
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

NODE-LEVEL PERFORMANCE ANALYSIS OF THE
STRUCTURAL MECHANICS SOLVER B2000++PRO

N. Ebrahimi Pour1 and H. Klimach1

1 German Aerospace Center (DLR)
Institute of Software Methods for Product Virtualization

Zwickauerstraße 46, 01069 Dresden, Germany
e-mail: (neda.ebrahimipour, harald.klimach)@dlr.de, https://www.dlr.de/de/sp

Key words: Finite element method, Structural mechanics, High-performance computing,
Node-level performance

Summary. Fluid-structure interactions are routinely simulated in the field of aerospace engi-
neering. These simulations are complex, but essential in the design process of devices such as
aircrafts or turbomachinary. They involve multiple scales and multiple physics, and typically
require massively parallel systems for their realization. However, small surfaces can become a
bottleneck for the data exchange. The structural part often covers only a small portion of the
computational effort, but can induce idle times in the overall computation. To use available
computational resources efficiently, scalable methods and highly parallel software packages are
required. This study examines the node-level performance of the structural mechanics solver
b2000++pro on three distinct supercomputing architectures, with the objective of identifying an
optimal configuration for the solver on these systems.

1 INTRODUCTION

Finite element methods constitute an indispensable foundation in contemporary engineering
applications. Nevertheless, the simulation of comprehensive models with a multitude of degrees
of freedom is a computationally onerous process, which constrains the overall productivity of the
aforementioned applications. The complexity and difficulty of realising simulations is further
compounded when considering fluid-structure interactions. In order to employ highly resolved
simulations and meet the time-to-solution expectations, it is possible to utilise high-performance
computing systems. This study examines the node-level performance of the structural solver
b2000++pro [1, 2], designed to solve problems related to structural mechanics in a wide range of
application domains. The objective of this study is to examine the performance of the solver at
the node level on various high-performance computing architectures. The investigation uncovers
potential avenues for enhancing the performance of the highly flexible C++ code, which employs
Intel’s Threading Building Blocks (Intel-TBB) [3] for shared memory parallelization and the
OpenMP [4] parallel MUMPS direct solver [6, 7] to address the arising linear equation systems.
In the context of the considered applications, a run comprises the following steps: reading the
mesh, generation of a model representation, assembly of the system matrices and solution of the
corresponding linear equation systems. The assembly of the system matrices and the solution
of the linear equation systems are typically the most time-consuming steps in this procedure.
This contribution further discusses potential avenues for narrowing the performance gap and



N. Ebrahimi Pour et al.

accelerating the time to solution of b2000++pro on the aforementioned HPC systems. The
following structure is adopted for this paper: first, the structural solver (b2000++pro) and the
existing parallelism are introduced; then, the node-level performance on the various systems is
presented and discussed; thereafter, a summary is given and a conclusion drawn.

2 STRUCTURAL SOLVER b2000++pro

The solver is a general-purpose structural mechanics solver, dedicated to solving various
finite element (FE) problems, with a particular emphasis on shell and composite structures in
lightweight construction, as well as buckling and post-buckling. b2000++pro is capable of solving
a range of structural mechanics problems, including both linear and nonlinear problems, as well
as conducting eigenvalue and damage analyses on laminates. It is written in modern modular
C++ and features a plugin infrastructure with exchangeable parts for user-written code, such
as user-defined elements, materials, or solvers for different problems. Its flexibility and wide
application range makes it suitable for addressing a variety of structural mechanics problems
[1].

Exsisting parallelism of b2000++pro

Figure 1 depicts the existing parallelism of the solver. The solver is predominantly parallelized
using Intel Threading Building Blocks (Intel-TBB) on a shared memory platform. Distributed
memory parallelism is only employed by the linear algebra package MUMPS, which is hybrid
parallel (OpenMP & MPI [5]). The overall concept is based on a main/worker paradigm, wherein
a single main MPI process is responsible for managing the overall problem, while the MPI workers
actively contribute to the computation by solving the linear equations. The two regions with the
Intel-TBB parallelism and the Hybrid MPI, OpenMP solving of linear equation systems are not
overlapping. That is the case during the initialisation and matrix assembly, as well as during
the post-processing and output of the results, where only the main process is active. Conversely,
during the solution of the linear algebra, all MPI processes (1 ... N), including the main MPI
process, are involved.

