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Summary.

This work aims to develop advanced macro- and mesoscale numerical models to accurately reflect the
mechanisms behind the initiation and propagation of concrete fatigue damage. A thermodynamically for-
mulated generalized interface model, that relates fatigue damage growth to cumulative inter-aggregate
sliding deformations, is used to describe the interface behavior under monotonic and subcritical cyclic
loading. This model is applied to two concrete material structure idealizations: the lattice discrete par-
ticle model (LDPM) and the microplane model. The mesoscale lattice discrete particle model explicitly
reflects interactions between aggregates and local stress redistribution during fatigue. It is compared to
the microplane fatigue model MS1 in combination with finite elements (FE), a semi-multiscale model
that can capture the anisotropic nature of concrete while remaining at the macroscopic level. Both ap-
proaches, based on the same fatigue damage hypothesis, are evaluated for their ability to reproduce
fatigue phenomena such as the evolution of fatigue creep curves and the changing shape of hysteretic
loops.

1 INTRODUCTION

Resistance to cyclic loading is crucial for the efficient and reliable design of concrete structures such as
roads, rail bridges, and wind turbine towers. Particularly, in wind turbine towers compressive concrete
fatigue is of key importance [1, 2, 3]. Understanding concrete fatigue behavior can reduce material
consumption, extend service life, and improve structural reliability.

The objective of this study is to investigate the phenomenon of compression fatigue in concrete and
its associated stress redistribution. In order to do so, we use two approaches for reproducing concrete



M. Aguilar, A. Baktheer, R. Wan-Wendner, J. Vorel, M. Vořechovský and R. Chudoba

fatigue. The first approach is based on standard continuum mechanics, following the ideas of classical
phenomenological tensorial models within the framework of damage-plasticity[4, 5, 6]. These models
are computationally efficient and can effectively reproduce the macroscopically observable responses
of concrete fatigue, such as the prediction of Wöhler (S-N) curves and fatigue creep curves [7]. As
recognized in tensile fatigue loading [8], tri-axial stress redistribution is a critical feature for realistic
fatigue modeling under compression. This feature was incorporated into the microplane model MS1 [9],
which is used in the present work in combination with finite elements (FE) [10]. The second approach
consists of a mesoscale model featuring discrete representations of the concrete material structure [11,
12], following the framework proposed in [13]. Using a discrete model allows for the reproduction
of fatigue-induced changes in the material structure, such as crack evolution and aggregate interlock,
including the aforementioned tri-axial stress redistribution [14]. Additionally, these mesoscale models
implicitly consider the random nature of the spatial distribution of aggregates [15]. The objective of this
work is to contribute to the development of advanced macro- and mesoscopic numerical models that can
realistically cover the mechanisms governing the initiation and propagation of concrete fatigue damage.

2 THERMODYNAMIC FORMULATION

In order to model concrete fatigue, the authors have developed a thermodynamically based constitutive
framework, which is presented in detail in [16]. By making use of this framework, the authors have been
able to derive the formulation of an interface model that can be embedded on a generic microplane within
a microplane model or at the level of inter-aggregate contact on a lattice discrete particle model. This
framework is based on the hypothesis positing that fatigue damage evolution in concrete is primarily re-
lated to inter-aggregate cumulative inelastic shear strain [17, 16]. This hypothesis has proven valuable in
modeling the fatigue behavior of cementitious interfaces and concrete under compressive fatigue loading
in cylinders [9, 18, 19].

2.1 Free energy potential, state variables and thermodynamic forces

The relative displacement of two points connected via the interface is represented by a normal (out-of-
plane) component uN ≡ uz and an (in-plane) sliding vector uuuT = {ux,uy}T. The vector of kinematic
variables defining the irreversible state of the interface is introduced as follows

E ..=
[
up

N, ωN,uuu
p
T, ωT, z, ααα

]
. (1)

To provide a transparent representation of dissipative mechanisms in the normal and tangential directions,
the free energy is introduced as a sum of out-of-plane opening (N) and in-plane sliding (T) contributions

ρψ(E) ..= ρψN(E)+ρψT(E). (2)

