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Summary. The intense fragmentation of brittle radioactive solids resulting from dynamic load-
ings can lead to the production of airborne fragments whose dispersion in the environment has to
be predicted for crisis management purposes. Numerous fragmentation models based on Mott’s
theory estimate crack density fields inside broken solids. However, the use of this data for
estimating a fragment size distribution is not straightforward. A known method consists into
choosing an algorithm to partition the solids into random fragments sets while ensuring the ob-
taining of crack networks associated with given crack densities. The accuracy of a fragment size
distribution estimate depends then on the aptitude of the algorithm to generate fragments close
to real ones in terms of size and shape.

In this paper, we focus our interest on the use of isotropic inhomogeneous Poisson-Voronoi
tessellations to represent fragmented solids. Estimates are proposed and verified for the prob-
ability density function of the Voronoi cell size associated to a given crack density field. They
are used for retrieving the cumulative fragments mass fraction observed on two ceramic tiles
fragmented by edge-on-impact tests. Finally, the usage limits and outlooks of this work are
presented.

1 INTRODUCTION

The French Institute for Radiation Protection and Nuclear Safety (IRSN) aims to provide
estimates of radiological hazards induced by accidental events or malevolent attacks involv-
ing nuclear or radioactive materials. In this framework, the airborne release and dispersion of
submillimeter radioactive material particles is a topic of major interest.1,2 The consequences as-
sociated to such a scenario strongly depend on the particle size distribution3,4 whose estimation
can be challenging. It is particularly the case when these particles correspond to radioactive
material fragments induced by malevolent attacks (ballistic impacts or explosions). This state-
ment has motivated the creation of a research program aiming at developing a numerical tool
for estimating fragment size distributions resulting from the fragmentation of brittle solids.

The estimation of fragment size distributions is a key issue in numerous engineering sciences
as it can be used, for example, to improve mining processes efficiency,5–8 to study military de-
fensive devices9,10 or to assess explosive munitions performances.11,12 As a consequence, various
methods are proposed in literature for estimating fragment size distributions among which the
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most cited are empirical methods.1,12–15 These methods gives satisfactory results when studying
well-defined scenarii for which only an estimate of an average fragment size is required, the distri-
bution shape being generally fixed and known from direct experimental observations. However,
their use is restricted to specified cases which seldom correspond to subjects of interest for the
IRSN. This issue is overcome by considering mechanics-based approaches allowing for a finite ele-
ment analysis of any scenario. The modelling of a crack network evolution is either carried out by
considering Surface Fracture methods (e.g. Discrete Element Method16 or Cohezive-Volumetric
Finite Element Method17) or Continuum Damage Mechanics (CDM)-based methods.5,6, 18–24

Surface Fracture methods permit modelling individually each crack initiation and propagation
as well as each fragment formation. However, the computed fragments being composed of at
least one elementary component of a spatial discretization of the domain of interest, an artificial
minimum fragment size is imposed. The obtention of the whole fragment size distribution
requires thus to consider a spatial discretization whose characteristic length is less than the one
of the smallest expected fragment. These methods reach then their limit when studying the
fragmentation of large objects into a huge quantity of small fragments. This is typically the case
in most of the problems of interest for the IRSN.

For that reason, the use of Continuum Damage Mechanics (CDM) models seems more appro-
priate. Indeed, these models provide a physical framework for studying the effects of multiple
cracking or voidage taking place in volume of materials smaller than finite element ones.25 How-
ever, in contrast to Surface Fracture models, only a partial description of a local crack network is
obtained as cracks are not individually described. The estimation of a fragment size distribution
from the results of a CDM simulation is thus more challenging.

Most of the CDM -based models are derived from Mott’s theory5,6, 12,18–24 which allows for
estimating the evolution of the crack density in unidimensional solids subjected to a homoge-
neous tensile straining as well as the associated fragment size distribution. In turn, in each of
these models the description of the fragmentation state of a solid is restricted to an estimate
of a crack density field. However, retrieving a fragment size distribution from the knowledge
of this data alone is not straightforward and constitutes a Geometric Fragmentation Statistics
problem.12–14 Indeed, a same crack density field over a given solid can be obtained by con-
sidering various partitioning algorithms associated to distinct fragment size distributions. For
a partition algorithm to give an accurate estimation of a fragment size distribution, it must
produce fragments whose geometrical features are representative of real ones.

