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Summary. In fire safety problems, the simulation of the thermal degradation of anisotropic
porous materials is complex due to the large amplitudes of time and space scales. Degraded areas
where temperature increases and gas transport occurs might be very localised, sadly reducing
the overall stability of numerical solvers and increasing the computation time. This can be
mitigated thanks to Super-Time-Stepping methods, which are based on the use of a multi-step
explicit scheme. In this study, these methods are first presented and their advantage to handle
diffusion-advection problems such as the thermal degradation of anisotropic porous materials
are emphasized on a simple use case. Then, a possible acceleration of the computation by
using local timestep Super-Time-Stepping methods, particularly adapted to the heterogeneous
problems previously mentioned, is discussed.

1 INTRODUCTION

Super-Time-Stepping (STS) methods are a family of numerical integration methods based on
the use of a multi-step explicit scheme, in order to lower the stability constraints on the Fourier
and CFL numbers to integrate parabolic partial differential equations. These methods therefore
enable a computation time reduction compared to more limited classical explicit methods, while
guaranteeing a second-order approximation [1, 4, 6]. In this study, the general formulation
of Super-Time-Stepping schemes is first presented and applied to the simulation of diffusion-
advection problems in anisotropic reactive porous materials encountered in the field of fire safety.
An acceleration factor up to 7.5 is obtained against state-of-the-art second-order Runge-Kutta
schemes. In the second part of the study, focus is made on the development of a Local Super-
Time-Stepping method improving the original integration schemes. The main idea is to locally
reduce the timestep by adjusting the number of steps of the integration scheme depending
on local features of the physical problem to be solved, minimising the number of evaluations
of the right-hand-side of the system of equations. This improvement is of particular interest
for diffusion-advection problems in anisotropic reactive porous materials, where high pressure
gradients and gas velocities are generally concentrated in areas exposed to heat sources. The
zonal timestep adjustment greatly improves the computation time in this configuration, where
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the timestep is increased in most of the computation domain while keeping a second-order
scheme. The third part of this study aims at validating the implemented schemes and evaluating
the possible acceleration to be expected.

2 STS METHODS IN THE CONTEXT OF HEAT AND MASS TRANSFER
APPLICATIONS

2.1 Time integration as a polynomial formalism

We are interested in solving equations of the form (1){
∂tu−Au = 0, in Rd

u(0, .) = u0
(1)

where u(t.) ∈ H, H being an Hilbert space and A is a self-adjoint negative-definite linear
operator on H (typically a Laplace operator) whose discrete approximation Ah, in the form of a
hermitian negative-definite matrix is given, h being the mesh size characteristic parameter. The
problem then turns into solving the semi-discretized equation{

∂tu−Ahu = 0,
u(0, .) = uh0

(2)

Considering an arbitrary timestep ∆t = tn+1 − tn, with obvious notations, the exact solution
from (2) reads:

u
(
tn+1

)
= exp (∆tAh)u (t

n) =
+∞∑
k=0

(∆tAh)
k

k!
u (tn) , (3)

so that any explicit numerical scheme of the form un+1 = P (∆tAh)un with P ∈ Rd [X], p ≤ d, is
automatically of consistency order p provided that ∀k ∈ {0, · · · , p}, P (k) (0) = 1. Many classical
explicit methods for ODEs can be put under this polynomial formalism:

Euler P (∆tAh) = 1 +∆tAh, (4a)

RK2 P (∆tAh) = 1 +∆tAh

(
1 +

∆t

2
Ah

)
, (4b)

Heun P (∆tAh) =
1

2

(
(1 + ∆tAh) + (1 + ∆tAh)

2
)
, (4c)

Taylor Series of order p P (∆tAh) =

p∑
k=0

(∆tAh)
k

k!
. (4d)

One can note that Euler is consistent at first order while Heun and RK2 are at second order.
Regarding stability, per our assumptions on Ah, these polynomial schemes are stable in l2-
norm for all ∆t > 0 such that |P (−∆tλ)| ≤ 1 with λ ∈ [0, ρ (Ah)] where ρ (Ah) the spectral
radius of Ah. It is for example known that the stability domain of the Euler scheme is limited to
∆t < 2

ρ(Ah)
, which for a standard 1D finite difference discretization Ah of A implies ∆t = O

(
h2

)
.