Free energy associated with interface opening and closing (N) is defined as a function of total displace-
ment uN, plastic displacement up

N, and damage ωN as

ρψN(uN,u
p
N,ωN)

..=
1
2
(1−H(σN)ωN)EN(uN −up

N)
2, (3)

where EN denotes the stiffness. The Heaviside step function H(.) is used to introduce the unilateral effect
by activating the damage only for positive values of the traction stress σN. The free energy associated
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with the interface sliding is defined as a function of total sliding vector uuuT, plastic sliding vector uuup
T, tan-

gential damage ωT, and the displacement variables corresponding to isotropic and kinematic hardening,
z and ααα = [αx,αy], respectively, as

ρψT(uuuT,uuu
p
T,ωT,z,ααα) ..=

1
2
(1−ωT)ET

[
(uuuT −uuup

T)
T · (uuuT −uuup

T)
]
+

1
2

Kz2 +
1
2

γ(αααT ·ααα), (4)

where ET denotes the tangential stiffness, K the isotropic and γ the kinematic hardening moduli. The
thermodynamic forces are obtained by differentiating the free energy with respect to the kinematic state
variables

S = ϒϒϒ
∂ρψ(E)

∂E
. (5)

The sign vector operator ϒϒϒ is introduced to render positive thermodynamic force for positive state vari-
able. To distinguish the thermodynamic forces based on the in correspondence with the definition of the
state vector in Eq. (1), let us introduce the generalized vector of thermodynamic forces as

S ..=
[
σ

p
N, YN, σσσ

p
T, YT, Z, XXX

]
. (6)

The individual components of this vector can be obtained using Eq. (5) The individual components of
this vector are obtained using Eq. (5). The normal plastic stress σ

p
N and normal energy release rate YN

read

σ
p
N =−ρ

∂ψ(E)

∂up
N

=
(
1−H(σ

p
N)ωN

)
EN(uN −up

N), (7)

YN =−ρ
∂ψ(E)

∂ωN
=

1
2

EN(uN −up
N)

2. (8)

As discussed above, the Heaviside switches off the damage in compression to represent the stiffness
recovery upon interface closure. The tangential plastic stress vector σσσ

p
T, energy release rate YT, isotropic

hardening stress Z and back stress XXX = {Xx,Xy}T are obtained as follows

σσσ
p
T =−ρ

∂ψ(E)

∂uuup
T

= (1−ωT)ET(uuuT −uuup
T) (9)

YT =−ρ
∂ψ(E)

∂ωT
=

1
2

ET

[
(uuuT −uuup

T)
T · (uuuT −uuup

T)
]

(10)

Z = ρ
∂ψ(E)

∂z
= Kz, XXX = ρ

∂ψ(E)

∂ααα
= γ ααα. (11)

2.2 Elementary study at the interface level

To verify the elementary behavior of an interface included in the LDPM or microplane model, as well as
to illustrate the ability to assess the fractions of energy dissipated associated with each specific mecha-
nism, we present a fundamental study of its cyclic behavior for the tangential direction in Fig. 1, consid-
ering two scenarios. The first scenario maintained a normal pressure of 0 MPa, while the second scenario
involved a prior compression displacement of 0.4 cm, equivalent to 40 MPa. In both cases, the cyclic
shear load ranged from 0.25 mm to -0.25 mm and was applied through a cyclic displacement-controlled
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0.00

E
ne

rg
y 

[N
m

m
]

D
am

ag
e 

di
ss

ip
. [

N
m

m
]

damage
plastic
free
stored

0.50

1.00

Ut [mm]

damage
0 

M
P

a 
co

m
pr

es
si

on
40

 M
P

a 
co

m
pr

es
si

on

plastic
free
stored

Ut [mm]
-0.2 0.0 -0.2

-0.2 0.2 -0.2

15

10

5

0

-5

σ T
 [

M
P

a]

4

10

5

0

-5

σ T
 [

M
P

a]

Ut [mm]

Ut [mm]
-0.2 0.0 -0.2

-0.2 0.2 -0.2
t [-]

t [-]
0.0 0.5 1.0

0.0 0.5 1.0

E
ne

rg
y 

[N
m

m
] 3

2

1

0

4

3

2

1

0 D
am

ag
e 

di
ss

ip
. [

N
m

m
]

