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Abstract. We study the aerodynamics of fractal trees by using a simulation based on the Lat-
tice Boltzmann Method with a cumulant collision term. We have applied L-system[1] rules
to construct self-similar fractal tree models in aerodynamic computations. We found that the
drag coefficient closely matches that of previous literature at high tree-height-based Reynolds
numbers (ReH ≥ 60 000). A normalization process capable of collapsing turbulence intensity
for various tree models is made. This process reveals that, at the same Reynolds number, dif-
ferent tree models exhibit the same behaviour in the turbulence intensity of their wake region.
Our assessment of global and local isotropy in the turbulence generated by fractal trees reveals
that the distant wake can be considered nearly locally isotropic at a high Reynolds number
(ReH ≥ 60 000). Finally, the present numerical results confirm the non-equilibrium dissipation
behaviour previously observed in the case of space-filling fractal square grids[2]. In the wake
region, the non-dimensional dissipation rate Cϵ = constant is not valid. Instead, it is inversely
proportional to the local Taylor-microscale-based Reynolds number, Cϵ ∝ 1/Reλ.

1 Introduction

Flow around fractal objects has been widely investigated. In 2007, Hurst & Vassilicos [3]
tried 3 major categories and 21 grids and found that the turbulence generated by fractal multi-
scale grids showed some unusual properties. After that, most of the research focused on fractal
multi-scale grids, and their turbulence was studied both experimentally [2, 4] and numerically
[5]. One of the aims of their studies was to generate unexplored turbulent flow conditions at
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high Reynolds numbers that differ from the conventional energy dissipation mode ϵ ∼ k3/2/l.
Here, ϵ represents the energy dissipation rate, k denotes turbulent kinetic energy, and l denotes
some local correlation length scale.

In isotropic turbulence, ϵ ∼ k3/2/l becomes ϵ = Cϵu
′3/2/L, because in isotropic turbulence

u
′
= v

′
= w

′ (where u, v, w are velocity fluctuation in x, y and z-direction, respectively, ′ rep-
resents the root-mean-square (r.m.s.)). Here, Cϵ denotes a constant non-dimensional dissipation
coefficient independent of the Reynolds number, spatial position and time, and L denotes the
integral length scale. Seoud & Vassilicos [4] first showed that there is a long wake region of
fractal square grids, where the turbulence is approximately isotropic but Cϵ = constant does not
hold, i.e. the dissipation behaviour is non-equilibrium. Specifically, Cϵ ∝ 1/Reλ, a dissipation
anomaly that contradicts classical dissipation theory.

On the other hand, Valente & Vassilicos [6] analyzed turbulence generated by regular grids
and found that there is also a long Cϵ ∼ 1/Reλ non-equilibrium dissipation region in the wake
of regular grids. Nagata et al. [7] also verified this and found that the turbulence generated
by quasi-fractal grids also has an Cϵ ∼ 1/Reλ non-equilibrium dissipation wake region. This
suggests that the Cϵ ∼ 1/Reλ relationship is not unique to fractal grids, and the non-equilibrium
dissipation phenomena are likely to be widespread in various turbulent flows. It is possibly not
limited to 2D fractal grid planes but also applies to 3D fractal objects, such as trees.

Trees, as a very common object in real life, have a good blocking effect on airflow (shelter
effect) due to their large size and fractal shape, so most of the studies on trees have focused
on calculating the drag coefficient and aerodynamic porosity[8, 9, 10, 11, 12]. However, the
studies focused on the dissipation behaviour of the wake region are limited. In this paper, we
investigate the turbulence generated by fractal trees under high Reynolds number conditions
using quasi-DNS simulations based on a cumulant Lattice Boltzmann Method (LBM) [13] on
multi-GPU parallelization. The Adaptive Mesh Refinement (AMR) method is also introduced.

2 Numerical method

2.1 Lattice Boltzmann Method (LBM)

A code based on the Lattice Boltzmann Method (LBM) with a cumulant collision term is em-
ployed for our numerical computations. LBM treats the fluid as a collection of virtual particles
and computes the evolution of their velocity distribution function over time. To accurately simu-
late flows at high Reynolds numbers, the D3Q27 Cumulant collision model [13] is utilized. This
model has high numerical stability and computational accuracy. LBM is fully explicit and does
not involve iterative calculations such as the Poisson equation for pressure in the conventional
difference method, thus achieving high computational performance in large-scale calculations.