The aim of Super-Time-Stepping schemes [1, 5, 6] is to replace the polynomial expansion of the
form (4d), by another one of higher order d > p, still ensuring the consistency at order p, while
using additional degrees of freedom when to expand the domain of stability.
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2.2 STS method using generalized Jacobi polynomials

As in the previous work described in [1, 5, 6] we will focus on second order approximations. In
order to expand the stability domain, they consider degree s polynomials of the form:

Rs (z) = as + bsP (1 + wsz) , (5)

where P ∈ Rs [X] and the parameters as, bs and ws are chosen in order to ensure the second-order
and broaden the stability domain. As for the choice of P , Chebyshev or Legendre polynomials
are classically used in order to develop STS schemes. In fact, it can be seen that both class of
polynomials are subcategories of Jacobi polynomials [7]. A first contribution of this work is then
to extend the STS method using the general form of Jacobi polynomials. Following [1, 5, 6], we
choose to use a polynomial of the form:

Rs (ws, z) = as + bsJ
α,β
s (1 + wsz) , (6)

where Jα,β
s = Pα,β

s /Pα,β
s (1), with Pα,β

s the Jacobi polynomials as defined in [7], of degree s ≥ 0,
and parameters α, β ≥ −1/2.

Proposition 1 For s ≥ 2 there exists a set of parameters as, bs and ws such that the method
is consistent at second order. Moreover, if α ≥ β ≥ −1/2, the numerical scheme is stable for
each timestep such that ∆twsρ (Ah) ≤ 1. Moreover, we have ws ∼ s−2 as s → +∞.

Proof. The coefficients as, bs and ws are determined by the second order condition applied to
Rs:

as + bsJ
α,β
s (1) = 1, (7a)

bswsJ
α,β′
s (1) = 1, (7b)

bsw
2
sJ

α,β′′
s (1) = 1. (7c)

By construction Jα,β
s (1) = 1 and by injecting the square of (7b) into (7c) we obtain, via straight-

forward computations (see (25)):

as + bs = 1 (8a)

bs =
Jα,β′′
s (1)(

Jα,β′
s (1)

)2 =
s− 1

s

α+ 1

α+ 2

s+ α+ β + 2

s+ α+ β + 1
(8b)

1

ws
=

Jα,β′′
s (1)

Jα,β′
s (1)

=
s− 1

2

s+ α+ β + 2

α+ 2
(8c)

As for stability, it has been demonstrated in [7] that Pα,β
s reaches its maximum value on [−1, 1]

(in absolute value as well) at x = 1 provided that α ≥ β ≥ −1/2. Consequently, by normalization

of Jα,β
s ,

∣∣∣Jα,β
s (x)

∣∣∣ ≤ 1 for all x ∈ [−1, 1]. Additionally, for s ≥ 2 (case for which achieving second

order is possible) ws, bs > 0. Consequently if we prove that bs ≤ 1, stability properties on Rs

directly follow from that of Jα,β
s . But we have:

bs =

(
1− 1

s

)(
1− 1

α+ 2

)(
1 +

1

s+ α+ β + 1

)
. (9)
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Consequently, it is enough to show that (1− 1/s) (1 + 1/ (s+ α+ β + 1)) ≤ 1 to obtain bs ≤ 1.
For all 0 < B < A < 1, (1−A) (1 +B) ≤ (1−B) (1 +B) = 1 − B2 < 1. Since we have
1/s ≥ 1/ (s+ α+ β + 1) as long as α, β ≥ −1/2, we do obtain bs ≤ 1.
By construction, we now inherit l2-stability so long ∆twsρ (Ah) ≤ 1. Moreover, we get directly
from (8c) that, as s → +∞, ws ∼ s−2.

Remark. It follows from Proposition 1 that, for a given degree s, the STS algorithm requires
an additional number of operations of order s while allowing the timestep to be s2 times bigger,
resulting in an overall gain in computational cost of a factor s.

2.3 Application on an advection-diffusion problem

To emphasize the advantage of STS methods, a second order Runge-Kutta-Chebyshev scheme
is applied to an advection-diffusion problem to be solved by the finite-volume MoDeTheC
solver [3, 2] and compared to classical first-order Euler and second-order Heun’s schemes. MoD-
eTheC models heat and mass transfer within pyrolysable anisotropic porous materials, based
on Fourier’s and Darcy’s laws, for which Super-Time-Stepping methods are expected to be very
efficient.

