to the single GP in 

real CPT data.  The reason for this behaviour is that 

during the assignment of indicator variables in the E-

step, the correlation between data is neglected (Eq. 

(12)). Currently, a model is being developed to address 

this limitation.  

 

Table 3. Predicted layer parameters by the two-

component MoGP. 

 Mean (𝐼𝑐) 𝜃0 𝜃1 (m) 𝜇𝑘(m) 𝑠𝑘 (m)  

Layer 1 1.86 0.043 1.72 15.8 8.66 

Layer 2 3.09 0.072 0.96 13.6 8.54 

 

 

 
Figure 5. (a) 𝐼𝑐 profile of CPT data; (b) layer distribution 

obtained by the two-component MoGP; (c) layer distribution 

obtained by the three-component MoGP. 

3. Conclusions 

A Mixture of Gaussian Processes (MoGP) model 

was explored in this paper for soil stratification 

identification. In practice, soil layers can be determined 

using engineering judgement or Robertson's chart when 

CPT data are available. However, these methods are not 

capable of quantifying stratification uncertainty, which 

can be significant due to the spatial variability of soil 

properties and the uncertainty of the boundaries 

proposed in the chart (Hu and Wang 2020). The 

proposed model can effectively discern various layers, 

capturing both the point and spatial statistics of each 

layer, along with assessing uncertainty in layer 

boundaries. The primary objective of the model is to 

perform stratification and data interpolation 

concurrently. 

To evaluate the model's accuracy in interpolation 

and parameter estimation, it was initially tested on 

synthetic data with varying percentages of training data. 

Subsequently, the model was applied to real CPT data. 

Although the method was tested to complete missing 

data in the vertical direction, it can easily be applied to 

address the scarcity of CPT data in the horizontal 

direction by considering the two-dimensional input 

space.  

The results from synthetic data indicate that the 

MoGP is promising, whereas the interpolation 

performance is poor with real CPT data. The physical 

reason for this behaviour is that the same type of soil is 

observed at different depths in the real CPT data, 

leading to the overlap of probability distributions of 

layers in the input space.  
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