2.2 Adaptive Mesh Refinement (AMR)

A high-resolution grid is necessary to accurately resolve a fractal tree’s boundary layer and
wake region. However, employing a uniform high-resolution grid throughout the entire com-
putational domain would lead to an enormous number of grid points, requiring impractical
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amounts of computational resources. To maintain accuracy and reduce computational costs, an
Adaptive Mesh Refinement method (AMR method) is utilized. By recursively subdividing the
computational grids, high-resolution grids can be allocated to arbitrary regions [14]. The finest
grids near the tree surface and somewhat finer grids in the wake region are allocated. In other
distant locations, coarse grids are assigned. More details about the AMR-LBM can be found in
the previous paper [15].

2.3 Interpolated bounce-back method

The Lattice Boltzmann Method utilizes orthogonal grids for computation. For object shapes
that do not conform to grid directions, like the surface of a fractal tree, we avoid the tradi-
tional stair-stepped representation of object shapes. Instead, a second-order accurate Interpo-
lated bounce-back method [16] is introduced to establish boundary conditions. By employing
the D3Q27 type of Lattice Boltzmann Method, the object’s surface can be precisely represented
in 26 directions. This capability substantially enhances the accuracy of our model. The fluid
forces acting on the object surface are calculated based on the momentum exchange [17] be-
tween the velocity distribution function and the object at the object boundary.

2.4 Fractal tree model

This paper chooses a unique algorithm called the L-system [1] to produce fractal tree repre-
sentations. The algorithm of the parametric L-system is shown in the following equation. The
first line of (1) represents the parameters of the central trunk part of a tree. The second and
subsequent lines represent branch generation rules. More details about the parametric L-system
can be found in the previous paper [1].

ω : A(100, w0)

p1 : A(s, w) : s ≥ min → !(w)F (s)

[ + (α1)/(φ1)A(s ∗ r1, w ∗ qe)]
[ + (α2)/(φ2)A(s ∗ r2, w ∗ (1− q)e)]

(1)

For the present work, using the parameters stated in Table 1, three kinds of fractal tree ge-
ometries are generated using the parametric L-system. Then, all three kinds of tree heights (H)
are normalized to 1 metre while keeping the horizontal and vertical scales the same; see figure
1. Table 2 summarizes the various tree geometries used in this study.

2.5 Simulation setup

The computation domain is 32H × 16H × 16H . The tree’s centre of mass is calculated and
placed at (8H, 8H, 8H) as shown in figure 2, and uniform flow in the x-direction for inflow
conditions. Trees are treated as rigid bodies, and deformation due to fluids is not considered.
Using physical properties of air at room temperature, density ρ = 1.205 kg/m3, kinematic
viscosity ν = 1.512× 10−5 m2/s.
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Model name r1 r2 α1 α2 φ1 φ2 ω0 q e min n

Basic n = 4 0.8 0.8 30 -30 137 137 30 0.5 0.5 0.02 4
Basic n = 6 0.8 0.8 30 -30 137 137 30 0.5 0.5 0.02 6
Basic n = 8 0.8 0.8 30 -30 137 137 30 0.5 0.5 0.02 8

Table 1: Parameters for fractal trees shown in figure 1 using equation 1.

Model Basic n = 4 Basic n = 6 Basic n = 8
D0/H 107.15 86.64 77.16
L0/H 357.35 288.94 257.32

Table 2: Fractal trees geometry details.

After evaluating the resolution dependency of the drag coefficient (CD), for basic n = 4,
6, 8, the finest grid ∆x/H = 1/1024, 1/1024 and ∆x/H = 1/2048 are placed near the
surface of the tree (about 40 meshes from the surface), respectively. For all three tree mod-
els, ∆x/H = 1/512 grids are placed in the wake region with a length of about 8.0H . We
confirmed that for three tree models, at ReH = 120 000, the mesh resolution in the wake re-
gion is ∆x ≈ 2.0η, where η denotes Kolmogorov scale. Figure 3 shows an example of AMR
grids in the case of basic n = 8. The total grid numbers are 1 682 158 592, 1 711 257 088, and
2 363 039 744 in the case of basic n = 4, n = 6 and n = 8, respectively. An outflow boundary
condition is imposed on the calculation boundary behind the tree, and an inflow boundary con-
dition is imposed on the other calculation boundaries. The calculations were performed on the
TSUBAME 4.0 supercomputer at Tokyo Institute of Technology. For basic n = 4 and n = 6,
12 GPUs of NVIDIA H100 were utilized. It took approximately 48 and 54 hours to calculate
a non-dimensional time of 60 for n = 4 and n = 6, respectively. In the case of basic n = 8, 16
GPUs of NVIDIA H100 were utilized and were completed within 72 hours to calculate a non-
dimensional time of 60. Here, the non-dimensional time is defined as Ut/H , U is the uniform
flow velocity, t is the physical time, and H is the tree’s height. As shown in table 3, calculations
were carried out for four cases with different tree height-based Reynolds numbers ReH .