Among the most known partitioning algorithms are the Voronoi tessellations. Many results
have been provided on these tessellations as they are used in numerous fields such as image
morphing, volume and surface mesh generation and surface representation.26 The statistics
of the cells of a Voronoi tessellation can be modified for example by selecting inhomogeneous
point processes for the generation of the cell seeds or by choosing anisotropic metrics for the
cell boundaries computation.26–28 In turn, the Voronoi tessellations can reproduce numerous
fragmentation patterns.

The present work focuses on inhomogeneous Poisson-Voronoi tessellations. The euclidean
metric is used for computing the Voronoi tessellations. A first section presents a method for
estimating fragment size distributions derived from the pioneering works of Lienau and Mott
which combines the knowledge of a crack density inside a broken solid with the use of a volume
partitioning algorithm. Known results on Poisson-Voronoi tessellations are presented on the next
section in view of using them as partitioning algorithms. An estimate of the inhomogeneous
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Poisson-Voronoi cell size probability density function is then proposed. It requires a crack
density field which could be provided for example by a CDM model based on Mott’s theory.
This estimate is validated and used for estimating the cumulative mass fragment distribution of
two fragmented ceramic tiles. A comparison is then made between these estimations and actual
experimental measurements. Finally, a limitation on the use of this estimate is presented.

2 Crack density field and Geometric Fragmentation Statistics

A well-known academic result on fragmentation statistics of brittle solids was brought by the
work of Lienau29 who studied the random fragmentation of a rod subjected to a homogeneous
tensile strain. He observed that experimental fragment size distributions can be accurately
estimated by exponential laws. These laws describing the interarrival time distribution in a
Poisson point process, Lienau suggested that the observed fragment size distributions are the
result of the activation of flaws randomly distributed along the rod according to a homogeneous
Poisson point process. Denoting by τ the number of activated flaws per unit rod length, namely
the crack density, the fragment size probability density function reads:

∀l ≥ 0, f(l) = τ exp(−τ l) (1)

This result suggests that a fragment size distribution shape can be inferred from the knowledge
of the spatial statistics of flaws positioning inside a uni-dimensional solid.

Lienau’s approach has since been extended to two and three-dimensional fragmentation prob-
lems. The choice of a partitioning algorithm for retrieving a known fragment distribution is a
Geometric Fragmentation Statistics problem.12 As illustrated on Figure 1, a partitioning algo-
rithm leads to a particular fragment size distribution. In most cases, the tessellations obtained
by these algorithms are entirely described by one parameter, for example a fragment density or
a Point-process density, which permits selecting an average fragment size.

Figure 1: Visual comparison between three fragment area distributions corresponding to three
distinct planar tessellations. From left to right: Dirac, Mott and Gamma distributions are
observed.12

Mott pursued Lienau’s work by studying the dynamic fragmentation of radially expanding
cylindrical thin metal shells.12 From experimental observations, he suggested that the cylinder
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fragmentation followed two steps. First, a network of cracks parallel to the cylinder axis appears
forming a set of strips of random width. Then, secondary crack networks appear in each strip
along the cylinder axis forming the final fragments.

He considered the unidimensional Poisson-Voronoi distribution for modelling the intercrack
spacing statistics and obtained the following estimate for the probability density function of the
fragments area a:12

f(a) =
τ√
τa

∫ ∞

0

(
2ξ
√
τa− 1

) (
1 + 1/ξ2

)
exp

(
−2ξ

√
τa− 1/ξ2

)
dξ (2)

where τ is the number of cracks in the cylinder per unit surface, i.e. the crack density.
While giving accurate estimates,12,29 the distributions of Lienau and Mott do not consider

the physics of fragmentation. As a consequence, the influence of a material parameter such as
its elasticity modulus or its density on the fragments size distribution is still unknown at this
point. The same goes with the influence of the boundary condition, in particular the influence
of the loading speed on the crack density.