1.0

0.25

0.75

1.25

1.50

0.00

0.25

0.50

0.75

1.00

1.50

1.2515

a) b) c)

d) e) f)

Figure 1: Elementary interface behavior covering the shear behavior. The panels on the left correspond to the
stress slip curve, the middle panels show the evolution of energy breakdown, showing the corresponding fractions
of energy dissipation due to damage and plasticity and kinematic and stored energy. The panels on the right
correspond to the damage evolution with respect to the oscillating displacement loading. Material parameters: ET
= 100, σ0

T = 5.0, γT = 500, KT = 0, ST = 0.02, rT = 1.0, cT = 2.0, pT = 1.0, mT = 0.25

load. The left panels of Fig. 1 show the resulting stress response. It can be observed that the interface
strength increases as the normal compression increases. This is a characteristic aspect of the present
formulation, where the tangential strength increases linearly by mTσN. In this case, the interface has a
tangential elastic limit of 5 MPa when compression is not applied. It exhibits a plastic behavior with
some hardening afterward, as shown in Figure 1a. On the other hand, the interface that undergoes com-
pression prior to cyclic loading experiences a 10 MPa increase in its elastic limit, displaying a brittle
rather than plastic behavior in the post-peak regime, due to a larger value of accumulated elastic energy
on the onset of inelasticity, as shown in Fig. 1e. In both cases, there is a significant reduction in stiffness
after the first cycle, along with plastic deformation upon passing through the zero stress level.

The two distinct behaviors of the confined and unconfined interfaces are also evident in the energy
dissipation breakdown displayed in Fig. 1b and e, which show the numerically quantified stored and
dissipated energy at the interface. As shown in Fig. 1b, the interface without compression exhibits more
plastic behavior, leading to greater plastic dissipation compared to the interface with prior compression.
The interface undergoing compression has a higher shear strength, resulting in the accumulation of more
elastic energy. This leads to a faster energy release and greater energy dissipation due to damage during
the first cycle, as depicted by the gray area in Fig. 1b and e. The damage and plastic dissipation rates
decrease over successive cycles as they are coupled. The green area represents the stored elastic en-
ergy which increases during loading and decreases during unloading until it reaches zero every time the
stress-slip curve intersects the zero tangential stress axis. During each cycle, the elastic strain available
decreases while the maximum tangential stress progressively decreases, leading to a subsequent decrease
in the maximum stored elastic energy at the peak of each cycle. Isotropic free energy is visible in light
blue, following the same trend as the stored energy.
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Fig. 1c and f show the damage energy dissipation as a function of the applied displacement. The model
successfully slows down damage accumulation for successive loading cycles, which is an essential fea-
ture of models that can realistically capture the fatigue response of concrete.

3 MICROPLANE MODEL

Unlike the classical constitutive models, which establish a direct relation between the strain and stress
tensors, the microplane models introduce a constitutive relation between strain and stress vectors at the
level of projected planes, effectively replicating the anisotropic behavior of concrete.

Kinematic constraint: The strain tensor is projected onto each microplane to obtain strain vectors
consisting of the normal and tangential components using the so called kinematic constraint

εN = NNN : εεε, εεεT = T : εεε, (12)

where the scalar εN is the normal microplane strain, and εεεT is the tangential microplane strain vector.
The second order normal tensor NNN and the third order tangential tensor TTT are given as

NNN = nnn⊗nnn, T = nnn · Isym −nnn⊗nnn⊗nnn, (13)

where nnn is the microplane normal vector and I is the fourth-order identity tensor.

Constitutive behavior: The constitutive behavior of the proposed microplane model is governed by
the thermodynamically based constitutive laws described in Sec. 2 governing the macroscopic behavior.
These constitutive laws are defined on the generic microplanes and introduce the dissipative mechanisms
for the normal and tangential direction.

