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Summary. A non-intrusive reduced order model combining proper orthogonal decomposition
and radial basis function interpolation is introduced to evaluate the bone mass density change
around hip implants for different implant positions. A reference finite element mesh is morphed
using Laplace’s equation. The mesh morphing maintains the total number of degrees of freedom
and the node numbering which facilitates the usage of model order reduction techniques.

1 Introduction

According to the Australian Joint registry (2023), 4% of the primary total conventional hip
arthroplasties require revision within 10 years [1]. The planning and monitoring of implants
primarily rely on X-ray images [2, 3, 4]. Computational simulations of the bone remodelling
process using the finite element method (FEM) can predict bone mass density (BMD) changes
and, consequently, could provide additional information on the stability of the hip implant [5, 6].
Since the position of the implant is one of the most important factors for successful implantation
[2], the aim is to develop a tool that enables fast predictions of BMD distributions for different
implant positions, to help physicians in therapeutical decisions. Up-to-date, the computational
effort of the current high-fidelity models is not feasible for the application in clinical practice
[7, 5]. Reduced order models can be used to decrease the computational effort and enable fast
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evaluations.
In the scope of this work, a non-intrusive surrogate model for the prediction of the BMD dis-
tribution for different implant positions is introduced. The model combines proper orthogonal
decomposition (POD) with radial basis function (RBF) interpolation. The POD-RBF approach
has been successfully applied in biomechanics, e.g. to analyse patient-specific hemodynamics
[8, 9]. The setup of the surrogate model is divided in an offline and an online phase [10, 11].
In the offline phase, computationally expensive bone remodelling simulations are performed.
A parameterised reference mesh is morphed to create the mesh for different implant positions.
Mesh morphing maintains the total number of nodes and the node numbering which facilitates
the usage of model order reduction techniques. Different mesh morphing techniques are avail-
able, e.g. using linear elasticity equation or Laplace’s equation [12, 13]. In this work, Laplace’s
equation is employed. Subsequently, bone remodelling simulations are performed for different
implant positions and the final BMD distribution is stored as snapshots. From these snapshots,
the reduced basis are calculated using POD. In the online phase, a linear combination of the
reduced basis and the weights, which are calculated using RBF interpolation, is used to quickly
approximate the BMD solution for new implant positions.

2 Methods

2.1 Reference geometry

The reference FEM model with an integrated Metha® implant (Aesculap, Tuttlingen, Ger-
many) is shown in Figure 1a and is morphed for different implant positions. The model as well
as the boundary conditions, representing a clamping at the bottom and loading by the joint
force as well as six muscle forces (see Figure 1b), are adopted from Lutz [14]. Further, the
Gruen zones are defined on the reference mesh in Figure 1c.

2.2 Mesh morphing

Laplace’s equation is used to morph the nodes of the parameterised reference mesh. The
position of the implant is varied according to the parameters µ = [δx, δy, δz, α, β, γ] relative to
the reference position (δx = δy = δz = 0 mm, α = β = γ = 0◦). δx, δy, δz are translations along
and α, β, γ rotation angles around the x, y and z axes.
The mesh morphing via Laplace’s equation is defined by

∆xi(µ) = 0 where xi = [x, y, z] , (1)

which is subject to the boundary conditions{
(x, y, z)|Ω1 = (p, q, r)|Ω1

(x, y, z)|Ω2 = (gx(µ), gy(µ), gz(µ))|Ω2

. (2)

(p, q, r) are the initial nodal coordinates of the FEM model. The nodes of the boundary of the
femur on Ω1 remain fixed. The nodes of the implant and the cutting plane of the femur head
on Ω2 are performing a rigid body motion (gx(µ), gy(µ), gz(µ)).
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(a) Reference mesh (b) Boundary conditions (c) Gruen zones
s

Figure 1: FEM model with (a) reference mesh, (b) boundary conditions and (c) the Gruen zones
for the reference mesh

The coordinates of the implant nodes performing the rigid body motion are calculated as
gx(µ)
gy(µ)
gz(µ)
1

 = T(µ)


p
q
r
1


Ω2

, (3)

where T(µ) is the transformation matrix, defined as

T(µ) = RxRyRzD =


T11(µ) T12(µ) T13(µ) T14(µ)
T21(µ) T22(µ) T23(µ) T24(µ)
T31(µ) T32(µ) T33(µ) T34(µ)
T41(µ) T42(µ) T43(µ) T44(µ)


→ Tx(µ)
→ Ty(µ)
→ Tz(µ)

. (4)

Rx, Ry and Rz are the rotation matrices around the corresponding axis and D is the translation
matrix. Therefore, the x-coordinates of the implant nodes, here as an example for one node, are
calculated as

gx(µ) = Tx(µ)


p
q
r
1


Ω2

= Tx(µ)hΩ2 . (5)
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Using the FEM to solve Laplace’s equation results in the following system of equationsK11 K12 K13