Aiming at filling this gap, Mott proposed a physical framework for modelling one-dimensional
dynamic fragmentation problems under homogeneous strain state. He suggested the existence
of a flaw population inside any solid, each flaw being associated to a particular critical strain
value above which the flaw initiates a crack. As a consequence, release waves travel inside the
body from the activated flaws locus preventing a future activation of any flaw they encounter.

The resulting number of activated flaw and thus the final crack density depends on the
competition between the rate of released strain and the rate of increasing imposed strain. If the
rate of imposed strain is low, only a few flaws are activated before the complete release of the
solid. If the rate of imposed strain is high, a big part of the flaws are activated before the arrival
of released waves, resulting in a higher final crack density.

Since, numerous CDM models have been proposed extending the use of Mott’s theory for
three-dimensional fragmentation problems involving inhomogeneous strain fields.5,6, 18–24 These
models estimate crack density fields by means of finite element simulations.

Following the approach of Lienau and Mott, the crack density field can be used as an input of a
partition algorithm. This algorithm would generate a representative partition of the fragmented
solid, for example a Voronoi tessellation, which would in turn be used for estimating a fragment
size distribution.

3 The Poisson-Voronoi tessellations

3.1 Homogeneous Poisson-Voronoi tessellations

A Voronoi partition of a domain Ω of size |Ω|, associated to a set of N points or seeds, splits
Ω into N Voronoi cells. Each Voronoi cell is associated to a seed and corresponds to the set of
points inside Ω closer to that seed than to any other considering a given metric.

In this work we focus our interest into the homogeneous Poisson-Voronoi tessellations ob-
tained by considering the euclidian metric. In these tessellations, the seeds are generated by a
homogeneous Poisson point process over domain Ω. Considering a point density λ, a number
N of seeds is randomly selected using a Poisson law with intensity λ|Ω|. The N seeds are then
randomly placed inside Ω without preference for any spatial location and are used to build the
Voronoi tessellation.
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Consider a fragmented solid whose crack network corresponds exactly to the faces of a homo-
geneous Poisson-Voronoi tessellation. Consequently, the resulting fragments are identified to the
Voronoi tessellation cells. The seed density λ of the corresponding homogeneous Poisson-Voronoi
tessellation is related to the face density, i.e. the crack density τ , by:30

λ =

{ (
1
3

)
τ for planar tessellations(
35

35+24π2

)
τ for volume tessellations

(3)

The fragment or Voronoi cell size probability density function can be estimated by a Gamma
distribution:31

∀x ≥ 0, fH(d, λ;x) =
xk(d)−1

Γ(k(d))
[k(d)λ]k(d) exp(−k(d)λx) (4)

where Γ is the Euler Gamma function and k is a positive scalar function depending only on the
domain dimension d and reading:

k(d) =
3d+ 1

2
(5)

Accuracy of estimate (4) is illustrated on Figure 2.

Figure 2: Left: a homogeneous Poisson-Voronoi tessellation of a cube. Right: the associated
cell volume distribution (grey chart) and the proposed estimate (black line).

Equations (3), (4) and (5) can be used for estimating a fragment size distribution from a
homogeneous crack density field defined over domain Ω. For the estimate to be accurate, the
fragmented solid should resemble a homogeneous Poisson-Voronoi tessellation. A first step for
improving the representativity of the Voronoi tessellations is to allow for an inhomogeneous
description of the crack density field.

3.2 Inhomogeneous Poisson-Voronoi tessellations

In most cases the crack density inside a solid is not homogeneous. In turn, it appears
interesting to consider a Voronoi tessellation built on seeds drawned from an inhomogeneous
Poisson point process. To the best of our knowledge, there are no known estimates for the
probability density function of inhomogeneous Poisson-Voronoi tessellations.
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Consider a solid occupying a domain Ω and an inhomogeneous crack density field τ defined
over Ω. Supposing that equation (3) still holds for inhomogeneous Poisson-Voronoi tessellations,
the crack density field τ is substituted by its equivalent Voronoi cell density field λ:

∀X̄ ∈ Ω, λ(X̄) =

{ (
1
3

)
τ(X̄) for planar tessellations(
35

35+24π2

)
τ(X̄) for volume tessellations

(6)

Let F = λ(Ω) be the set of accessible values of λ over domain Ω. For all x in F , we define
the cumulative domain size function S by:

∀x ∈ F , S(x) = |
{
X̄ ∈ Ω, λ(X̄) ≤ x

}
| (7)

By definition S is a strictly increasing function hence injective. Denoting by E the image set of
F through function S, we define the equivalent seed density λeq as the reciprocal function of S:

∀y = S(x) ∈ E , λeq(y) = x (8)

The image set E is a disjoint union of singleton sets and non-singleton intervals:

E =
⊔
k∈I

{Sk}
⊔
j∈J

Ej (9)

With the above notation and by using the total probability theorem, we estimate the Voronoi
cell size probability density function fNH by the following equation:

∀x ≥ 0, fNH(d;x) =
1

Λ

∑
k∈I

fH(d, λeq(Sk);x)λeq(Sk)Sk +
∑
j∈J

∫
Ej

fH(d, λeq(y);x)λeq(y)dy

 (10)

where Λ is the expected number of Voronoi cells inside Ω:

Λ =

∫
Ω
λ(X̄)dΩ (11)

Figure 3 illustrates the accuracy of estimate (10) on an example of inhomogeneous tessellation
of a cube of side length L.

The seed density λ considered on Figure 3 is defined over the cube by:

∀(x, y, z) ∈ [0, L]3, λ(x, y, z) =

[
l0 + (l1 − l0)

(
max(x, y, z)3

L3

)]−3

(12)

where l0 = L/50 and l1 = L/5.
The associated crack density field τ is given by Equation (6). For all v ∈ [0, L3], the number

n(v) of cracks inside the cubic space C(v) = [0, v1/3]3 is obtained by integrating the crack density
field τ over C(v):

∀v ∈ [0, L3], n(v) =

(
1 +

24π2

35

)
L3

2 (l1 − l0) l20

1−( l0

l0 + (l1 − l0)
(

v
L3

))2
 (13)

Figure 4 compares the expected cumulative crack number inside the cubes C(v) for v ∈ [0, L3]
with the one corresponding to the Voronoi tessellation of Figure 3. Estimate (6) shows a rela-
tively good accuracy.
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Figure 3: Left: an inhomogeneous Poisson-Voronoi tessellation of a cube generated with a thin-
ning algorithm.32 Right: the associated cell volume distribution (grey chart) and the proposed
estimate (black line).

Figure 4: Left: cells faces network of an inhomogeneous Poisson-Voronoi tessellation of a cube.
Right: the cumulative number of Voronoi cell faces inside cubes C(v), v ∈ [0, L3] (dotted line)
and the proposed estimate (solid line).

A particular case concerns step crack density fields. Such fields are the usual output of
numerous finite element simulations using damage models based on Mott’s theory. Indeed,
these simulations usually provide homogeneous crack density fields over each finite element.
Denoting by λk the seed density associated to the crack density τk inside element k and by Sk

the size of element k, k ∈ J1;NeK, estimate (10) becomes:

∀x ≥ 0, fNH(d;x) =

∑Ne
k=1 f

H(d, λk;x)λkSk∑Ne
k=1 λkSk

(14)

4 Application and limitation

4.1 Brittle fragmentation of a ceramic plate

In this subsection we consider the work of Forquin and Ando33 on the fragmentation of SPS-S
and SPS-L ceramic tiles (60× 30× 8 mm3) under edge-on-impact tests. In these tests, intense
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fragmentations of ceramic tiles are induced by the impact of cylindrical steel projectiles on their
edge (impact velocity of approximately 175 m.s−1). A metalic casing surrounding the ceramic
tiles limits the fragments displacement allowing for a postmortem observation of the fragmented
tiles by microtomography.

Using the microtomographic pictures provided by Forquin and Ando,33 a fragment density
field has been estimated for the two types of tested ceramics by a trial and error approach.
Inhomogeneous Poisson-Voronoi tessellations have then been built using these density fields and
the corresponding cumulative mass distribution of the Voronoi cells have been computed and
compared to experimental measurements. Figures 5 and 6 display the results of this study.

Figure 5: Left: a visual comparison between the tomographic picture of the fragmented SPS-S
tile (right side) and a representative Poisson-Voronoi tessellation (left side). Right: comparison
between the cumulative masses of the tile fragments and the Voronoi cell.