Homogenization: The macroscopic stress tensor can be obtained as follows

σσσ = βββ : CCCe : βββ
T : (εεε− εεε

p), (14)

where βββ is the fourth order damage inverse/integrity tensor, CCCe is the fourth order elasticity tensor, and
εεεp is the macroscopic plastic strain tensor. According to [20] the macroscopic plastic strain tensor can
be obtained by integrating microplane plastic strains as follows

εεε
p
i j =

3
2π

∫
Ω

ε
p,mic
N nin j dΩ+

3
2π

∫
Ω

ε
π,mic
Tr
2

(niδr j +n jδri) dΩ. (15)

The fourth order damage inverse/integrity tensor βββ can be obtained by integrating the normal and tan-
gential microplane damage parameters as follows

βββi jkl =
3

2π

∫
Ω

βN ni n j nk nl dΩ (16)

+
3

2π

∫
Ω

βT

4
(
ni nkδ jl +ni nlδ jk +n j nkδil +n j nlδik −4ni n j nk nl

)
dΩ

where βmic
N =

√
1−ωmic

N is the integrity parameter of the normal direction, and βmic
T =

√
1−ωmic

T is the
integrity parameter of the tangential direction.
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After homogenizing the microplane state variables, the macroscopic relation between stress and strain
tensor is obtained, allowing for the introduction of the constitutive equations in the form of a material
subroutine within a finite element (FE) package, enabling further calculations within a spatial discretiza-
tion, as illustrated in Fig. 2a.

4 LATTICE DISCRETE MODEL

The lattice discrete particle model (LDPM) is employed for an explicit simulation of the mesostructure of
concrete [21]. The model represents the material as a system of particles with translational and rotational
degrees of freedom. Rigid particles represent larger aggregates with surrounding cement matrix; smaller
aggregates are omitted, their role being merged into the constitutive laws on contacts of the larger rigid
particles. The kinematics of the model are provided by rigid-body motion of the particles, which results
in displacement jumps between them.

Spatial domain discretization: The material inner structure is characterized by Delaunay triangula-
tion, which connects the center of each rigid particle, representing the aggregates, to create the lattice
system. Then, a tessellation of the domain generates a network of polyhedral cells, which contain an ag-
gregate surrendered by the cement matrix skeleton. The interaction between aggregates occurs through
the facets of the polyhedral cells of adjacent particles.

Kinematics: The displacement uuup of an arbitrary point ppp within a rigid body can be expressed in terms
of the displacements uuua of the particle governing node aaa and the rotations θθθa of the rigid body a, as
formulated in [13]

uuup = uuua +θθθa × (ppp−aaa)


up

1
up

2
up

3

=

 1 0 0 0 xp
3 − xa

3 xa
2 − xp

2
0 1 0 xa

3 − xp
3 0 xp

1 − xa
1

0 0 1 xp
2 − xa

2 xa
1 − xp

1 0


︸ ︷︷ ︸

AAAp
a



ua
1

ua
2

ua
3

θa
1

θa
2

θa
3


(17)

where the subscripts 1, 2, and 3 refer to the three coordinate directions. In this description of rigid body
motion, small deformations and rotations are assumed. Consider two rigid bodies, a and b, with one
common contact facet, as illustrated in Fig. 2b. Assuming arbitrary displacements and rotations for a
and b, the displacement of point c at the contact facet can be expressed by substituting c and a, and c and
b into Eq. (17). The difference between the displacements from both sides of each contact facet results
in the following expression for the displacement jump between rigid bodies a and b at the centroid of the
contact facet, ccc.

∆uuuab = AAAc
b(uuubθθθb)

T −AAAc
a(uuuaθθθa)

T (18)

Stress-displacement relation: The interaction of particles is governed by constitutive relations that are
applied at their contact facets. The mesoscale elastic behavior is controlled by two parameters, namely
the elastic modulus in the normal direction EN and in the tangential direction ET. The relation between

6
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Figure 2: a) cell with connections to neighboring particle centers, b) contact facet between particles associated
with nodes aaa and bbb
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Figure 3: Elementary studies of the 2D microplane model behavior under monotonic and cyclic/fatigue compres-
sive loading showing the stress redistribution at the microplane level. Left: the macroscopic behavior of the single
material point. Right: Evolution and distribution of strains, damage, plastic strains and stresses at each microplane

stress σ and displacements uuu in the elastic regime on each facet yields
σN

σM

σL

=

EN
ET

ET


uN

uM

uL

 (19)

In nonlinear regime, the contact constitutive behavior comes from the relations described in Sec. 2.