Figure 1: Side view of the fractal tree geometry for (a) basic n = 4; (b) basic n = 6; and (c) basic n = 8. Axis
conventions are the same as that used in the simulation.
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Figure 2: Computational domain and arrangement of trees.

Figure 3: Computational grid subdivided hierarchically around basic n = 8 tree.

3 Results

3.1 Comparison of drag coefficient to literature

Figure 4 shows the relationship between ReH and CD. Grant & Nickling [8] designed a direct
field measurement and showed a decrease in CD values with increasing Reynolds number at
ReH = 15 000 and 25 000. The simulations of this study qualitatively reproduced the decrease
in CD values with increasing ReH . Manickathan et al. [12] showed that the CD values keep
almost the same when ReH ≥ 60 000 whatever model trees or natural trees by using wind
tunnel measurement. Gillies et al. [9] also used wind tunnel and showed that the CD values
keep almost the same when ReH ≥ 200 000 in the case of Burning Bush and Colorado Spruce,
the tree with branches. In this study, all three tree models showed a tendency for CD to decrease
with increasing Reynolds number at low and medium Reynolds number (ReH = 2500 to 10 000).
However, after ReH exceeded 60 000, CD remained almost constant. This is in qualitative
agreement with the study by Grant & Nickling [8] and Manickathan et al. [12], despite our tree
model not including leaves.

3.2 Turbulence intensity

Turbulence intensity is defined by the following equation. Here, u′
avg is the average of u2

i in
3 directions and ui is the velocity fluctuation in i direction.

u
′
avg

U
=

√
1
3

∑
i u

2
i

U
(2)

In previous research of fractal-grid-generated turbulence, Gomes-Fernandes et al. [2] de-
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Case U(m/s) ReH

A 0.0378 2500
B 0.1512 10 000
C 0.9072 60 000
D 1.8144 120 000

Table 3: Uniform flow velocity and ReH for the four simulation cases.

Figure 4: Relationship between CD and ReH obtained in this study and comparison with previous studies.

fined a method to normalize centreline turbulence intensity. This method is also used in the
present study, where normalization is performed by dividing the turbulence intensity by its
peak value and then dividing x by the x-coordinate where the turbulence intensity is maximum
(xpeak). Figure 5 shows the result using this normalization. It can be seen that the turbulence
intensity collapses better when the Reynolds number is high, and except for the case of basic
n = 4, the turbulence intensity of n = 6 and n = 8 collapses very well. It is considered that the
generation, development and decay of turbulence intensity are qualitatively the same regardless
of the tree shape after a critical fractal iteration number (n) is reached (e.g. n ≥ 6).

3.3 Global and local isotropy

In this section, the isotropy of the wake region of fractal trees is assessed. For clarity, we
only show the basic n = 8 data. Note that all the other models also show very similar values
and the same trend. Figure 6 shows a comparison of centreline global isotropy parameters
u

′
/v

′ , u′
/w

′ and v
′
/w

′ at various Reynolds numbers for basic n = 8. It can be seen that at high
Reynolds numbers, all three parameters generally hover around 1.0 and slightly smaller than
1.2, indicating that the flow is globally isotropic if x/xpeak ≥ 1.0.

The local isotropy is assessed using two relations (K1, K3) derived by Taylor [18] as shown in
equation 3. Figure 7 compares centreline local isotropy parameters K1, K3 at various Reynolds
numbers for basic n = 8. Similar to global isotropy parameters, it can be seen that at high
Reynolds numbers, K1 and K3 generally hover around 1.0, close to previous grid turbulence
study [2]. In conjunction with the previously described, the wake region for x/xpeak > 1.0 can
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Figure 5: Streamwise evolution of centreline turbulence intensity normalized by its peak value is given as a
function of x/xpeak at (a) ReH = 2500, (b) ReH = 10 000, (c) ReH = 60 000 and (d) ReH = 120 000.

Figure 6: Global isotropy parameters of centreline for basic n = 8 at (a) ReH = 2500, (b) ReH = 10 000, (c)
ReH = 60 000 and (d) ReH = 120 000.
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be regarded as associate isotropic at high Reynolds numbers.