K21 K22 K23

K31 K32 K33

x1(µ)
x2(µ)
x3(µ)

 = 0 , (6)

where x1(µ) = pΩ1 are the coordinates of the nodes on Ω1 and x2(µ) = Gx(µ) = HT
Ω2
TT

x (µ)
the coordinates of the nodes on Ω2 performing the rigid body motion. Gx(µ) and HΩ2 store
the morphed and initial coordinates of the nodes on Ω2.
In summary, the coordinates are calculated as

x(µ) =

 pΩ1

HT
Ω2
TT

x (µ)

−K−1
33 K31pΩ1 −K−1

33 K32Gx(µ)

 =

 pΩ1 0
0 HT

Ω2

−K−1
33 K31pΩ1 −K−1

33 K32H
T
Ω2

[
I

TT
x (µ)

]
, (7)

where I is the identity matrix. For the calculation of the new coordinates only Tx(µ) needs to
be recalculated. The remaining coordinate directions are treated analogously.

2.3 Bone remodelling simulation

For the bone remodelling simulation, a phenomenological model by Lutz and Nackenhorst
[15] is used. From the constitutive relation of the BMD ϱ, introduced as an internal variable,
and Young’s modulus E

E = E0

(
ϱ

ϱ0

)2

, (8)

where E0 and ϱ0 are reference values, the mechanical free energy density ψmech is defined as

ψmech =

(
ϱ

ϱ0

)2

ψLE =
1

ϱ

(
ϱ

ϱ0

)2 [λ
2
tr(ε)2 + µtr(ε2)

]
,

where ε is the elastic strain, λ and µ are the Lamé parameters and ψLE is the linear elastic
reference free energy.
The evolution equation for the BMD is defined as

ρ̇ =
∂ϱ

∂t
, (9)

where t denotes the process time of the quasi-static simulation. The BMD is limited by physi-
ological limits of the minimum BMD ϱmin and maximum BMD ϱmax. Further, the mass source
ρ̇ is defined as

ρ̇ = c
(
Ψ−Ψref

)
= c

(
ϱψ −Ψref

)
, (10)

where c is a model parameter describing the speed of the remodelling process, Ψ the strain
energy density and Ψref represents a physiological target value.
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2.4 Numerical treatment

The system of partial differential equations can be summarised as
∇ · σ (ε, ϱ) = 0 in Ω× T

with ε = ∇su

and σ = C (ϱ) : ε

ρ̇ = c
(
Ψ−Ψref

)
in Ω× T

. (11)

σ is the Cauchy stress, ∇s is the symmetric gradient, Ω is the spatial domain and T is the
process time domain.
The corresponding boundary and initial conditions are

u = uD in ∂ΩD × T
n · σ = t in ∂ΩN × T
ϱ(0) = ϱinit in Ω× 0

. (12)

∂ΩD is the Dirichlet boundary and ∂ΩN is the Neumann boundary. t is the surface traction
and n is the normal direction.
The FEM is used to solve the non-linear system of equations

K(u)∆u = f , (13)

where K is the tangent stiffness matrix dependent on the displacements u and f is the non-
equilibrium force vector. The Newton-Raphson method is used to solve the system of equations
and the internal variable ϱ is updated using an implicit Euler scheme.
Further, a gradient enhancement approach is applied to the free energy

Ψ(ε, ϱ, ϕ) = ϱψ = ϱψmech(ε, ϱ) +
αGE

2
(ϕ− ϱ)2 +

βGE

2
| ∇ϕ |2 , (14)

where αGE and βGE are model parameters, and ϕ is the nodal representation of the BMD field
[16].
The commercial software Abaqus (Abaqus 2017, Dassault Systèmes, Vélizy-Villacoublay, France)
is used, along with a bone remodelling user element subroutine [17]. The parameter values are
summarised in Table 1. The biomechanically equilibrated BMD distribution for the complete
femur is projected onto the model with the implant to get the initial distribution. For the
implant, titanium is used as linear elastic material with a Young’s modulus E = 105000 N/mm²
and a Poisson’s ratio ν = 0.3. In Figure 2, the initial and final BMD distribution for the reference
mesh are shown, depicting a decreasing BMD distribution in Gruen zone 7.

2.5 Surrogate model

The POD-RBF surrogate model is set up to approximate the full BMD solution ϕ for a new
set of parameters µ as a linear combination of reduced basis functions V and the corresponding
weights w(µ)

ϕ ≈ ϕ̃ = V ·w(µ) . (15)
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Table 1: Bone remodelling simulation parameters

Parameter Value Unit

E0 6500.0 [N/mm2]

ν 0.3 [-]

ϱ0 1.0 [g/cm3]

Ψref 0.002 [N/mm2]

c 0.01 [s/m2]

ϱmin 0.001 [g/cm3]

ϱmax 2.0 [g/cm3]

αGE 0.01 [m5/s2kg]

βGE 10−8 [m7/s2kg]