(a) Temperature evolution at multiple locations
on the unexposed surface of the composite sam-
ple along x = 0 cm. [The center of the unexposed
surface is located at (0, 0).]

(b) Pressure evolution at the center of the com-
posite sample.

Figure 1: Comparison of Euler, Heun’s and Runge-Kutta-Chebyshev schemes for an advection-
diffusion problem: lines (Euler [3]), square symbols (Heun), circle symbols (Runge-Kutta-
Chebyshev).

A 80 x 80 mm orthotropic composite sample is exposed to a 76.2 kWm−2 Gaussian laser source
as in [3]. The mesh, as well as the physical setup, initial and boundary conditions, are identical
to the previous study, except that oxidation reactions are not taken into account for the sake of
simplicity in this numerical study. The time-step is fixed to 1 s, and the maximum admissible
Fourier and CFL are respectively set to 0.5 and 1 for Euler and Heun’s scheme, 81 and 162 for
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the 25 stages Runge-Kutta-Chebyshev scheme.
Figures 1a and 1b show the evolution of respectively the temperature on the unexposed surface
of the composite sample and the pressure at the center of the sample for all schemes, with
no discrepancies. All simulations are carried out on 48 threads (2 Intel Xeon Cascade Lake
- 6240R cores), and cover 40 s. The STS method allows reducing the restitution time by a
factor 7.5: 12.7 min for the Heun’s scheme, 6.5 min for the Euler scheme, to 1.7 min for the
Runge-Kutta-Chebyshev scheme.
This result shows the ability of our STS scheme to accurately simulate the diffusion dynamics
while using timesteps equal to several times the standard CFL condition. However, in this setup,
the number of steps s of the algorithm is entirely determined by the worst-case CFL in the domain
and the desired timestep to reach. For diffusion problems with a space-dependant diffusion
coefficient, the number of steps in the integration algorithm might then be overestimated with
respect to the local CFL and the target timestep, thus resulting in unnecessary computational
expenses. In order to tackle this drawback, we propose in the next section a method for adapting
locally the degree s of the approximation.

3 TOWARD A LOCAL STS METHOD

The aim of this section is, for a uniform timestep target on the whole computational domain,
to adapt the number of iterations of the STS method depending on the local CFL constraints
in order to avoid unnecessary computations where the CFL constraints are reduced.

3.1 STS method as a Taylor expansion of the semi-group

To present in the simplest way the underlying ideas behind the local STS method, we assume
that we have subdivided our initial domain Ω into two subdomains Ω1 and Ω2 and that we
wish to apply on each of these domains an STS methods with respectively s1 and s2 stages, as
described in the previous section. The difficulty lies in dealing with the interface between the
two subdomains. Not only do both methods have different steps, but theses steps are mostly
disconnected in the sense that there is no obvious way to interpolate the sub-steps of one method
to obtain the values necessary to compute the other.
Indeed, if we follow the classic implementation of an STS method as decribed in Section 2.2, we
use the recurrence formula, with obvious notations

Rs(ws, x) = δα,βs Rs−1(ws, x) + ηα,βs xRs−1(ws, x) + γα,βs Rs−2(ws, x) + θα,βs x+ εα,βs ,

R0(x) = a0 + b0 = 1, R1(ws, x) = a1 + b1J
α,β
1 (1)︸ ︷︷ ︸

=1

+b1
α+ β + 2

2 (α+ 1)
wsx,

(10)

where we only require a0, b0, a1, b1 ≥ 0 and a0 + b0 = a1 + b1 = 1. We derive the recurrence
coefficients δα,βs , ηα,βs , γα,βs , θα,βs , εα,βs from recurrence coefficients of Jacobi polynomials found
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in [7]:

aα,βs =
(2s+ α+ β − 1) (2s+ α+ β)

2s (s+ α+ β)
, (11a)

bα,βs =

(
β2 − α2

)
(2s+ α+ β − 1)

2s (s+ α+ β) (2s+ α+ β − 2)
, (11b)

cα,βs =
(s+ α− 1) (s+ β − 1) (2s+ α+ β)

s (s+ α+ β) (2s+ α+ β − 2)
, (11c)

later normalized:

dα,βs =
s

α+ s
aα,βs , eα,βs =

s

α+ s
bα,βs , fα,β

s =
s

α+ s

s− 1

α+ n
cα,βs , (12)

to obtain:

δα,βk,s =
bk
bk−1

(
dα,βk − eα,βk

)
, ηα,βk,s =

bk
bk−1

dα,βk ws, γα,βk,s = − bk
bk−2

fα,β
k , θα,βk,s = − bk

bk−1
ak−1d

α,β
k ws,

εα,βk,s = ak −
bk
bk−1

ak−1

(
dα,βk − eα,βk

)
+

bk
bk−2

ak−2f
α,β
k .

(13)
In order to tackle the problem if intricate coefficients, we propose to reformulate the method in
a slightly different manner. In fact, the STS algorithm can also be developed as

Rs (∆tAh) = as + bsJ
α,β
s (1)︸ ︷︷ ︸

=1

+ bswsJ
α,β′
s (1)︸ ︷︷ ︸
=1

∆tAh + bsw
2
sJ

α,β′′
s (1)︸ ︷︷ ︸
=1

∆t2

2
A2

h

+ bsw
3
sJ

α,β′′′
s (1)

∆t3

6
A3

h + · · ·+ bsw
s
sJ

α,β(s)
s (1)

∆ts

s!
As

h

(14)

This form (14) is more suited for an additive implementation and has the advantage of explicitly
using the consistency constraints, while the form (10) can be interpreted in an iterative manner,
which is the reason why this latter formulation is usually the one retained in the literature
[1, 5, 6]. Nonetheless, let us explicit the drawback of the iterative formulation justifying the
need for changing the STS algorithm. In the case of the iterative form (10), the approximation
un+1 at tn+1 is computed from the approximation un at time tn using the following algorithm:

u0n = un

u1n = un + b1
α+ β + 2

2 (α+ 1)
ws∆tAhun

∀k ∈ {2, · · · , s} , ukn = δα,βs uk−1
n + ηα,βs ∆tAhu

k−1
n + γα,βs uk−2

n + θα,βs ∆tAhun + εα,βs un

(15)

It then becomes obvious that this manner of computation is efficient as long as the same STS
method (or the same s) is applied to the whole domain, since to obtain Ahu

s,k
n one needs to use

the values of neighboring cells together. For this to work, the coefficients need to be the same
for all cells at each sub-step. Thus, when different values of s are used on Ω1 and Ω2 it is no
longer possible to have the same factorization on both subdomains, rendering this formulation
unusable.

6
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3.2 Reformulating the STS algorithm

Conversely to the iterative process, the additive formulation (14) allows to decouple some of the
coefficient arising from the iterative process

u0n = un

us,0n = un

∀k ∈ {0, · · · , s− 1} , uk+1
n =

∆t

k + 1
Ahu

k
n

us,k+1
n = us,kn + bsw

k+1
s Jα,β(k+1)

s (1)uk+1
n

(16)

This reinterpretation needs all different terms to be of the same order of magnitude in order to
avoid the sum to be ill-conditioned. But the key point with this algorithm is that storing the
sequence

(
ukn

)
is independent of the choice of s, allowing for different number of steps for each

subdomain.
It still has to be noted that some overlap area between both subdomains will be required for the
area with the higher value of s, where it will be necessary for the sequence

(
ukn

)
to go further

than the sequence
(
us,kn

)
. The extension of the algorithm to a local number of steps then comes

at a price of a higher storage cost. The number of cells required for the overlap will depend on
both the difference between s1 and s2 and the choice for the discretization Ah of the operator
A. Since these parameters are known at the beginning of the simulation, this can entirely be
defined in a preprocessing phase, mitigating the overhead of this formulation.

4 NUMERICAL SIMULATIONS

4.1 Validation on a 1D test-case

In order to assess the preservation of the order of approximation by our new local algorithm, we
present a 1D test-case with an analytical solution. Let us assume that:

∂tu− ∂x (Dx∂xu) = 0, with Dx (x) =

{
DxL , xL ≤ x < xC ,

DxR , xC ≤ x ≤ xR.
(17)

We are looking for solutions of the form u = uL1x<xC +uR1x>xC , where uL, uR ∈ C∞ ([xL, xR]).
The classical Rankine-Hugoniot solution imposes that following relation holds:

DxR∂xuR
(
x+C

)
−DxL∂xuL

(
x−C

)
= 0. (18)

To obtain an overall C1 function, we also require:

uR
(
x+C

)
− uL

(
x−C

)
= 0, (19a)

∂xuR
(
x+C

)
− ∂xuL

(
x−C

)
= 0. (19b)

Assuming DxL ̸= DxR , the combination of (18) and (19b) yields ∂xuL
(
x−C

)
= ∂xuR

(
x+C

)
= 0.