Figure 6: Left: a visual comparison between the tomographic picture of the fragmented SPS-L
tile (right side) and a representative Poisson-Voronoi tessellation (left side). Right: comparison
between the cumulative masses of the tile fragments and the Voronoi cell.

The use of inhomogeneous Poisson-Voronoi tessellations leads to accurate estimates of the
cumulative mass distribution of the ceramic tiles fragments. In addition, the Voronoi tessellations
allow for a qualitative observation of the fragmentation state over the tiles.

These encouraging results suggest that the inhomogeneous Poisson-Voronoi tessellation could
be used for estimating a fragment size distribution given a crack density field inside a broken
solid. Estimating the later seems to remain the main difficulty of the fragmentation problem.
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4.2 The issue of apparent space dimension

Estimate (4) for the probability density function of the size of a homogeneous Poisson-Voronoi
tessellation is accurate for describing unbounded Voronoi tessellations. In these tessellations,
the statistics of the Voronoi cell geometrical features are only dependent on the space dimension
d. The same statement can be made in the inhomogeneous case.

In turn, for the geometrical features statistics of the Voronoi cells to be representative of
the expected ones in three-dimensional tessellations, the characteristic length lc of the Voronoi
cells must remain neglectable with respect to all characteristic length of the broken plate. In
particular it must be neglectable with respect to its thickness. This condition is writen in terms
of the Voronoi cell density λ and the plate thickness l as follows:

λ >> l−3 (15)

Figure 7 shows a tessellation of a thin plate associated to a Voronoi cell density which does not
fullfil condition (15) and provides a visual comparison between the three-dimensional estimate
for the Voronoi cell volume distribution and a “two-dimensional” one, hereafter denoted by fH

2D.

Figure 7: A homogeneous Poisson-Voronoi tessellation of a thin plate. On the left: The Voronoi
cells. On the right: the Voronoi Cell size distribution (grey chart) and its estimates for three-
dimensional fragmentation (dotted line) and two-dimensional fragmentation (solid line).

The two-dimensional distribution estimate fH
2D has been obtained by considering that each

Voronoi cell is a cylinder whose thickness is equal to the plate one and having a cross section
whose area distribution is given by estimate (4) for the two-dimenional case:

∀x ≥ 0, fH
2D(λ;x) =

1

l
fH(2, λ;

x

l
) (16)

As illustrated on Figure 7, the use of estimate (16) rather than estimate (10) leads to a better
approximation of the volume distribution of the Voronoi cells of the plate.

5 Conclusion

The use of isotropic inhomogeneous Poisson-Voronoi tessellations for representing fragmented
solid has been investigated. Two formulas have been proposed and validated. The first one

9



J. Lhonneur

estimates a Voronoi cell density field as function of a Voronoi face density field, i.e. the crack
density field. The second one estimates the probability density function of the cell size of an
isotropic inhomogeneous Poisson-Voronoi tessellation associated to a given cell density field.
Although these formulas were known for homogeneous Poisson-Voronoi tessellations, to the best
of our knowledge, their use had not previously been extended to inhomogeneous tessellations.

Knowing the crack density field inside a broken solid, these formulas can be used for obtaining
a representative Voronoi tessellation of the solid and for providing an estimate of its fragment
size distribution. A first application of these formulas for representing two broken ceramic tiles
has been presented. The obtained Voronoi tessellations give good visual representations of the
broken tiles. In addition, very good estimates of the cumulative fragment mass fraction of
the ceramic tiles have been obtained. These results support the use of isotropic inhomogeneous
Poisson-Voronoi tessellations for estimating the fragment size distribution of a fragmented brittle
solid.

As showned in the last section of this paper, improvements can be made to address the
usage limits of the proposed formulas for estimating fragment size distribution from a crack
density fields. Others outlooks of this work concern the estimate of the crack density, which
is here considered as an input data, and the enhancement of fragments geometric statistics
description by considering anisotropic Voronoi tessellations. These future improvements should
permit estimating fragments aspect ratio distribution, allowing for an estimation of fragments
aerodynamic diameter distributions which are of crucial interest for assessments of health risks
linked to exposure to fine particles.
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