Balance equation: The solution of unknown displacements is obtained via enforcing the principle of
virtual work. We equilibrate the work of forces (forces fff a, fff b and moments mmma, mmmb) acting on virtual
nodal displacements (δuuua, δuuub and δθθθa, δθθθb) with the work of forces (sss from Eq. 19 multiplied by the
contact area A) acting on facet virtual jumps (δ∆∆∆uuuab = Lδeeeab):(

fff a mmma fff b mmmb
)(

δuuua δθθθa δuuub δθθθb
)T

= Aσσσ
T

δ∆∆∆uuuab (20)

5 NUMERICAL EXAMPLES

To fairly compare the macroscale and mesoscale models, both the microplane and lattice discrete particle
models apply the same dissipation hypothesis from Sec. 1. This section examines anisotropic damage
evolution and triaxial stress redistribution, providing insights into the mechanical deterioration of con-
crete under uniaxial compressive fatigue. A comparison of the models is made for a cylindrical specimen
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Figure 4: Elementary studies of the 2D microplane model behavior under monotonic and cyclic/fatigue compres-
sive loading showing the stress redistribution at the microplane level. Left: the macroscopic behavior of the single
material point. Right: Evolution and distribution of strains, damage, plastic strains and stresses at each microplane

under uniaxial compression, with thermodynamic formulation enabling numerical evaluation of energy
dissipation. Contour plots of energy dissipation and a simulation under subcritical cyclic loading are also
presented, focusing on hysteretic loop shapes and energy dissipation profiles.

5.1 FATIGUE BEHAVIOR OF A MATERIAL ZONE

Figure 3 presents simulations at a material zone level using the microplane and LDPM models to verify
their behavior under subcritical compressive cyclic loading and their ability to represent stress redis-
tribution in an idealized material structure. In Fig. 3a, a simulation of compressive fatigue using the
microplane model with loading levels Smax = 0.85 and Smin = 0.20 is shown. Polar diagrams depict the
evolution of damage and stress at each microplane per loading cycle, illustrating the model’s realistic
reproduction of fatigue-induced anisotropic damage and stress redistribution. Fig. 3b shows a similar
study with the LDPM model, where the state variables associated with the normal of each facet are plot-
ted in polar diagrams, with the first and last cycles marked in blue and red, respectively. Both models
display similar patterns of normal and tangential damage distribution and corresponding stress profiles,
suggesting that the microplane model, despite being a semi-multiscale model, can effectively homoge-
nize stress at the inter-aggregate level for efficient fatigue simulation. However, the microplane model’s
lack of explicit consideration for concrete’s mesostructure limits its ability to capture certain effects, such
as damage localization, crack propagation, and aggregate interlock, which the LDPM model inherently
accounts for.

5.2 MONOTONIC BEHAVIOR OF A CYLINDER - MICROPLANE AND LDPM

A uniaxial compression cylinder test simulation was conducted using both the LDPM and FE idealization
methods. The interface model was integrated at the facet level within the LDPM model and at the
microplane level within the FE idealization. To reduce computational time, the FE model utilized an
axisymmetric idealization, with lateral constraints applied to the top and bottom of the specimen to
induce axisymmetric failure. Correspondingly, the LDPM cylinder model was also laterally constrained
at its top and bottom ends. For efficiency, the cylinder dimensions were maintained at a height of 10 cm
and a diameter of 5 cm.