7
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Considering homogeneous Neumann boundary conditions, a C1 solution of (17) may be obtained
by choosing

uL (t, x) = u0 exp

(
− t

τL

)
cos

(
2πkL

x− xL
xC − xL

)
, (20a)

uR (t, x) = u0 exp

(
− t

τR

)
cos

(
2πkR

x− xC
xR − xC

)
, (20b)

with kL, kR ∈ Z and

1

τL
= DxL

(
2πkL

xC − xL

)2

,
1

τR
= DxR

(
2πkR

xR − xC

)2

. (21)

Conditions (18) and (19b) always hold for this form of solution, and yield a classical solution on
[xL, xC [ and ]xC , xR]. Only the continuity condition (19a) is satisfied if and only if τL = τR, or
equivalently:

DxL

(
kL

xC − xL

)2

= DxR

(
kR

xR − xC

)2

. (22)

For instance, a possible choice of parameters is xC = xL+xR
2 , kR = 2kL, DxL = 4DxR .

The reference solution at initial and final time is displayed on Figure 2 for tf = 0.001, DxL = 1,
DxR = 4DxL.

Figure 2: 1D exact solution.

In each case the timestep was calculated so that it satisfies a CFL = 0.95. We can verify on this
test case that both the global and local STS enforce at least second-order order. A fourth-order
is even reached in the case of a fourth-order diffusion operator, due to the regularity of the
solution. It can also be seen (black curve on Figure 3(b)) that when s is too high relatively to
Nx, there might be a loss of order due to the amount of additional steps involved.

4.2 Expansion to a 2D application case

Similarly a 2D test case where we have discontinuities for the diffusion coefficient in both x and
y directions was set up to verify that the STS methods give satisfying convergence orders. The
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(a) Using a 2nd order diffusion operator. (b) Using a 4th order diffusion operator.

Figure 3: Convergence orders of global and local STS methods compared to classical Euler and
Heun methods on a 1D test case.

discontinuities occur for x = xC and y = yC creating four different zones. We then consider a
diffusion phenomenon with an anisotropic diffusion coefficient:

∂tu+∇. (D∇u) = 0

DxL = 4 ; DxR = 1

DyU = 1 ; DyD = 4

where L, R, U and D subscripts respectively stand for left, right, upper and down parts of the
domain. In the same way as the 1D case, an analytical solution can also be determined. It will
not be detailed here but is displayed on Figure 4a on the left with xC = yC = 0.625.

(a) Exact solution with a discontinuous diffusion
coefficient.

(b) Convergence orders for each time integration
method with a 4th-order diffusion operator.

Figure 4: 2D test case analysis.
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On Figure 4b are displayed the l2 error obtained with the different methods against the number
of points. In this example the STS parameters were α = β = 0 corresponding to the Runge-
Kutta-Legendre method, with sR = 4 in the right domains sL = 4sR on the left domains for
the local method, and s = sL with the global STS method. We have ensured here that at least
a 2nd-order convergence rate is obtained with the STS method applied with the same order in
the whole domain as well as with the local STS method. Like in the 1D case, higher orders are
achieved due to the regularity of the solution but are not provided by the STS schemes.

4.3 Computational gains

In order to estimate the computational savings induced by our method, we determine the number
of evaluations of the discretized operator required. For the sake of simplicity, this is done in
a 1D context but can easily be extended to higher dimensions. To this extent, we recall that
∆x = L/Nx and set Dxmax = max (DxL , DxR). We first explicit in Table 1 the timestep required
by each method:

Euler Heun STS STS Loc

∆t = CFL × ∆x2

2Dxmax

∆x2

2Dxmax

∆x2

2Dxmaxws

∆x2

2
min

(
1

DxLwsL

,
1

DxRwsR

)
Table 1: Time step value for all time integration methods.