Figure 1: Existing parallelism in b2000++pro

2



N. Ebrahimi Pour et al.

3 INVESTIGATION OF THE NODE-LEVEL PARALLELIZATION

In this section the results of the node-level performance for the structural mechanics solver
b2000++pro will be examined. To conduct our investigation we utilize three supercomputing
systems, with a single full node allocated for each of our runs. The analysis is performed taking
into account MPI and shared memory parallelism. As previously stated, the structural mechan-
ics solver is parallelized using Intel-TBB, while the underlying linear algebra solver MUMPS
incorporates OpenMP and MPI for computation. To comprehensively explore the available par-
allelism, a single node with diverse configurations is considered, and its behavior on different
computing systems is investigated.

Computing sytems - Machine configuration

Our studies are carried out on two supercomputers of the German Aerospace Center (DLR),
namely CARA and CARO, and on one of the German national supercomputers called HAWK,
located at the High Performance Computing Center Stuttgart (HLRS). The specifications of the
system are as follows:

• CARA (DLR)

– 2,168 CPU-nodes with 2 AMD EPYC 7601 (2 × 32 cores)

– 664 CPU-nodes with 2 AMD EPYC 7702 (2 × 64 cores) (Extension in 2023)

– 17 PB lustre file system

– Operational since 2020

• CARO (DLR)

– 1,364 CPU-nodes with 2 AMD EPYC 7702 (2 × 64 cores)

– 8.4 PB Lustre file system

– Operational since 2022

• HAWK (HLRS)

– 5,632 CPU-nodes with 2 AMD EPYC 7742 (2 × 64 cores)

– 2 × Lustre file systems available (22 PB and 15 PB)

– Operational since 2020

For our investigation we consider a full node (2 x 64 cores) using the AMD EPYC 7702 on CARA
and CARO and the AMD EPYC 7742 CPUs on HAWK. The main difference between the two
CPU types is the base clock, which is 2.0 GHz and 2.25 GHz, respectively. The source code
has been compiled using the GCC version 10.4.0 compiler, while MUMPS, the linear equation
solver, has been compiled with OpenMPI version 4.1.5 and MPI.

Structural mechanics - Test case description

For our study we consider a simple three-dimensional unit cube with 50 × 50 × 50 elements
in each spatial direction. The cube is fixed at the bottom, resulting in a displacement of 0.0 in
this spatial direction. An external force F acts uniformly on the top of the cube. The Young’s
modulus is set to 207 914.0 MPa (steel) and the Poisson’s ratio is 0.28342.

3



N. Ebrahimi Pour et al.

Results - CARA computing system

The objective of this investigation is to analyse the node-level performance, whereby a con-
stant number of threads is initially employed, while the number of processes is varied. Figure
2a illustrates the measurement on CARA. Each curve represents a measurement with a specific
thread count, with the number of processes doubled from point to point in the data series. The
x-axis provides the total amount of utilized cores given by the product of number of processes
and number of OpenMP threads. Note, that for the region where only the main process is
active, only a number of cores equal to the number of threads is actually used by the program.
The optimal time to solution for this particular test case is achieved when 8 threads and 16
processes are used, as indicated by the last measurement point of the red curve. This is followed
by the green and purple curves, representing 4 threads and 32 processes, and 16 threads and
8 processes, respectively. Thus, it is beneficial to make use of all cores in the node. Figure 2b

(a) (b)

Figure 2: Node-level performance on CARA: (a) Fix number of threads, represented by each
curve, the number of processes are doubled for each subsequent point. (b)Full node configuration
using nThreads × nProcs (last data point of each curve in Figure (a)) for each data point.

presents the computational time for a full node, which is comparable to the last data point of
each curve in Figure 2a. Here the x-axis indicates the number of threads in the computation,
and the number of processes is implied accordingly, falling from 128 processes on the left to
a single process on the right end. It is evident that the time required to reach the solution
decreases with an increase in the number of threads up to 8, but then begins to increase again
with an increase in the number of threads. This continues until the time required to reach a
solution is at its greatest with 128 threads and a single process. On this system 4 cores share
a single L3 cache, so we may expect the optimum for the shared memory parallelism to end up
at 4 threads. However, as one part of the computation only benefits from the shared memory
parallelism, the optimum gets slightly shifted to 8 threads instead as this allows for a better
utilization of the node when considering the overall execution. But what we can also discern
is that the benefit of using more threads for the shared memory parallel part is limited and
already exhausted when increasing the thread count beyond 8. This is because the solving of