8
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Figure 5: Elementary studies of the 2D microplane model behavior under monotonic and cyclic/fatigue compres-
sive loading showing the stress redistribution at the microplane level. Left: the macroscopic behavior of the single
material point. Right: Evolution and distribution of strains, damage, plastic strains and stresses at each microplane

The material parameters of the FE-microplane and LDPM-slide models have been calibrated to yield
comparable compressive strength for both models, as shown in the stress-strain diagrams of both the
top and bottom panels of Fig. 4. It can be observed that the simulation using LDPM exhibits a more
realistic post-peak behavior in comparison to the FE simulation. This discrepancy may be attributed
to the selected material parameters. On the other hand, the discrete nature and explicit representation
of multiple cracks inherent to LDPM idealization may facilitate the replication of post-peak softening
behavior in concrete more effectively than continuum-based approaches.

The bottom row of Fig. 4 display contour plots of energy dissipation due to damage in the normal and
tangential direction at the peak load. Dissipation due to damage has been chosen as the displayed state
variable based on the results presented in [22, 23, 24], where it was found that energy dissipation due
to damage under fatigue loading remains constant for the same stress configuration. The displayed
results show a distributed damage pattern for both FE and LDPM simulation on the central zone of the
specimen, which is to be expected due to the restrained upper and lower parts. For both simulations the
energy dissipation due to tangential damage is clearly larger than the dissipation due to normal damage.
As a remark about the values of the dissipation one needs to take into account that the enhery dissipation
has been measured in MN · m for the FE results and in N · mm · mm−2 for the LDPM simulation.

5.3 FATIGUE BEHAVIOR OF A CYLINDER - MICROPLANE AND LDPM

The behavior of concrete under subcritical cyclic loading, as modeled by both the microplane and LDPM
models, is summarized in Fig. 5. The top row displays the stress-strain curves. The hysteretic loops ob-
served indicate that both models effectively reproduce damage accumulation during unloading. This
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phenomenon in concrete arises because aggregates attempt to return to their original positions during
unloading but are hindered by plastic deformations from the loading phase. The reduction in stiffness
observed in the lower part of the hysteretic loop, corroborated by acoustic emission studies showing
significant damage accumulation at lower stress levels [25], supports this conclusion. The microplane
model MS1 simulates this behavior by allowing some microplanes to enter the inelastic regime in the
tangential direction upon unloading. The LDPM model provides an even more realistic simulation by ex-
plicitly considering the skeleton of aggregates and cement paste, thus accounting for the rearrangements
of aggregates during the loading-unloading cycles. Below each stress-strain curve, a set of creep-fatigue
curves is displayed for each respective simulation, showing comparable results that align closely with
experimental data.

The bottom row of Fig. 4 displays contour plots of energy dissipation due to damage in the normal and
tangential direction at the end of the simulation. The displayed results illustrate a distributed damage
pattern for both the FE and LDPM simulations in the central zone of the specimen. For both simulations,
the energy dissipation due to tangential damage is greater than the dissipation due to normal damage.
These results are consistent with those shown for monotonic loading. However, it is notable that the
energy dissipation has increased in comparison to the energy dissipated under monotonic loading up to
the peak. This indicates that under subcritical cyclic loading, the damage process is more distributed
within the volume of the specimen.

6 CONCLUSIONS

To model the fatigue behavior of concrete under compression, along with the associated stress redis-
tribution and anisotropic damage evolution, we employed the microplane and lattice discrete particle
model (LDPM). In order to ensure a fair comparison of the advantages and limitations of macroscale and
mesoscale models, both the microplane and LDPM were integrated with the same dissipation hypothesis
in their constitutive equations. Simulations at the interface and material point levels yielded realistic re-
sults, accurately capturing anisotropic damage evolution and stress redistribution in single material point
simulations using the microplane model MS1. When comparing the simulations of a concrete cylinder
under monotonic fatigue compressive loading, both models exhibited comparable results, including post-
peak behavior and the realistic shape of hysteretic loops during subcritical cyclic loading. The shape of
these loops effectively depicted damage accumulation upon unloading, in accordance with experimental
observations. Due to the included thermodynamic formulation, it was possible to evaluate the energy
dissipation. The results indicated that the dissipation due to tangential damage was greater than that
due to normal damage for both monotonic and subcritical cyclic loading. This highlights the role of the
inter-aggregate shear behavior of concrete under compression. Overall, both the macros- and mesoscale
models demonstrated their capacity to accurately reproduce the fatigue behavior of concrete.
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