We now set as reference Ntref = ⌊(tf − ti) /∆t⌋ with ∆t defined from Euler method and where
we have set T = tf − ti and ⌊x⌋ denotes the integer part of x. We assume without loss of
generality that DxL ≥ DxR . To keep the maximum time steps in both areas aligned we need
DxLwsL ≈ DxRwsR which is ensured in practice by imposing sL/sR ≈

√
DxL/DxR via the

formula sR = ⌊sL
√

DxR/DxL⌋. We further assume that to maintain similar performances as the
usual STS method we have sL = s.
The total cost of the method is obtained by multiplying the number of steps Nt by the number
of stages in one step as well as the number of cells. Regarding the STS method we have for
asymptotically large s:

s× ⌊2TDxmaxws

∆x2
⌋ ×Nx ∼ swsNtref ×Nx ∼

Ntref ×Nx

s
. (23)

Finally, under our assumptions we have for the local STS method a cost of:

sL⌊
2TDxLwsL

∆x2
⌋ ×NxL + sR⌊

2TDxRwsR

∆x2
⌋ ×NxR ∼

Ntref

s

(
NxL +

sR
sL

NxR

)
. (24)

This formula demonstrates that the local method is especially relevant when the diffusion coef-
ficient is large only in a small area, i.e. DxL ≫ DxR and NxL ≪ NxR .
This is summarized in the following table of total cost, where we recall ws ∼ 1/s2 as s → ∞:
On Figure 5 are represented the number of evaluations for each method depending on the number
of points with a fixed number of steps of the STS methods (Fig. 5a, sR = 4 and sL = 4sR for
the local method and s = sL for the global method) and depending on the order s of the STS

10
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Euler Heun STS STS Loc

Ntref ×Nx 2×Ntref ×Nx ∼
Ntref

×Nx

s ∼
Ntref

s ×
(
NxL + sR

sL
NxR

)
Table 2: Number of evaluations of Ah for all time integration methods.

(a) Against the number of points Nx with sR = 4
and s = sL = 4sR.

(b) Against the method order on right side sR and
s = sL = 4sR.

Figure 5: Theoretical (dashed) and effective (plain) number of evaluations for all time integra-
tion methods.

method with a fixed number of points (Fig. 5b, Nx = 300). The same physical parameters as in
Section 4.1 are chosen.
As expected the number of evaluations of the discretized operator decreases when we increase the
method order, making both the global and local STS more efficient than classical time schemes
as soon as the method order is high enough, while keeping a 2nd-order convergence order. The
current implementation of both the global and local STS scheme reach the optimal number of
evaluations, where the small differences between theoretical and real curves are due to floor
effects when calculating the number of timesteps with the STS methods.

5 CONCLUSIONS

We have presented both global and local timestep Super-Time-Stepping methods. Global
timestep STS methods were developed for solving parabolic equations while lowering stabil-
ity constraints on the CFL number. These methods have proved to be very efficient for solving
heat and mass transfer equations in anisotropic porous materials. First initiatives proposed in
this study to extend STS methods to local timestep integration have proven to be of primary
interest to further reduce the computational cost of time schemes. To that end, it is necessary

11
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to utilize the physical problem topology to explicitly distinguish zones where the number of
steps of the STS methods can be lowered relative to the local stability condition, which is the
case for fire-safety applications that motivated the study. Further work will be dedicated to
the application of the local timestep STS method to heat and mass transfer within anisotropic
porous materials. Analysis of the conservativeness and appropriate corrections to the schemes
should also be investigated.

A Computational aid

Assuming Jα,β
s (1) = 1, one can derive from (3.94) and (3.96) in 3.2.1.1 of [7] that:

Jα,β′
s (1) =

s

2

(s+ α+ β + 1)

α+ 1
, Jα,β′′

s (1) =
s (s− 1)

4

(s+ α+ β + 1) (s+ α+ β + 2)

(α+ 1) (α+ 2)
, (25a)

Jα,β′′
s (1)

Jα,β′
s (1)

=
s− 1

2

s+ α+ β + 2

α+ 2
,

Jα,β′′
s (1)

Jα,β′
s (1)2

=
s− 1

s

α+ 1

α+ 2

s+ α+ β + 2

s+ α+ β + 1
(25b)
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