4



N. Ebrahimi Pour et al.

linear equations in MUMPS seems to benefit more from MPI parallelism rather than more than
4 threads in the shared memory parallelization. The speed up for the combinations of 4 × 32,
8 × 16 and 16 × 8 (threads × processes) are 5.1, 6.1 and 5.3, respectively. It is calculated by
comparing the time to solution of the respective parallel run with the sequential run.

Results - CARO computing system

Similar to the analysis on CARA, Figure 3a shows the time to solution over the utilized cores,
given by Thread count × Process count, for the CARO system. Again each line represents a
fixed number of threads, while the number of processes is doubled with each subsequent point.
For this system we now find the combination of 32 processes with 4 threads to provide the fastest
computation. This configuration is followed by the combination of 8 threads and 16 processes,
which is only slightly slower than the optimum. Also 16 threads and 8 processes still yields
a comparable time to solution. The change of the system here resulted in a slightly different
optimal configuration despite the same processor architecture, tending towards larger benefits
from the MPI parallelism and hence using more MPI processes rather than threads as compared
to CARA. The time to solution for a full node is depicted in Figure 3b. A comparison of the

(a) (b)

Figure 3: Node-level performance on CARO: (a) Fix number of threads, represented by each
curve, the number of processes are doubled for each subsequent point. (b) Full node configuration
using nThreads × nProcs (last data point of each curve in Figure (a)) for each data point.

time to solution for 4 threads × 32 processes with the sequential run, in which a single thread
and process were utilised, reveals a speed up of 5.7 for this configuration. In the case of 8 × 16
and 16 × 8 (threads × processes), a speed up of 5.6 and 4.8, respectively, is observed.

Results - HAWK computing system

The same measurement previously demonstrated for the computing systems CARA and
CARO is now applied to the computing system HAWK. The respective results are provided
in Figure 4a. The most rapid computation on a full node is achieved through the utilisation of

5



N. Ebrahimi Pour et al.

8 threads and 16 processes, a result that is comparable to that observed in the CARA system.
Subsequently, the combination of 16 × 8 and 4 × 32 (threads × processes) is considered. The
speed up for the fastest computation is 2.7 in comparison to the run with 1 thread and 1 process.
A comparative analysis of the first two curves, representing the behaviour of the 1 thread and 2
threads scenarios, respectively, reveals a divergence from the observed behaviour in the runs on
the CARA and CARO computing systems. The time to solution decreases with an increasing
number of processes for each curve on the aforementioned systems. In contrast, on HAWK, the
curves representing 1 and 2 threads increase in computational time after a certain amount of
processes and reach a steady behaviour. This unexpected behavior is attributed to the energy
policy of the system, which aims to reduce energy consumption by decreasing the base clock
when increasing the workload on the node. Consequently, the time to solution increases for
the b2000++pro execution, where some parts are only computed by the main process with its
threads, when these few cores get slowed down due to the full utilization in the solving of the
linear systems, an overall slowdown occurs. Nevertheless, as shown in Figure 4b with the full
node configurations, the general behavior and optimal distribution between threads and pro-
cesses is similar to the observation on the other AMD systems, with the lowest execution time
achieved by 16 processes with 8 threads each. Certainly, the combination of 4 × 32, 8 × 16 and

(a) (b)

Figure 4: Node-level performance on HAWK: (a) Fix number of threads, represented by each
curve, the number of processes are doubled for each subsequent point. (b) Full node configuration
using nThreads × nProcs (last data point of each curve in Figure (a)) for each data point.

16 × 8 (threads × processes) provide the fastest computation for this setup, comparable with
the CARA and CARO system.