K1 = 2 (
∂u

∂x
)2/(

∂v

∂x
)2, K3 = 2 (

∂u

∂x
)2/(

∂u

∂y
)2 (3)

Figure 7: Local isotropy parameters of centreline for basic n = 8 at (a) ReH = 2500, (b) ReH = 10 000, (c)
ReH = 60 000 and (d) ReH = 120 000.

3.4 Dissipation and non-equilibrium nature

This section examines dissipation and non-equilibrium characteristics in the decay region.
Specifically, the integral length scale L and non-dimensional dissipation rate Cϵ are investigated.
There is a “cornerstone dissipation scaling of turbulence theory” that the energy dissipation rate
can be scaled as the following equation when the Reynolds number is high enough [19].

ϵ = Cϵ
u

′3

L
(4)

Here, Cϵ is a constant. When the Reynolds number is high enough, the flow in the wake
region can be regarded as locally isotropic, and ϵ = 15ν u

′2

λ2 can express the energy dissipation

rate. Also, considering Taylor microscale λ =

√
u2/(∂u/∂x)2 and local Taylor Reynolds

number Reλ = u
′
λ/ν, the relation L

λ
∝ Reλ can be derived. This relation holds when Cϵ

is a constant, and the wake region is locally isotropic. Estimating the integral length scale
is necessary to verify if the present study follows this relation. The integral length scale is
estimated by calculating the longitudinal correlation function f(r, x) = u(x)u(x+ r)/u(x)2.
If Lu/λ ∝ Reλ holds true, then equation 4 holds true with a constant Cϵ. Conversely, then Cϵ

is not a constant value but Cϵ ∝ 1/Reλ, varies with position in the wake region.
Figure 8 (a) and (b) show the variation of Lu/λ in the streamwise distance as a function of

x/xpeak and Reλ. As can be seen from the figure, in the decaying region of x ≥ xpeak, in which
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Figure 8: Integral length scale to Taylor microscale ratio Lu/λ for different tree models in relation to (a) x/xpeak,
(b) Reλ and (c) non-dimensional energy dissipation rate parameter Cϵ in relation to Reλ.

Reλ decreases, Lu/λ for all three models does not show a significant decrease. It is suggested
that 4 does not apply to the flow in the decaying region of the fractal-tree-generated turbulent
flow. Figure 8 (c) shows the variation of Cϵ as a function of Reλ. It can be seen that Cϵ is
inversely proportional to Reλ, which achieves qualitative agreement with results from previous
studies of fractal-grid-generated turbulence [2, 4].

4 Conclusions

This study successfully employed large-scale numerical simulations for the fluid around
fractal trees using AMR-LBM. The main contribution of this paper is the elucidation of the
dependence of the drag coefficient of trees on tree shape and Reynolds number, as well as the
non-equilibrium dissipation behaviour Cϵ ∝ 1/Reλ in the wake region of fractal trees, which is
consistent with the non-equilibrium decay turbulence observed in fractal grids [2, 4]. Moreover,
various turbulence statistics and scales, including turbulence intensity, global and local isotropy
parameters, were also presented.

Three kinds of tree models with fractal iteration numbers n = 4, 6, 8 were generated through
the parametric L-system. At low and medium Reynolds numbers, the drag coefficient increases
with the fractal iteration numbers n and decreases with the Reynolds number. However, at high
Reynolds numbers (ReH = 120 000), if the fractal iteration number is greater than a certain value
(n ≥ 6), the drag coefficient becomes independent of fractal iteration number n and Reynolds
number and tends to a constant value.

Energy dissipation scaling was investigated, and it was confirmed that at high Reynolds
number (ReH = 120 000), the integral length scale to Taylor microscale ratio Lu/λ remains
approximately constant while Taylor microscale-based Reynolds number Reλ decreases in the
wake region of x/xpeak ≥ 1. Consequently, the energy dissipation in the fractal tree wake region
does not follow the conventional scaling ϵ = Cϵ

u
′3

L
, since Cϵ is not a constant, but Cϵ ∝ 1/Reλ,

which is consistent with the non-equilibrium dissipation behaviour reported in the wake region
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of 2D fractal grids.
In terms of other turbulence statistics, it was found that the wake interaction length scale

xpeak introduced by [2] can also be employed to normalize the centreline turbulence intensity
in the wake region of fractal trees. At high Reynolds numbers (e.g. ReH ≥ 60 000), this
normalization method can collapse the turbulence intensity of fractal trees with different shapes
if the fractal iteration number reaches a certain threshold (e.g. n = 6). Furthermore, the isotropy
characteristics were investigated. At high Reynolds numbers (ReH ≥ 60 000), it was found that
the wake region of fractal trees can be considered essentially isotropic.
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