(a) Initial BMD distribution (b) Final BMD solution

Figure 2: Initial (a) and final (b) BMD distribution (ϕ in g/cm3) for reference position of hip
implant

2.5.1 Proper orthogonal decomposition

The reduced basis functions V in Equation (15) are calculated using POD. ns high-fidelity
simulations are performed at different parameter points. The BMD distribution ϕi = ϕ(µi)
represents the ith solution with the corresponding parameter vector µi. These solution snapshots
are collected in the snapshot matrix S = [ϕ1, · · · ,ϕns

] ∈ RN×ns where N is the number of nodes.
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The matrix decomposition of S, using singular value decomposition (SVD), is performed

S = UΣZT , (16)

where U = [ξ1, · · · , ξN ] ∈ RN×N and Z = [ζ1, · · · , ζns
] ∈ Rns×ns are matrices containing the

left and right singular vectors and Z = diag(ς1, · · · , ςns) ∈ RN×ns is a matrix containing the
singular values of S, where ς1 ≥ · · · ≥ ςns ≥ 0.
The POD modes V = [ξ1, · · · , ξn] are a subset of U comprising the n left singular vectors
corresponding to the n largest singular values, thereby capturing a predefined amount of the
”relative” energy [10, 11].

2.5.2 Radial basis function interpolation

RBF interpolation is used to calculate the weights in Equation (15) as

w(µ) =

ns∑
i=1

ωiφ(r) , (17)

where ωi are the RBF coefficients to be determined and φ(·) is the RBF. Different kernel
functions can be used as an RBF. In this work, the Matérn C0 RBF ϕ(r) = e−a·r is used.
r = ∥µ−µi∥ is the radial distance where ∥·∥ denotes the Euclidean norm. All parameter inputs
are normalised.
The coefficients can be determined by solving

A = SrB
−1 , (18)

where A ∈ Rn×ns contains the coefficient vectors A = [ω1, · · · ,ωns ], Sr is the reduced snapshot
matrix with the known data and B ∈ Rns×ns is the interpolation matrix evaluating the RBFs
at all parameter combinations B = [Bij ] = [φ(∥µi − µj∥)] with i, j = 1, . . . , ns.

3 Numerical example

3.1 Setup of surrogate model

An equidistant sampling with three points in every parameter dimension in the range of
δx, δy, δz ∈ [−1, 1] mm and α, β, γ ∈ [−1, 1]◦ is performed. The bone remodelling simulation
is performed on all 729 morphed reference meshes and the final result of ϕ combined with the
parameter combination µ is stored.
For the setup of the surrogate model, 17 POD modes are selected as the reduced basis which
preserves a total energy of 99.99%. For the RBF, a shape parameter of a = 0.0001 is chosen.
For the computations, a workstation Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 32GB
RAM was used. The time for the mesh generation in the offline phase is 6 minutes and each
bone remodelling simulation takes about 25 minutes. The time to set up the surrogate model,
including the calculation of the POD modes and the RBF coefficients, takes approximately
2.7 seconds. The time to calculate a new parameter point in the online stage is about 1.2
milliseconds. The calculation of the parameterised mesh takes 0.4 seconds.
To analyse the accuracy of the surrogate model, 20 pseudo random parameter points in the
parameter range are created.
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3.2 Results

The mean absolute error (MAE) for the validation set is 0.0047. In Table 2, the MAE is
depicted for the different Gruen zones. The MAE is the smallest in Gruen zone 4, with a value
of 0.0006. In Gruen zone 4, the mass change is the smallest, so changes in the BMD distribution
are small between different parameter combinations and are easily represented by the chosen
POD modes. In contrast, in Gruen zone 7, the largest error with 0.0214 is present. In Gruen
zone 7, the largest mass change is present, which needs to be captured by the POD modes.

Table 2: Mean absolute error in different Gruen zones for POD-RBF surrogate model

Gruen zone MAE

1 0.0050
2 0.0046
3 0.0088
4 0.0006
5 0.0049
6 0.0083
7 0.0214

In Figure 3, the results for the high-fidelity solution, the surrogate model solution and the
absolute error for one exemplary random position (δx = 0.99 mm, δy = 0.35 mm, δz = −0.54
mm, α = −0.34°, β = −0.74° and γ = 0.84°) are shown. Qualitatively, no difference between
the BMD distributions of the high-fidelity model and the surrogate model is visible. The MAE
for a cut through the femur is depicted in Figure 3c. A maximum error of 0.15 is present but
smaller errors occur in the vicinity.

4 Conclusions

A non-intrusive POD-RBF reduced order model has been implemented to quickly evaluate
various hip implant positions. Using a mesh morphing approach, remeshing can be avoided in the
offline phase. Further, the node numbering is maintained which prevents the need for projection
of the results on a common mesh in the offline and online phase. By using the surrogate model,
the computational time for new parameter points can be significantly reduced compared to the
high-fidelity model, while still maintaining a good accuracy. This time reduction paves the way
for application of the surrogate model in clinical practice.
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