Results - Comparing results of the different computing system

A comparison of the three systems reveals that the optimal configuration for this test case
can be found in the range of combinations with 4× 32, 8× 16 and 16× 8 (threads × processes).
In the case of CARA and HAWK, the fastest computation is achieved with 8 threads and 16
processes. While on the CARO system, the combination of 4 threads and 32 processes allows

6



N. Ebrahimi Pour et al.

Figure 5: Comparison of the time to solution for all three systems (CARA, CARO and HAWK)
on a full node.

for a slightly faster time to solution. Nevertheless, all three systems exhibit a strikingly similar
behaviour, as evidenced by the observation that the aforementioned three combinations, namely
4×32, 8×16 and 16×8 (threads × processes), consistently emerge as the best performing ones.
Figure 5 illustrates the full node configuration on the various systems, with the orange and blue
curves representing the CARA and HAWK systems, respectively. It can be observed that the
two systems exhibit a high degree of similarity, particularly in their optimal configuration of 8
threads and 16 processes, where their respective curves overlap.

4 Conclusion

We examined the node-level performance of the general-purpose structural solver b2000++pro.
The investigation included three supercomputing systems with similar hardware configurations.
Different parallelization configurations were examined to identify the optimal run time param-
eters for the examined test case. This analysis revealed that the optimal configuration for the
CARA and HAWK systems is a combination of 8 threads on 16 processes, while the optimal
configuration for the CARO system is found with 4 threads and 32 processes. It is notable
that there is such a difference between CARA and CARO despite the same processors in these
systems. Further it is notable that the usage of 8 threads can yield an advantage, though just
4 cores share a single L3 cache in the processors. As described, this can be attributed to the
different regions in the parallelization concept of b2000++pro, with only one part benefiting
from MPI parallelism. It would, therefore, also be interesting to consider different numbers
of threads to be used in the two regions of b2000++pro, as the intel-TBB parallel part could
potentially benefit more from more cores, while the OpenMP parallelism in MUMPS seems to
be sensitive to the use of more than 4 threads. However, what this investigation has shown is

7



N. Ebrahimi Pour et al.

the relatively strong limitation of the shared memory parallelism in the current implementa-
tion of b2000++pro, and thus the need to change the parallelization concept and allow for the
exploitation of more distributed memory parallelism.

Acknowledgement

The authors gratefully acknowledge the scientific support and HPC resources provided by the
German Aerospace Center (DLR). The HPC system CARA is partially funded by ”Saxon State
Ministry for Economic Affairs, Labour and Transport” and ”Federal Ministry for Economic
Affairs and Climate Action”. The HPC system CARO is partially funded by ”Ministry of
Science and Culture of Lower Saxony” and ”Federal Ministry for Economic Affairs and Climate
Action”. The authors also gratefully acknowledge the Gauss Centre for Supercomputing e.V. for
providing computing time on the GCS Supercomputer HAWK at Höchstleistungsrechenzentrum
Stuttgart.

REFERENCES

[1] SMR Documentation. https://www.smr.ch/newdoc/, [Online; accessed January 12, 2024].

[2] M. Petsch, D. Kohlgrüber, C. Leon Munoz and T. Rothermel: Integration of the structural
solver b2000++ in a multi-disciplinary process chain for aircraft design. In: DLRK 2020
(September 2020), https://elib.dlr.de/139438/.

[3] Getting Started with Intel®Threading Building Blocks (Intel®TBB). https://www.

intel.com/content/www/us/en/developer/articles/guide/get-started-with-tbb.

html, [Online; accessed January 12, 2024].

[4] L. Dagum and M. Ramesh: OpenMP: an industry standard API for shared-memory pro-
gramming. Computational Science & Engineering, IEEE 5.1 (1998): 46-55.

[5] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version
3.0. https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, [Online; accessed
August 13, 2024].

[6] MUMPS : a parallel sparse direct solver. https://mumps-solver.org/index.php?page=
home, [Online; accessed August 13, 2024].

[7] P.R. Amestoy, A. Buttari, J.-Y. L’Excellent and T. Mary: Performance and Scalability
of the Block Low-Rank Multifrontal Factorization on Multicore Architectures. In: ACM
Transactions on Mathematical Software, 2019.

8

https://www.smr.ch/newdoc/
https://elib.dlr.de/139438/
https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-tbb.html
https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-tbb.html
https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-tbb.html
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://mumps-solver.org/index.php?page=home
https://mumps-solver.org/index.php?page=home

	INTRODUCTION
	STRUCTURAL SOLVER b2000++pro
	INVESTIGATION OF THE NODE-LEVEL PARALLELIZATION
	Conclusion

